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WEAK STABILITY OF A CERTAIN CLASS OF MARKOV
PROCESSES AND APPLICATIONS TO NONSINGULAR
STOCHASTIC DIFFERENTIAL EQUATIONS

BOHDAN MASLOWSKI

In this paper we deal mainly with Lyapunov type stability of evolution operators generated by
certain Markov processes in a space of probabilistic measures with weak topology. Also, weak stabi-
lity in the compactified state space is investigated. The results are applied to nonsingular stochastic
differential equations. The paper is related to the previous one by the author [6] where strong stabi-
lity was investigated by the method of lower measure developed by A. Lasota [5]. It also can be
viewed as a continuation of some earlier results by R. Khasminskii [I], G. Maruyama and
H. Tanaka [2] and others.

I. Introduction and notations. Let (X, p, #) be a o-compact complete separable
metric space with the o-algebra # of Borel sets and let P(s, x, t, A), 0=s=t<c0, x¢ X,
A¢® be a transition probability corresponding to an X-valued Markov process. De-
note by 2 the set of probability measures defined on # and let d be a metric on 2
realizing the weak convergence of measures and satisfying

(1.1) (“u)’ (Vn)egv “n—vn_‘obd(un' V,')-"O.
where — stands for the weak convergence of measures (for instance, we can take

=°° i —
d(p, v) 1:‘302 Ixf‘P,du ){(p,dVI.

where {@;} is a countable dense subset of the open unit ball of the space of uniformly
continuous real functions on X. For 0<s<f{<co we define

Sst: P—2, S,,;p(A)=A}' P(s, x, t, Au(dx), A,

and
Tst: CNM—=M, T, fix)= Ajf(y)P(s. x, body), x¢X,

where C and M are the sets of continuous and bounded functions on X, respectively.
When the corresponding Markov process is time-homogeneous we write P(t, x, A),
S, T, etc. Furtbermore, let X*=X{){co} be the one-point compactification of the

space X and let the symbols #*, #*, 4* —, C¥ M* have the same meaning in X* as
the respective ones introduced above in X. For 0ss<t we define

Qs tr P* =P 0 1= Paubnt (1= ) Sy, Y, €PN\ [B),
where po=p({c0}), 8. is the Dirac measure at the point {-o} and
= (1= o) (M Hoobc) | B3
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set @, (0., =38... Furthermore, set
T5, 00 C* = M¥* 1 f(X)=Ts, e f(x), x€X,
T, t f({ o)) =f({o}) =f.

T, + and @ ¢ are the natural extensions of 7T, and Ss,; on the spaces X* and 2%,
respectively. It is easily seen that we can write

[ fx)d [os, n]= [, ¢ fdp.
X* X+

The paper is divided into four sections. In Section 2 the general case is treated —
sufficient and, in some cases, necessary and sufficient conditions are established under
which the systems {S; ¢} and {es,/} are continuous (or Lyapunov stable) in the spaces
(2, d) and (2%, d*), respectively. Section 3 contains some applications of the results
of Section 2 to the case of nonsingular stochastic differential equations of Itd’s type.
Some examples are given in Section 4.

Some of the proofs are rather sketchy, especially in Section 2; they can be
found in full detail in [7] (some of them are straightforward). The fundamental theory
of stochastic differential equations in a s:lf-contained form can be found, for instance
in [3].

[ IFor >0 we denote U(x)={y¢X, p(x, y)<e} and U,=U,(0), if Xis a linear space.
The symbol [,fdp can be also written as [, f(x)u(dx) or [, fd[u] and the integra-
tion domain Y can be omitted if we integrate over the whole space considered. Fur-
thermore, 8, (x ¢ X) stands for the Dirac measure at the point x and the symbols
C,, Cio Es . E,, Ps x P, are used in the obvious sense (see, e. g., [3]).

II. Weak stability — the general case. Assume that the following assumptions
are fulfilled :

2.0) ’ For every €>0, s=0 we have
P(s, x, t, Ug(x))—1 for t-—+s+,
P(t, x, s, U(x))—1 for t - s—

locally uniformly at x¢ X and the system of measures {P(s, x, £, )} ((s. 1) is relatively
weakly compact for all 7>s.

(2.2) The system {T,f(.)|s} is equicontinuous with respect to
t>t,+s for all s=0, £,>0, feCNM, KcX, K compact.

