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ON THE GEOMETRICAL DESCRIPTION OF SOME IDEALS
ANDREANA S. MADGUEROVA

The present article deals with the geometrical description of some ideals of algebras of complex-
valued functions. A property of Max Noether’s description of the polynomial ideals is given with a
direct proof as remark.

Let G be an n-dimensional, connected, compact, C** manifold. Let Dy be the algebra of all
complex-valued, (¢c—v), functions f onG for which fo ‘D"GC;(U) for any local chart (U. ¢) of G. Here
C;w) is the space of all c—v functions on ¢(U) with continuous partial derivatives up to order v in-
clusive, v=0, 1, . ..; co. Theorem. Each ideal ¢ of D; is determined by the sets (1): Nu(p)={52
s€G, Af(s)=0 for yfES, vA(u") hovp=(pu ...,p”)(Z". where a=a(#) is a C-linear, diffe-
rential-invariant space of linear differential operators on G of order not larger than v, with “coefficients”

whose moduli are upper semicontinuous; a®)={A?): y A€a). The space a is moreover finite-dimen-
sionai if v=N=0, 1, ..., Almost inversely for each C-linear differential-invariant space a of linear

differential operators on G of order not larger than p, with «coefficients” in Cf;, there exists a closed
ideal .# in DY, with vz, which is determined by the sets (I).
Analogous results are true for the ring of the polynomials on Re; for the algebras D}, where

K is a compact, n-dimensional, connected, C* manifold with a boundary: for the algebras D(a) of
type C; for the corresponding algebras of real-valued functions.
Generalized strong A-derivatives, where A is an arbitrary linear differential operator on G with

«wconfficients” in Cg7, are introduced and are used in the present article (Lemma 4). Such A-derivatives
are also of independent interest. The equation Af=u, where u is continuous, has a continuous solution
f iff there exists the generalized strong derivative Af, equal to u.

The present article deals with a geometrical description of some ideals of algeb-
ras of complex-valued functions. A property of Max Noether’s description of the poly-
nomial ideals [1-3] is given as remark with a direct proof.

Preliminary. Let G be an n-dimensional, connected, C* manifold. Let Dy, be

the algebra of all complex-valued, (c—7), functions f on G with compact supports for
which fop~1¢Cy, for any local chart (U, ¢) of G. Here Cy, is the space of all

c—v functions on ¢(U/) with continuous derivatives up to order v inclusive; v=0, 1,
; 00, D;‘m will be denoted by DY and C;n by C*. The algebras Df; are examined

with their usual topologies.

Definition 1. A linear continuous map A: Dy, — DYy, is called a linear dif.
ferential operator on G if for any given local chart (U, ¢) of G the transfer Ao~
is a linear differential operator on ¢(U) (see [4)). If moreover the coefficients of
the operator Ao~ have some property R on o(U) for each local chart (U, ¢) of
G, then we shall say that the coefficients of the operator A have the same property
% on G; The operator derivative AP, p=(p,, ..., pa)€Z", of A s called the linear
differential operator on G whose transfer A® o~ in every local chart (U, ¢) of G
is the p-operator derivative of the transfer of A in this chart, where the operator
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derivative B® of the linear differential operator B=X b,D* on R" is 2( ﬁ )p! b,D*—>

with D"=01"0x", x=(Xy, ..+ X), 7=(rys -+, Tp)

Definition 2. The C-linear space u of linear differential operators on G is
called differential-invariant if A¢a implies that all operator derivatives A of the
operator A also belong toa, p=(py ..., p) | p|l=p1+++++p,=0; In the case G=R",
if moreover all operators of o are with constant coefficients, then a is called still
and homogeneous too.

Definition 3. (Cf. [5]) An ideal S of an algebra R is called a primary ideal
of R if # is contained in an unique maximal ideal M of R. If R is an algebra of
c—uv functions on a set G and if M consists of all functions f¢R with f(s;)=0 for
some fixed s,¢G, then we shall denote M by M(s,) and S by F(s,) and shall say
that M is the maximal ideal atthe point s, and S is a primary ideal at the point s,.

G. E. Shilov proves in [5) that if R is a regular Banach algebra of ¢—w func-
tions on a compact G without radical (i. e., the intersection of all maximal ideals of R
consists only of the zero element of R), then there exists a minimal closed primary
ideal #(s,) at the points s, for any fixed s,¢ G. (An algebra R of c—v functions on
the topological space G is called regular if for each compact F—G and each s,€G
with s,¢ F there exists a function f¢R such that f(s,)==0 and f(s)=0 for ys¢F)

Formulation of the results.

Further let G be a compact connected n-dimensional C= manifold.

