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CONTINUITY AND NON-MULTIVALUEDNESS PROPERTIES
OF METRIC PROJECTIONS AND ANTIPROJECTIONS

NIKOLAI V. ZHIVKOV

Single-valuedness and continuity  properties of  some classes  of multivalued metric pro-
jections and antiprojections in strictly convex Banach spaces are concerned. A more general
topological result about upper semicontinuous multivalued mappings is applied for the estab-
lishment o analcgs of Stechkin’s projections results ror antiprojections. A different approach
based on Gateaux differentiability of metric antiprojection functions yields that any antipro-
jection in a strictly convex and weakly differentiable space is non-multivalued over a second
Baire category subset ol the space.

Let M be a subset of the metric space (X, ¢). The multivalued mapping
P: XN -+ M, which maps every point A\ into the set Px={yeM: d(x,y)
—inf, ud(x, 2)} is called a metric projection. A Lipschitzian function is associat-
ed in a natural way with every projection mapping: p(x)-—=inf. ud(x, 2). Ana-
logously, any bounded subset M X generates a metric antiprojection Q : X
—» M according to the formula: Qx={ye¢eM: d(x,y) - sup.ud(x, z)}. The
corresponding function ¢(x) -sup.md(x, 2) is Lipschitzian too and, if an addi-
tion .X" is normed, then ¢ as a supremum of convex functions is also convex.

In 1963 Stechkin [16] showed (under certain conditions) that in a
strictly convex Banach space X' the metric projection P: X -—» M has one-
point or empty images for the ,majority” of the points of X. The “majority”
here should be understood as a set of points B such that its complement

A B is a countable union of sets A, i=1, 2,..., whose closures A, have
empty interiors: int A, - @. Sometimes, sets like B are called residual in X,
and according to the classical Baire theorem they are dense in the space.
Stechkin indicated two different ways of proving results of this type. In the
first case he based his argument on special properties of M (e.g. bounded
compactness of M) and in the second case he took the special shape of the
unit ball of A" (c. g locally uniform convexity) as a starting point. Later
Kenderov [5-7) used certain continuity properties of the multivalued map-
pings as approach to the same kind of problems but his way was appropriate
only for Stechkin's first type of results.

“In the paper we show that both types of results as well as analogous re-
sults for antiprojections can be deduced from a general result (Theorem 1.1)
concerning points of single-valuedness of a given multivalued mapping. With-
out any additional conditions this theorem  enables us to get more informa-
tion about the points of continuity of metric projections and antiprojections.
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In the second part of the paper only metric antiprojections are consider-
ed. The main idea here is contained in a proposition, which states that if the
convex function g(x)—=sup.um||x—2z| is Gateaux differentiable at some point
x,€.X, then the set Qx, has not more than one element. This makes it pos-
sible to formulate the problem into another way: Is the convex function ¢
Gateaux differentiable at the points of a residual subset of X'? If it is, then
the metric antiprojection is single-valued at the points of some residual
subset of X.

The simplest way to ensure that ¢ is Gateaux differentiable at the points
of a residual subset of X is to suppose that every convex function defined in
X is Gateaux differentiable on a residual subset of its domain of continuity.
Banach spaces satisfying this condition were studied by Asplund [2] who
gave them the name Weakly Differentiable Spaces (WDS). Asplund proves that
every weakly compactly generated (in particular every separable or reflexive)
Banach space is WDS. Therefore, at least when M is a bounded subset of
the strictly convex separable or reflexive Banach space, we can assert that
Q: X —» M has one-point or empty images for the “majority” of points of X
(Theorem 2.1) Related problems have been discussed in the papers of Ko-
nyagin [8], [9] and Zajicek [17] in the projections case and also Panda
and Kapoor [14] in the antiprojections case.

This paper carries out the proofs of results announced in [I8].

Acknowledgement. The author should like to express his gratitude
to P. Kenderov for his helpfull suggestions and the encouragement while
the work was in progress.