Theorem 2.1. Let (2.1), (2.2) hold and let p¢P be arbitrary. Then, for every
e>0 and s=0, there exists >0 such that d(p, p)<5, w€ 2 implies the relation

sup (S, k. S, M)<e

(i. e., stability in the space X holds).
Proof. First we show that the mappings

(2.3) ®,: (P, d)X <s, =) —~(@, d); [V, ]S,

are continuous for all s=>0. Assume f,=s, £, —1t, V€2, v'—v¢?. We show that
(2.4) Ss, r'V" — S, 1V
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holds. For f¢CM we can write
(2.5) [ fd[Ss,e V' — [ falSs, V] |=| [ Tso, fav"— [ Ts, s fav|= [| Ts.e f
—Ts.t,flav*+| [Ts, ¢, fav"— [ Ts, o, fdv|.

It can be easily seen that (2.1), (22) imply T f—Ts,f locally uniformly in X,

(see e. g. [7]) and thus both terms on the right-hand side of (2.5) are small for n
sufficiently great. It follows that (2.4) holds. Assume that the assertion of Theorem 2.1
is false. By (1.1) and continuity of ®; we get

(26) | ] Fa 1S 01— [ fd[Suut ) |2

for some £,>0, s=0, f€CNM, £,— oo, p"¢2, n"—p¢2. The condition (2.2) implies
Tst f—v for some y¢CNM and a subsequence (t,.k)c(t,,). locally uniformly in X.
"k

Simple considerations (cf. [7]) show that
| [fd o1, Wl = [ fd[Ss., 0] =| [ Ts.s, fdn"™* [ Ts.s,, fau| =0, k—eco,

which is a contradiction. Thus the assertion of Theorem 2.1 is valid.

Remark. The assumption (2.1) is weak and it is fulfilled in most examples.
So the “nondegeneracy condition” (2.2) can be viewed as the essential one. It is
stronger than the strong Feller property, but not than the strong Feller property in
the narrow sense introduced by Girsanov [8] (cf. Corollary 2.2). Thus the condition
(2.2) can be replaced by (2.7) in all theorems in this section.

Corollary 22. Let (2.1) be fulfilled. Assume that

2.7) Var [P(s, x, t,.)—P(s, x, £,.)] =0, x— x,,

holds for all 0<=s<t<co, x,€X (the strong Feller property in the narrow sense;
Var v stands for the total variation of the measure v). Then the assertion of Theo-
rem 2.1 (stability in X) is wvalid.

Proof. First, we show (2.7)=(2.2). For £>¢,>s, f€CNM, x,€X, x,¢ X we have
| Ts, e f00) =T, 1 flxa) |<8Up| T, o S| Var [PAs, Xy, bp - )—PAS, X by 2]

=sup|f|Var[P(s, x,, by, .)—P(s, X3, tor )]

which implies (2.2).
In the rest of this section we deal with the continuity and stability of the sys-
tem {g;,¢}. We impose the following two conditions:
(2.8) For every £>0, 0<s<T, KcX, K compact, there exists a compact
set M— X such that the inequality P(s, x, ¢, K)<e holds for all x¢ X\ M, t¢[s, T].
(2.9) For every €>0, s=0, Kc X, K compact, there exists a compact set
Mc X such that P(s, x, ¢, K)<e holds for all x¢ X\ M, t{=s.

Roughly speaking, in the following two theorems we state that (2.8) is equivalent to
the continuity of the system {¢,,(} while the stronger condition (2.9) is equivalent to
its stability.

Theorem 2.3. Assume that (2.1), (2.2) are satisfied. Then :
A. If (2.3) is fulfilled, then the mappings
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(2.10) O;: [5, )X P* = P*, (L v)— @5,V

are continuous for all s=0 (i. e., continuity in X* holds). )
B. If X is a locally compact space and the mappings ®: are continuous for all s=0,

then (2.8) is fulfilled.
Proof. To prove part A we must show that
X.
t"—'tozs. “n—’l’lewn
implies

@11 9., @, 1.

For f¢C* we can write

2.12) | [Fa10e pal— [ [0 bl =] [t fdin— [0, fdn]
= S Ut f~falt|Tauf—fa Dbt [ Ts, f~o.0f | b,
XM
+| X[Ts. lufdpn—x.[ Ts, ’nfdM |'
Where M X is a compact set. From (28) it follows that ¢ f, ¢, f€C* (cf. [7]) and

IT.\‘. I”f(x)—fw|‘—’0 for x-——*{oo}

holds uniformly with respect to n¢{0}UN. Moreover, as we have shown in the proo
of Theorem 2.1, r,_,ﬁf——r,, t.f, n—co, holds locally uniformly in X. Hence by (2.12

we obtain (2.11).