Proposition 1. Let € be one the spaces Dy, v=0, 1,...; <. Each close
primary ideal S of € is of the kind
(1) FI={f: fcE, Af(s*)=0 for y Aca} for sone fixed s*=s*F)¢G,

where « is a G-linear differential-invariant space of linear differential operators on G
of order not larger than v with coefficients in Cz, and I¢e, (Ig=g). If J is con-
tained in the maximal ideal M=M(s,) then s*=s,; The space a is moreover finite-
dimensional if v=N=0, 1,... . Inversely, there exists a primary closed ideal S in
Dy, determined by (1), for each fixed point s*¢G and for each fixed C-linear dif fe-
rential-invariant space o of linear differential operators on G, with coefficients in
Cg, of order not larger than p, p=v, and [¢a, where [g=g.

Remark 1. Let K be an n-dimensional, connected C>= manifold with a boundary-
Let Dy be the algebra of all c—wv functions f with compact supports for which
f*o @*1¢Cyew for any local chart (U, ¢) of K. Here (U* ¢*) and f* arc the corre-
sponding extensions (if necessary) of thechart (U, ¢) of this manifold K with a boun.
dary and of the function f on U* v=0, I,...; oo,

If K is moreover compact, then the results of Proposition 1 and Proposition 2 are
literally extended, so that we can deem € equal to D}. The proofs need only some
evident changes. In Proposition 1, the space a is moreover also homogeneous if KcR"

In the case v=1 and ¥=D}, K=R", the direct part of Proposition 1 is obtained
by Shnol' [7]; In the case n=1, ¥=D¥ KR, the direct result of Proposition 1
is received by G. E. Shilov in [8]. The direct parts of Propositions 1 and 2 are
very near to the Theorem of Whitney on ideals [9].

Proposition 2. Each closed ideal S of € is determined by the sets

(2) Nup={s: 5€¢G, Af(5)=0 for yfeS, yAca®)}, yp=(py,....pn) P=0,
where a=a(F) is a C-linear differential-invariant space of linear differential opera-

tors on G of order not larger than v, with “coefficients” whose absolute values are
upper semicontinuous; a?={A®: yA¢a}. The space o is moreover finite-dimensio-
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nal if v=N, 0, 1... . Almost inversely, for each C-linear differential-invariant space
a of linear differential operators on G, of order not larger than |, with coefficients
in Cg, there exists a close ideal J in ¢ with v=p, which is determined by the
sets (2).

It follows from Propositions 1 and 2 that:

Corollary. Every closed ideal in % is an intersection of closed primary ideals.

In the case K=R", v=0, Proposition 2 is the well known theorem of Stown; The
direct part of Proposition 2 (without the property of upper semicontinuity), in the case
n=1, v=N, K=[a, b]=R", is a theorem of G. E. Shilov [8]. Also confer [10].

Proposition 3. Let n=1. Let M°o>M'>...oMN be closed sets in R'. There
exists a closed ideal S of DV with

(3) M/={x: D¥ f(x)=0 for ys=j, vfef}, j=0,1,..., N,

if and only if each boundary point a of the arbitrary fixed set M) belongs also to
all other sets M’ .

Definition 4. Let a be a C-linear finite-dimensional differential-invariant
space of linear differential operators on G with coefficients in C7, and I1¢a, where

Ig=g. Let D(a) be the completion of Dy by the norm gq,

(4 9f= I sup | Af(s)|, where B(a) is a finite basis of c.
A€ Q}(u) s(G

As was proved in [12], any such D(a) is an algebra of ¢—w functions on G of type C
up to a natural isomorphism y which maps to every sequence {f,}, with f,¢Dg and
{Af,,} — Cauchy sequences in the norm (4) on G for y A€, maps: Y{fm}) =lim{f,}=f.

The functions f of D(a) have A-generalized strong derivatives Af of Laurent —
Schwartz — Sobolev type for y A€a. We need the following Lemma 4 for the intro-
duction of these derivatives: )

Lemma 4. ([12]). Let A be a linear differential operator on G with coefficients
in Cz. Let there exists such a sequence {9,), ¢, €Dy, for the function h¢DY, that

uniformly on G uniformly on G
(0n) 8 and {Agu) s H.
If we have
{wm} uniformly on_(:; A and {A\ym} uniformly on G M

for another sequence {v,), Vn€ Dy, then it follows that H=M on G.

The unique function H¢ D, will be denoted by Ah and will be called a genera-
lized strong A-derivative of the function A.

It follows from the construction of D(c) as a completion that each element f of
D(a) is determined by a sequence (¢,), 9, ¢Dg, with

uniformly on G uniformly on G

(Pm) — £, (Ag,) — = g, for y A¢a,

where the ¢—v functions f, g,¢Df fory A¢a Lemma 4 yields that each g, is determined
uniquely by the function f. Therefore this arbitrary element of D(a) can be treated as
the c—v function f¢ 0. Thus the elements of D () can be treated as all these func-
tions f¢DF, for which there exist sequences

unltormly on G uniformly en G

(‘pu,\- P € Ds- with (‘P,,,) - —"_"'f' (A ‘Pu) ga
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v A¢a. The functions g, ¢ D%, uniquely determined by the function f, will be denoted
by Af. D(a) will be examined with the norm g, (4).