1. Let X and Y be two topological spaces. The multivalued mapping
F: X — Y is upper-semicontinuous (u.s.c.) at x,€¢ X iff for every neighbour-
hood WD Fx,, there exists a neighbourhood V'3jx,, such that Fz—W when-
ever z¢ V. F is u.s. c. iff it is u.s.c. atany x¢X. It is possible that Fx=Q
for some x¢.X. If it is the case, then the definition of u.s.c. implies that the
set of all such points is open. If F is single-valued at x, i.e. Fx={y} and
if Fis u.s.c. at x we call F continuous at x. The following notations will

be used in the sequel:
D(F)y={xe¢X: Fx=0};
S(F)-— {x¢X:Fx—{y}}, the set of points of single-valuedness of F,
C(F)- {x€X:Fx {y}&F is us. c at x}, i e these are the points of
continuity of F;
ES(F)={x¢X:Fx - @ or Fx={y}}], i.e. the points of non-multivalued-
ness of F;
UF)={xeX:(Fis us.c.at x)&(Fx-@ or Fx={y}};
EC(F)={x¢X:Fx=@ or (Fis us. c at x&Fx={y})}
let F: X— Y and F*: X — )} be two multivalued mappings. F* is said
to be an extension of F iff Fx -F*x, wx¢X, Fleim=F*/c and C(F)=C(F*).
Theorem 1.1 Let F: X —Y be a multivalued mapping from the topo-
logical space (X, 1) into the metric space (Y, d).
i. If D(F) is a (B subset of X, then C(F) and U(F) are also (s sub-
sets of X. -
ii. If C(F) is dense in IXF) i.e. C(F)=IXF), then ES(F) and EC(F) are
residual in X.
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iii. If every closed subset of X is ®s in X and if (Y,d) is a complete
metric space, then there exists an extention F* of F such that C(F*) and
U(F*) are B sets.

Before giving the proof we note that in the particular case when F is a
single-valued mapping, iii. is an assertion of Lavrentiev-theorem-type concern-
ing extention of a continuous map to a (5 subset containing its domain
(see Kuratowski [10], vol. 1, p. 432)). Our method of proof is an adapta-
tion of Kuratowski’s one.

Proof. i. Let Vet(X). Denote FV= (| {Fz:2¢V}and r(x)=inf {diam FV:
V € 1(x)}. Consider the open sets U,= U{V€t(X):diam FVv<n'}={xeX:
Ax)<n='} and the set U=z U,={x€X:r(x)=0}. The latter is a G5 set
and so is D(F)N U. It is a routine matter to verify that C(F)=D(F)nU and
that U(F) is (3 whenever C(F) is so.

iii. Consider now the map F*x—= N{FV:Vet(x)}. It is clear that
Fx— F*x, wx (N and F ¢ =F*cr. Let xe D(F)n U. There exists a sequence
of neighbourhcods of x (V,) such that V.=V, i=J; diam FV,<n—' and
V,ND(F)= @, n—=1, 2,... According to Cantor theorem [ = FV,={y} and
obviously F*x={y}. For any ¢>0 there is V¢1(x), diam FV<e, and for z¢ V
then Vet(z) and since y ¢ FV, then F*: =FV=B(y,¢). Thus F* is continuous
at x¢D(F) U. If F* is continuous at x then r*(x)=inf {diam F*V : V¢t(x)}
—0, but r(x) “r*(x) because Fx—F*x and therefore x¢D(F)N U. Since X has
the property that every closed subset is & then D(F)N U=C(F*) and U(F*)
are (3 sets too.

To prove ii apply i to the mapping F:D(F)— Y, the topology in D(F)
being induced by t(X). Having in mind the fact that F is u.s.c. at x € D(F)
iff F is u.s c.at x relative to the induced topology we see that C(F)is ®s
and dense in D(F). Then D(F)C(F)= Jz_,T, are nowhere dense in D(F)
and so they are in ©(X). The theorem is proved.

Corollary 1.2, Suppose F:X—VY is a multivalued mapping with
non-empty images from the topological space X into the metric space Y,
which is single-valued and u.s.c. at the points of some dense subset of X.
Then F is single-valued and u.s.c. at the points of a dense (®s subset of X.

Proof. lmmediate from Theorem 1.1 i.

In order to underline the analozy between metric projections and antipro-
jections (as far as these kinds of problems are concerned) and for the sake
of brevity, we formulate and prove both the sorts of results simultaneously.

Theorem 1.3 Let X be a complete metric space, Mc X be a closed
(respectively bounded and closed) subset. Then the sets C(P), UP) (resp.
C(Q), U(Q) are (35 sets. If X is a Banach space and MNbdM is closed then
C(P) and UP) are B in X> M (Respectively if X is a Banach space and
M is bounded and M bdM is closed then C(Q) and U(Q) are &s sets
in X).