To prove part B consider an open covering {IntK,}.¢x of the space X such
that K,— X is compact and IntK, is a neighbourhood of the point x for all x< X))
Since X is a Lindeldf space we can find its countable subcovering X ={IntK;}ien
C{]nt Kx}x( X Put

Mn= 0 KI
i=0

and assume that B is false, so that we can find €,>0, s=0, K= X (K compact)
ta—ty=s and x,€ X\M, such that P(s, x,, ¢, K)=g, If R=X is compact, there
exists a finite subcovering of R,

{IntKy,..., IntK; }cox.
Setting j=max(j,,..., j.) we have x,e X\ M,=cX\R for n=j. It follows that

Xp—{co} and thus 8; — 8. On the other hand, local compactness of X implies nor-
mality of X* and hence we can find a function y¢C* such that

v(X*)=[0,1}, wlk=1, y.=0.
We get :

Eosxﬁ: vd [‘PJ. tnsx.‘ Lond 4\’[ vd [(P_\-_ !.seo] =VYe=0
which is a contradiction.
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Theorem 24, Let (2.1), (2.2) be satisfied. Then:

A. If (2.9)is fulfilled, then for every £>0, pwe¢?* and s=0 such 38>0 can be
found that 2 .

d*(n, 1)<S, e,
implies

sup d*(0s. i, 9s, )<

(i. e., stability in X* holds).
B. If X is a locally compact space and stability in X* holds, then (2.9) is fulfilled.

Proof. It can be easily checked that for f¢C* s=0, #,>0 the condition (2.9)
guarantees equicontinuity of the set #={t, /f},~s,+s at the point {co} and hence, by
(2.2), relative compactness of .# in the space C* (cf. [7]). The rest of the proof of A is
very similar to that of Theorem 2.1 and therefore it is omitted while the proof of B
is almost the same as that of 3 in the preceding theorem.

We shall conclude this section by two statements concerning the case of a homo-
geneous diffusion process. More precisely, assume that the following is fulfilled:

(2.13) For all ¢>0 the relation 1—P(¢, x, U:(x))=0(f), t—0+ holds

locally uniformly with respect to x¢X.
(2.14) If f¢M is Borel measurable, then 7,f¢C for £>0 (the strong Feller property).

(2.15) P(t, x, U)>0 holds for all £>0, x¢X, UcX, U open.

The measure p€2 is called invariant, if the equality S,p=p holds for all £=0. The

following theorem is a consequence of the result by Khasminskii [1] (cf. [7]).
Theorem 2.5. Assume that (2.13)—(2.15) are satisfied. Then one of the fol-

lowing two possibilities occurs :

o) If there exists an invariant measure p¢2, then

S,y — 1, t— co, holds for all v¢2.

B) Otherwise, o1 8., t— co holds for all pe#*.

Corollary 26. If (2.1), (2.2), (2.13)—(2.15) and (2.8) are fulfilled, then
{0:)=0 is a semidynamical system defined on the space (7% d*) with a stationary
point ... If, moreover, (2.9) holds, then the stationary point d. is globally asymp-
totically stable (in the Lyapunov sense).

Ill. Applications to mnonsingular stochastic differential equations. In this sec-
tion we put X=R, and assume that the transition probability P is associated with
the solution of the stochastic differential equation

(3.1) dt,=b(t, C)dt v o(t, C)dw,

Here w, is an [-dimensional Wiener process, & and o are an n-dimensional vector
and an nx1 matrix, respectively, & and o both defined on RyXR,, Borel measurable
and satisfying

(3.2) [b(t, x1)—0b(¢, x5) +]|o(t, x;)—o(t, xa)}éKN| X=Xy |, Ky>0

for all N>0 and | x, |+|x,|+¢=N. Let L be the infinitesimal operator corresponding
to the equation (3.1), i. e.
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LV, )= (57 +3b gt B @y —ge) (6 )
for V¢Cio(Q), Q=R XR, open, where (a,(¢, x))=o(f, x)o’(f, x). We assume that
(3.3) LW(t, x)<cB(W(¢, x)), (¢ x)€R.XR,
holds for some ¢>0, where W¢Cyo(R.XR,), W=0, B¢C,(R,) is a concave increas-
ing function and the conditions

< dy ’ . 3
{ B = M0 oL Ve D=

are valid for all 7>0. It is known (cf. [4]) that under the assumptions (3.2), (3.3) the
equation (3.1) has a solution which is unique in the obvious sense and the corres-
ponding transition probability P satisfies (2.1). All equations in this paper are assumed
to satisfy the existence and uniqueness conditions (3.2), (3.3). Now we give condi-
tions which will be used to guarantee (2.2). Let

(3.4) E at, x)viviz=m(x)|v|?
i/
for all (¢, x)e R, XR,, v=(v,)€R,, where m>0 is a continuous function and let

