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A NOTE ON BERMAN'S PHENOMENON IN INTERPOLATION THEORY
S. J. GOODENOUGH, T. M. MILLS

In 1975, D. L. Berman introduced 1 sequence of polynomials which interpolate a fixed,
but arbitrary, continuous function, f. Even though the nth polynomial in the sequence inter-
polates the function at n+1 points, the polynomials do not necessarily converge to the function.
In this paper we determine necessary and sufficient conditions on f for Berman’s polynomials
to converge uniformly to f.

Il =xn <Xy < oo <Xp<Xy=+1 and f: [ 1, 1] — (—00, o)
then there is a unique polynomial H,,_,(f, x) such that

(a) the degree of H,, ,(f, x) does not exceed 2n -1,

(b) H_)n-~|(fv xk) ':f(xk)$ k= ls 21 ceey N

(€) H'gn—i(f, X4)=0, k=1, 2,..., n.
In 1916, L. Fejér [3] gave a prooi of K. Weierstrass’ approximation theorem
using these polynomials. From now on, x,=Xg.=cos((2k—1)z/(2n)) for k=1,
2,..., n where n=1.

Theorem 1 (L. Fejér) If f¢ C((—1, 1)), then lim,c | Hop—\(f)—fll=0,
where | - .. denotes the uniform norm on C(|—1, 1))

Notice that when 7 is even X,+0.

In 1975, D. L. Berman [1] considered the effect of adding the single
node xo,=0 to the point system when n was even.

Specifically, for n=2m, let Ry.yy(f, x) be the unique polynomial such
that:

(a) the degree of R, (f, x) does not exceed 2n+1,

(b) (l). R‘)n—r-l(f: xk) =f(xl)» k lv 2| se 0y ny

(i) Roni (1, 0) = £(0),
(c) () Ragnsi(f, x)=0, k=1, 2,..., n,
(ii) R'yns4(f, 0)=0.
By the condition (b) (i) we are guaranteed that limp e (Rons (f, 0)—f(0)=0.
Berman showed that this is a/l that we are guaranteed:

Theorem 2 (D. L. Berman). If f(t) =t and 0< x|<I then the sequ-
ence {| Ropi (f, X)—f(x):n=2, 4, 6,...| is divergent. )

Hence, by adding a single point to the system of nodes, one can annihi-
late the approximation properties of Hermite-Fejér interpolation polynomials.
This type of situation has been called Berman’s phenomenon in a paper by
Cook and Mills [2].

One may now ask the question, /f Ry,,(f, x) does not converge to fx)
for f(t)—t, what are necessary and sufficient conditions on [ for the sequ-
ence { | Roni\(f)—flw:n—2, 4, 6,...1 to converge to 0?

In this paper we shall answer this question by very elementary methods
and present a simple proof of Berman’s theorem.
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First, we represenf Berman’s polynomials in terms of Fejér’s polynomials.
If 7T,(x)=T,cosH)=cos nh denotes the Chebyshev polynomial of degree n then
one can check that

(1) Rys(fs %)= Hanalfy %)+ Tu(X2(fO) = Hons(f, 0)—xTu(x)2H's_(f, 0)

by using the defining conditions for /gy, (f, x) and Rgn+,(f, X).

Then, from (1) and Theorem 1 it follows that lim, .. | Ryuiy(t)—f =0 is
equivalent to lim,_./7,, ,'(f, 0)=0,

From L. Fejér’s work [3], p. 66, formula (3)] we know that

n T - o
Hpo(f, x)= 2 [ (k) Tl PL —xxp)

n¥(x —x, Q2

and therefore

2

2—x,;
)
k

, 1 n
H?n(f, 0)=—n‘2 k-Elf(Xk) ( p
Thus we have shown
Theorem3. lim, | Ronsy(f)—f|=0if and only if

1

. LA 2-—x§
hmn—nn n? E f(xk) (
k=1

) )=0.

The representation (1) also gives us an elementary derivation of Berman’s
Theorem. By Theorem 1 and formula (1), if 0<|x|<1 then {Ry,+,(f, x):n=2
4, 6,...} divereges ifand only if {H'g,—(f, 0):n=2, 4, 6,...} does not con-
verge to 0. In the case f(f) =¢, we have

n n
Haeu (f, 00=n—2 2 2—xPx;2=n"2 23 (2x;)—n"1=2—n"".
k=1 k=1

(Here we have used formula (12) from [2].) Theorem 2 follows immediately.
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