The proof is based on the argument that under the above conditions
every projection (resp. antiprojection) coincide with its extension constructed in

Theorem 1.1 iii, i.e. Px Prx - (1 {PV:Verx)), yxeX (resp. Qx=Q%x=
H{QV - Ver(x)), yvxeX).
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Indeed let y¢P*x= N PB(x,n™ ") (resp. y¢ Q*x= (17 QB(x,n7")). For
any positive integer B(y, )N PB(x,n=")-= (resp. B(y, n=')NnQB(x,n7")
# (@), which implies the existence of sequences (x,) and (y,) such that
V. €Px, (tesp. v,€Qx,). d(x,x,)<n'and d(y,y,)<n', n=1,2 ... There-
fore d(x, y)=d(x,x,)+d(x, y,)+d( Vv, y)<2n—'+p(x,). After trailsition at in.
finity d(x, y)=px), limun.. y,=veM. If X is normed and x¢M, then also
yebd M (For antiprojections the inequality g(x,) =d(x,, v,)<22~'+d(x, y) holds).
The proof is completed.

The space X is strictly convex if [[x+yl[=[lx|l+|/yil implies |[x]||y
=||yllx whenever x, y¢X.

Theorem 1.4. Let M be a subset (resp. a bounded subset) of the
strictly convex Banach space X and let the metric projection P: X — M
(resp. the metric antiprojection Q: X — M) be u.s.c. at every point x ¢ X
where the image of P (resp. Q) is a singleton. Then EC(P) (resp. EC(Q)) is
a residual subset of X. Moreover, if M is closed or MNbd M is closed then
U(P) (resp. U(Q)) is ®s dense, where in the latter case U(F) is ®s dense
in XN\M.

Proof. If v,€¢Px, (resp. v,€Qx,), it is not difficult to see because of
the strict convexity of X, as Stechkin indicated for the projection case, that
at every point x from the set {x,=(l—f)x,+1y,:0<t=1} (resp. {x,=x,+1(x,
—¥,) : t>0}) the metric projection P resp. the antiprojection Q) is single-va-
lued and according to our assumption continuous. Let # — 0 then x, ap-
proaches x, arbitrarily close. It remains to apply Theorem 1.1 ii. in order to get
the first part of the theorem. For the second one we observe that U(P)
(resp. U(Q))is dense in X and apply Theorem 1.3.

A set Mc X is approximatively compact [4] (resp. A-compact [3]) if every
minimizing (resp. every maximizing) sequence has a subsequence conver-
gent in M.

Corollary 1.5. Let M be an approximatively compact (resp. A-com-
pact) subset of the strictly convex space X. Then C(P) (resp. C(Q))is dense
s set.

Proof. According to a result of Singer [15] (resp. Blatter [3]) the pro-
jection mapping P: X — M (resp. the antiprojection Q : X — M)isupper-semi-
continuous. Since M is proximinal, i.e. Px=+ (@ for every x¢ X, and hence
closed; and since U(F)=C(P) the proof is an application of Theorem 1.4
(If M is A-compact it is not necessarily closed but D(Q)=X and as follows
from Theorem 1.4 C(Q) is dense. Apply Theorem 1.1 i.).

Remarks 16. The metric projection part of Corollary 1.5 belongs to
Kenderov [5]. If M is boundedly compact, i. e. the intersection of M with
every closed ball is a compact set, it is approximatively compact and the re-
sult of Stechkin [16], that in this situation P: X — M is single-valued on
a (s dense subset is a corollary of Theorem 1.4.

Let now the space X be locally uniformly convex, i. e. for every sequence
(xp)r, in X with |l x,ll=12=0,1,2,..., and liMpse |l X+ x,ll=2 it fol-
lows lim,..x,=x, (def. i.). A slightly modified version of the above defini-
tion is the following one: For every sequence (x,)> , with lim,o. || Xo+ X, ||
= 1iMapme || X, ||+ 1 X0 1] it follows || Xq || limaawx, = (lim,ow || X, [)x, (def. ii.).