(35) |alt, X) | +] bt, x) | <Ky,
| aift, )— (s, 9) |+ bt X)—bs, ¥) | S Ky (| x—y o+ |t—s|?)

for some a¢(0, 1), Ky>0 and all N>0, ¢ s¢R,, x,¥€R,, |x|+|y|=N,and i j=1,2,

ce,n
Theorem 3.1. Assume that the transition probability P corresponds to the so-

lution of the equation (3.1) and that (34), (3.5) are fulfilled. Then the assertion

of Theorem 2.1 (i. e. stability in the space X=R)) is wvalid.
Proof. This statement is a consequence of Theorem 2.1. We only need to ve-

rify the assumption (2.2). Let f¢CNM, R>0 and for 0<s<¢ put
(36) ufs, X)=Es,x f(§) = Ts,¢ f(x).
Let Vs, x) be the solution of the problem
LV(s, x)=0 for (s, x)€[0, £)}X Ury1,
Vi(t, x)=f(x) (=uft, x)), Vs, x)|[0, )X 0Ugr+1=us, x)

and denote by t the exit time (after s) from the set (s,#)XUg+1. (It can be easily
shown that t<co a. s.) Using the Itd’s formula we get

V,(s, X)——- Es,xV{(T» ct)v
and hence

V,(S, X) =E;, xu(T: L) = E,, <E., Ce f(Ct) 354 E-'-xf(CI) - § ll,(S, X).
By ‘Schauder’s interior estimate it follows that for any #>#,>0 we have

aV,
l—;’%(s. X) =55 (5, x) | s Ksup| V,|=K'sup |a,|< K sup|f |

for some K>0 and all (s, x)¢ [0, £—£,] X Ug. Noting that the constant K does not de-
pend on £>¢, we get (2.2).
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Next we give two corollaries of Theorems 2.3 and 2.4, in which we use Lyapunov
functions to guarantee (2.8) and (2.9), respectively.

Corollary 32. Let (34) and (3.5) be fulfilled and assume that there exists
a positive function V€ Cio(RL X (R, N\U,)), where r=0, such that y T>0 we have

(3.7) oiugr V(s, x)—0 for |x|—
and
(3.8) LV (s, x)=cV(s, x), (s, x)€RLXRNU))

hold for some c¢>0. Then the assertion of Theorem 2.3 (continuity in X*=R}) is
valid.

~Proof. To show that the assumptions of Theorem 2.3 are satisfied it only re-
mains to prove (2.8) ((2.2) was verified in the preceding proof). Set H(¢, x)=V/(¢, x)e—.
From (3.8) it follows that LH(f, x)<0. Take s=0, R>R,>r and denote by 1, and

the exit times (after s) from UR\URO and R,,\URO, respectively. Using the Ito’s for-
mula we get

Es,xH(TR/\t, CgRA1)§ H(S, x)
for all £>s, R>| x|>R, Taking R+, we get by the Fatou’s lemma

3.9 E:..V(T AL, Cepr)<V (s, x)ett—
and thus
o(t—s)
Pe«[Ca€Ug, for some Ag[s, £]]< Ves, ;;)f" s
[s, 61xUp,

It follows that P(s, x, A, Ug,) — 0 for | x| —co uniformly with respect to A¢[s, £].
Corollary 33 Let (34) and (3.5) be fulfilled and assume that there exists
a function u¢Cyo(Ry X (R,\U,)), where r=0, such that

(3.10) (s(gp u(s, x)—0 for | x|—>oo.
s , ®)
(3.11) Lu(s, x)=0, (s, x)eR.XRN\U,)
and
3.12) inf 2>0
R+XOUR

hold for all R>r. Then the assertion of Theorem 2.4 (stability in X*=R}) is valid.
The proof is quite analogous to the preceding one and, therefore, could be
omitted.
We conclude this section by a corollary concerning the homogeneous case.
Its proof can be found in [1] where it is shown that (3.4) implies (2.13)—(2.15) and
hence the assumptions of Theorem 2.5 are satisfied. .
Corollary 34. Assume that the coefficients b, o are independent of t=0
and that (34) is fulfilled. Then the assertion of Theorem 2.5 is valid.