Proof of Lemma 4. Let the linear differential operator B be the conjugate
of the operator A, i.e. the linear differential operator B: Dz — Dy, is such that its
transfer Boo~! is the conjugate operator of the transfer A co~! of Afor an local
chart (U, @) of G, i.e., [[(Ao@ )@ ¥=[D(Boo)¥ for each ®, ¥¢Dy,, (Dgy, is
the space of all infinitely differentiable c¢—wv functions with compact supports on
o(U)). Such an operator B on G exists, moreover, the coefficients of B are also in C3.

Since
J{(A2 9™ [(@n—VYm) 9]} @=[[(®m—Vm)o 0| (Boo™") ®—0

as m — o for y®¢DZ,, hence lim,(A° 07" 9,007 (x)=lim, (Ao @ ) Wmeo @ )(x)
at yx€¢(U) and on local chart (U, ¢) of G. Therefore /=M on G.

Analogous results as Propositions 1, 2 are true in the algebras D(a):

Proposition 5. Each closed primary ideal of the algebra D(w) is of the
kind
(5) S={f: feD(a), Bf (s*)=0 for some fixed s*=s*(#)¢G and yB¢B),
where B is a C-linear differential-invariant finite-dimensional subspace ot the space
a with 1¢B. If the ideal S is contained in the maximal ideal M=M(s"), then 5%=2°,
(Every maximal ideal M of D(a) is of the kind M(s°)). Inversely, a closed primary
ideal ‘of D(a), determined by (5), corresponds to each such fixed subspace P and to

each fixed s*¢GQ.
Proposition 6. Every closed ideal S in Do) is determined by the sets

®) Nop={s: s€G, Bf(s)=0 for yf¢.s, BB}, vp, p =0,

where B is a ?-linear differential-invariant finite-dimensional subspace of a; p)={B®
vBEB); 2 is the set of all c—wv functions g on G with | g| upper semicontinuous. Almost
inversely, if B is a finite-dimensional differential-invariant C-linear subspace of a,
then there exists a closed ideal S in D(a) with determing sets Ny by (6).

Corollary. Each closed ideal in D(a) is an intersection of closed primary
ideals.

This corollary and the direct part of Proposition 5 are proved: L. by Shnol’ in
the case n=1, on intervals of R', when D'=D(a)=D° in [13]; Il by Grushin in the
case n=2, on the torus, when D' D(a)=D° in [14]; Confer also [10].

Proposition 7. Max Noether [1-3, 10)). Each primary ideal S (i. e, a
zero-dimensional ideal which is contained only in one maximal ideal, after the de-
inition here and in [5-8, 10, 14]) in Clx]|=C[xy, ..., X,] has the kind

(7 F={p: peClx], (ApXx*)=0 for some fixed x*=x*(f) and for vAca},

where o is some C-linear finite-dimensional homogeneous differential-invariant space
with I¢a (where Ip==p). Inversely, the set (7) is a zero-dimensional and moreover
primary ideal in C|x] for each such space a and each point x*¢R" (Clx] is as
usual the set of all polynomials in x¢ R" with coefficients in C).

So, only the differential-invariance of a and the inversity are new here.

It is well known that each ideal in C[xl-: is an intersection of “algebraically pri-
mary” ideals (Theorem of Lasker (10, 2]). Each such “primary” ideal in C[x] is rep-
resented by zero-dimensional ideals, hence by intersections of finite number of primary
ideals. Thus E. Lasker [15), Gentzel [2, 3], V.Palamodov [3] —in a modi-
fied way, prove that the analogous result is true for each ideal in C[x]. Properties
of the corresponding spaces a are new here, as well as the sets Ny).
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Proposition 8. (Noether, Lasker, Gentzel, cf. [1-3, 15, 10]). Each ideal S of
C[x), F+Cx], is determined by the analytic varieties

(8) Nupy={x: Af(x)=0 for yf¢f, v Aca®}, yp=(py,-...Pa) P=0

where w=ao(F) is a C-linear, finite-dimensional differential-invariant space of linear
differential operators with coefficients whose absolute values are upper semicon-
tinuous.