To establish the equivalence between these two definitions. Only the
implication (def. i.) = (def. ii.) has to be proved.
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Consider the sequence (||(/| o1l "xo+ (Ul X117, 102, 1 every subse-
quence of it has a convergent to 2 sub-subsequence then the sequence itself
converges to 2. The proof is from the contrary and for convenience the in-
dexation is not changed. Then for some §>0 the inequality (1 x, 117Hx,
+(Il x,Im7x,[|-=2—38 holds. Assume additionally [| xol|>1imumw || x,||  (Later
the other possibilities will be discussed).

Hence

(D) (1 xull Mo+ X, =10 17X+ 2 1), 11+ X 17 =1l 2o 7Dl X I
13+ x, 1P x =11 x, 171 (T xo 1+ 11 X, [)— 8-

[hus

(2) | X+ X, 1=l ol -+ 1T xall =811 X, \\,

which cqntradicts (def. ii.) assertion.

If || x,ll<lim,..| x,|, one replaces everywhere in (1) x, with x, and
derives an inequality similar to (2) which contradicts the assumption again.

The case || xo!l —lim,.. [l x, |l is trivial.

It only remains to take into account (def. i) assertion in order to get
(def. ii.).

Lemma 1.7, Let M be u subset (resp. a bounded subset) of the locally
uniformly convex Banach space X and let y,¢€Px, (resp. Vo€ Qx,). Then at
every point of the set {x,=(1—t)x,+ty,:0<t=1} (resp. {x, ~xo+Hxo—Y0)
>0} the metric projection P: X — M (resp. the antiprojection Q: X —~M)is
both single-valued and upper-semicontinious.

FEven a stronger conclusion is true, i. e. every minimizing for x, sequence
(resp. every maximizing for x, sequence) converges in norm topology to v,
thus an approximative compactness (resp. A-compactness) at x, is obtained
and after Singer [15] (resp. Blatter [3]) this means that P (resp. Q) is
u. s. c. at x,.

Proof of Lemma 1.7. Considerations are for projections only, since the
antiprojection part of the proof goes over the same pattern.

Let (y,) be a minimizing for x, sequence, i.e. limye || X, — VIl = plx,).
Then (y,) is minimizing for x, too. Indeed

(3) [l Xo—Yo ll =1l Xo—Yu | =l Xo—X N1+ 1| X, = Yall-
Having in mind that Px, [y, from (3) after transition at infinity we yield:
(4) lm || xo— VoIl =lm|| x,—y, 1+ xo— x|l
n-—=wun n—x
Combine (4) and (def. ii.)
(5) lim (x,— v, im [ x, =y, 1= (xg — x) 1] xo— Xl

Assume for simplicity x, -0, then x,-ty, and therefore from (5)
[y, —lim v, | (1 =6l voll= —vo/ll ¥y Il. that means linye. ¥, = Vo The proof is
n-—soo

completed.
Theorem 1.8 Let M be a subset (resp. a bounded subset) of the lo-

cally uniformly convex Banach space X. Then the set EC(P) (resp. EC(Q))
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is residual in X. If in addition M is closed then U(P) (resp. U(Q) is Gs
dense in X and if Mn bdM is closed then U(P) is Gs dense in X\ M (resp.
U(Q) is ®s dense in X).

Proof. Having in mind Lemma 1.7 it is more or less line in line the
same as the proof of Theorem 1.4.

Remark 1.9 The metric projection part of this theorem belongs to
Stechkin [16].

Recently Lau [12] has proved that any projection generated by a closed
subset M of a reflexive locally uniformly convex Banach space X is single-
valued on a residual part of X. In [1] Asplund has proved that in analo-
gous situation the antiprojection Q: X — M has non-void images for the
points from some (s dense subset of X. Their results can be presized involv-
ing continuity properties of P (resp. Q). Thus the following nice conclusion
is true:

Theorem 1.10 (Lau, Asplund). Let P: X — M be a projection map-
ping (resp. Q:X — M be an antiprojection mapping) generated by the
closed (resp. bounded and closed) subset M of the reflexive locally uniformly
convex Banach space X. Then the set of points x¢X at which simul-
taneously

i. Px (resp. Qx) is a singletor,

ii. P (resp. Q) is upper-semicontinuous at x is a &s and dense subset
of X.i.e. C(P) (resp. C(0)) is &, dense.