IV. Examples.
Example 4.1. Assume that (3.4), (3.5) are fulfilled and

(4.1) |b(t, x)|+]o(t, x) | < K(1+[x[) (£ x)€RXR,
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holds for some K>0. Then the mappings ®: defined by (2.10) are continuous. In par-
ticular, if the coefficients b, o are independent of £=0, then {¢;}.>0 is a semidyna-
mical system on (2%, d¥). )

This assertion can be obtained from Corollary 3.2 if we use the function V(x)

! . Indeed, for some K>Q and ¢>0 we have:

ST xR

—2xbi(t, x) | 1 —25; 8xx;j
arxpe T2 2wl D) eyt asaer)

LV(t x)==

1 Lo 2x | K(14] x) 1 = 2 28 8| xixj| c___
STar & e tr S KO R (et e b e = V)

Remark 42. The above example shows that the continuity in X*=R} always
occurs in the case when the classical Ito’s existence and uniqueness conditions (3.2),
(4.1) are satisfied. However, this is not true in a more general case. For example,
consider the simple deterministic equation

§{=—C(?signg
which satisfies the weaker existence and uniqueness conditions (32), (3.3) with
W(x)=x2 PB(x)=x. Denote by (f the solution starting at the time t=0 from the
point x¢R,. For any x>0 we have

G=1i5 €0 1}

which contradicts (2.8). Hence we have no continuity in X*.
Example 4.3. Consider the autonomous stochastic equation

42) dt,=b(C,) dt+0o(L,) dw,
whose coefficients b, o satisfy (3.4). Given 7,>0, put
u(x)=P,[(,€U,, for some £=0], [x[>r,.

It is well known that Lu(x)=0 holds for |x|>r, and by the strong maximum prin-
ciple for elliptic equations we get #>0. Thus by Corollary 3.3, the stability in X*=R;
holds provided u(x)—0 for |x|—co (note that in the time-homogeneous case (3.5)
is fulfilled by (3.2) automatically).

Remark 4.4. Let P be the transition probability of the homogeneous diffusion
process given by the equation (4.2) whose coefficients satisfy (3.4). From Corollary 3.4 it

follows that <p,v'—“*8¢,° for ve2* (i. e., 8. is globally attractive in 2*) if and only if
there exists no invariant measure in 2 which is implied by (2.9) (and thus by stabi-
lity in X*=R"). Note however that the stability in X™ is not equivalent to the attrac-

tivity of 8. (see the next example).
Example 4.5. Consider the equation

(4.3) d¢,= b (§,)dt +dw,,

where b(x)=—x? for x<0 and b(x)=x otherwise (the existence and uniqueness con-
ditions (3.2), (3.3) are satisfied with W(x)=x?+1, B(x)=x). We will show that there
exists no invariant measure in 2 and that (2.8) is not satisfied (in particular, 8. is
the globally attractive stationary point which is not Lyapunov stable; nor even con-
tinuity in X* holds). We have
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;{mexp [—Zj 2dz]> — oo

and hence the solution of (4.3) is not a recurrent Markov process (cf. [3]). Conse-
quently, there exists no invariant measure in 2 (nor even o-finite invariant measure,
cf. [1)). -

Furthermore, we show :

(a) Given x,>0 and n>0 there exists M>0 such that

(4.4) P[5 i=—M]=n
holds for x=x, Indeed, taking M>0 such that
P.[ inf {,=—M]=n
sE0,1]

we get
PAL=—M= | Pulo-us—MPlredul=n

(t is the first passage time by x,).
(B) Given x,>0, e>0 we can find N>0 such that

(4.5) EliXgs—~=—¢
holds for x=x,. Indeed, we have (N>0, x=x,)

1
|ELiks—m|= “I d | Ex,G1—aXig_ys—m | P[T € du]

=y j:, {Ps, [G1—as — N} A{Ex(§1—a)*}'? P [t € du].

t is easily seen that
- o E.(C)=k

sE[0,1
for some 2>0 and hence

E.ltis—m=—k sup {P[l,=—NI]}'"?
s€00,1)

which implies (B). Furthermore, we have
E.{=Euly+E, [ b(C)s

for 0<¢,<t. By the Jensen’s inequality we obtain )
EL=El,+ f b(E, G,)ds.

Consequently, E.l, <1 holds for all x¢R. Find N>0 from (B) corresponding to x,=1
e=1 (take N=3). For x=1 it follows that
’ 12E6 ZE, Lixs—m+ ELitic e~ M+ ESxCizm
2 —1=NP,[56(=N, M+ NP, [, zN]z—1-MI-P,[5;2N]
—P, (= —N]D+ NP, [(;=N]=~1 +2NP,[5,=N]—-N.
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Hence we have

P,[L,=N]Soy QN

Taking M>0 from ¢) corresponding to x,=1 and n=1—12, we obtain
P(L, %, (— M, N)2 1

for all x>1 and thus (2.8) is not satisfied.
The author is grateful to I.Vrkoc for his helpful suggestions and remarks.
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