The proof is a combination of Lau's [12] (resp. Asplund’s [1]) result
with Lenuna 1.7 and Theorem 1.3

2. Let X be a strictly convex normed space. Denote by n(f) ‘he restric-
tion of the very norm function !, upon some straight line L={x,=x,+1k
:t€R, |[A]| =1} not passing thro:gh 0. Since 7 is convex, for each couple
t, £, €R, £, <t, the inequalities hold:

(6) dn(ty)/dt . =(n(ty)—n(t,))(t—t))=dn(ty) dt_.
From6 ¢ L and strict triangle inequality it follows

(7) — 1<(n(ty) —n(t))/(t,—t,)<1.

Then (6) and (7) imply

(®) —l<dn(t,)/dt _<dn(t,)/dt . <1, for every £,¢R.

That simple fact enables us to give a sufficient condition for a projec-
tion (resp. antiprojection) to be non-multivalued at x¢.X if there exists 4¢ X,
[l1Z|l=1 such that lim, o (p(x-+2th)—p(x))t=1 (resp. lim, ., (g(x+th)—g(x))'t
= —1). Indeed if 0¢Px (resp. 0¢Qx) which is no loss of generality,

fx+th!i—| x|

9) fim PO iy RS
=0 {__.(». t

but (9) compared with (8) requires x and % to be colinear and then Pxc{x
—p(x)7}, so an impossible task is to find two different points that belong to
Px. In the antiprojection situation

ii‘:): g(x+th)y—q(x)/t - lim(|| x+¢h|| || x||) ¢, which
0, t=0,

i

means that lims—0_(|| x+s(—A4)||—Ilx|[))s=1 and then Qxc{x+g(x)k}.
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Thus if p (resp. ¢) is Gateaux differentiable at some point x ¢ X one can-
not expect more than single-valuedness of P (resp. Q) at x.

This method proved to be reliable when dealing with antiprojections.
There is a large class of spaces, namely Weakly Differentiable spaces for
which every convex function is Gateaux differentiable at the points of a re-
sidual part of the space (Asplund [2]). In particular every separable [13]
and every reflexive [2] Banach space is WDS.

Theorem 2.1 Suppose the strictly convex Banach space X is WDS
and M is a bounded subset of it. Then the set ES(Q), where Q: X — M is
the antiprojection generated by M, is residual in X.

Definition 22. (Rockafellar). Let X be a normed space and
©: X -—R be a convex function. The set Jo(x)={x"¢X*:(x*, y—x)=¢(y)
—(x), VY €X} is called the subdifferential of ¢ at x.

Theorem 2.3. Let X be a strictly convex Banach space and M weak-
Ly compact. Then the antiprojection Q : X — M is single-valued on a resi-
dual subset of X, i.e. the set S(Q) is residual.

Pro of. The existance part of the proof belongs to Lau [l1] and even
it does not depend on strict convexity assumptions. He considered the set

D={x¢X: sup (x*, x—2)=q(x), yx*€dg(x)}
F Y.

and proved that it is ®s dense. We shall demonstrate that in the strictly con-
vex case DcS(Q). Suppose the contrary. For some x,¢D and 2, 2,€ Qx, it
is true that || xo,—z2;/l=¢q(x,), i=1, 2. There exist xj and x;¢X such that
(x%, xo—2zp)=Il1x0—2:l, [ x;l|=1,i=1, 2. But x;€0d9(x,), i =1, 2. Indeed, for
arbitrary 2’ ¢M and y¢ X

(X, Yy—Xo)=(X;, y—2")—(x;, Xo—2")

< sup sup (x*, y—2)—(x], x,—2)=q(¥)—(x}, xo—2"), i=1, 2
zEM ||x*||=1
Hence supzcu(x, X,—2)=q(y)—{x,, y—X,) and then g(xo)—q(y)=(x; X,y
wyeX, i=1, 2. Denote x*=x{/2+x5/2. As dg(x,) is a convex set x*¢0dg(x,).
Since x, €D there exists a sequene (2,)7_,, such that ¢(x,)=limas.(x* x,—2,)

w
(x* x,-z2, for some z,6 M and z,—> z,. The last equalities also imply
that (x), x,—2y) —q(x,), i =1, 2 and therefore x; attains its supremum on the

closed ball B(x,, ¢(x,)) at 2z, and 2. Having in mind the strict convexity of
the norm we conclude: z;—=2,=2,. The theorem is proved.

The analogous result for projections is also true and it belongs to Ken-
derov [7].
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