Let ® be a space of ¢—v functions on S=R", containing C[x]. Let # be an ideal
in C[x] with a basis of the polynomials ¢,,...,¢, A polynomial submodul S®
corresponding to the ideal ., is called the following subset of ®: J®={g: g=¢,/,
doeet G fm fOr S fm€®). It is almost evident that analogous results as Pro-
positions 7 and 8 are true for the polynomial moduls S® in many functional spaces ®.
For instance, ® may be the space of the entire functions. It is well known that some
problems of differential equations are reduced by Fourier — Laplace transform to
multiplication by the corresponding polynomials of the eaxmined linear differential
operators. That is why the new properties of differential-invariance and others intro-
duce some supplements in the expressions and properties of the general kind of the
solutions of some differential equations. (For instance, there are some supplements of
the properties of the set of the differential operators g (s, D) in[16]).

Remark 2. Let the sets Q=R", or Q=G, be scrutinized with the topologies,
generated by the topology of R”, respectively by the topology of G. Then the corres-
ponding spaces « in Propositions 2 and 8 can be chosen so that on the sets
{Nupy — U Nup~) the coefficients of the operator of a are continuous for the case of

2

the closgd ideals in € (Proposition 2, Remark 1) and are moreover rational functions
in x in the case of the ideals in C[x] (Proposition 8).

Proofs. The following lemmas will be used:

Lemma 9. 4/ #(a)= K", where §(a) is the minimal closed primary ideal in
the space € at the point a¢G; KV={C[){]/mV+1 if v=0,1,...

Cilx]) if v=co; CX|=ClX,,..., X,] is
the formal algebra of multinomials over the field C; m is its maximal ideals ;
€ =Dy, (or Dy, with a€K).

Proof. The algebras D}, on G and D¥ on R" are locally isomorphic at each point
a¢G. Therefore DY,/ ¢y (a) is isomorphic to D~/ #¥(¢(a)) and Eence to D/ #Y(0) for
va¢G, where g7 (a), S (o(a)), #(0) are correspondingly the minimal closed primary
ideals at the point @, at the point ¢(a), (U, ¢) is any local chart of G with a¢U), at
the point 0 of the algebras Dy, and D¥ correspondingly.

According to the Weierstrass's Theorem, the polynomials in x=(x,,...,x,) are
everywhere dense set in ¥ on any compact. This implies that the images of the po-
lynomials are dense in the canonical homomorphism Dy — D¥/ #¥0). Since £Y0)={f:
feDr, D*f(0)=0, ' k|=v} (cf. for instance [10-12]), hence xkif [k >v=N=0,1,...,
belongs of #¥(0). Let denote Dv/#¥0) by R*. Then the image of x* |k|>N, in ®V
is equal to the zero of M. Thus if v=N, RV is finite dimensional and RY is isomor-
phic to A¥=C[X|/mN*\ If v=co, evidently ;= is isomorphic to C[[X]]. (In the cases
¢ =Dy, the necessary changes of the proof are obvious.)

Lemma 10. Let J=J(a, x*)={f: fc€, Af(x*)=0 for y A€ a}, where a is a
C-linear space of all linear differential operators on G with this property (resp.
on K), x*¢G (resp. x*¢K). The set 5 is a closed ideal of € if and only if the
space a is moreover and differential-invariant.

Proof. Let g¢%, fe s, We have
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(9) A(fg)o9'=ZD?(gop~1). (Ao 1)?(foo™) in any local chart (U, ) of G.
P

Thus, if « is differential-invariant, then # is an ideal, moreover f is closed. If J is a
closed ideal, as g¢% are sufficiently many, then from (9) it follows that (4o e~1)®
A feooNe(x*)=0 for yf€s, and yp, in any local chart (U, ¢) of G with x=¢U.
Thus A» f(x*)=0 for yf€#, yp. That is why a must be differential-invariant.

Proof of the Proposition 1. In € all maximal ideals M are of the kind
M=M(s*) for some corresponding s*¢ G (cf. [5, 12]). Let the primary ideal # be con-
tained in the maximal ideal M,=M(s*), s*¢G.

Let the set V(G and let g be a function on G (resp. let 3 be a set of functions
on (). As usual the restriction of g on V (resp. the set of the restrictions on V' of
all functions of §§) will be denoted by g V (resp. by &|V). The algebras ¥ and
Dv ,=D" are locally isomorphic. Such are also the ideals 4 and J#'(¢(s*))=J" for any

local chart (U, ¢) of G withs*¢ U, where S'={fe D", flo(s))| U¢Ss|U}. Evidently s’
is a closed primary ideal of the algebra DV and J'=J" (9(s*). (Moreover
without loss of the generality we may deem that J’ belongs to the zero
of R i.e., J'=J"(0)=M'(0).) Let 7/* be the image of the ideal # in the canonical
homomorplnsms € —6 7 (s*)~ K", where S (s%) is the minimal closed primary ideal
of € at s* [* is also the image of J' in the canonical homomorphisms D¥—Dv/ ¥ (0)
— K¥, where #v (0) is the minimal closed primary ideal of DY at the point 0. The
closure of the prototype of the ideal /* in ¢ containes #. Let investigate the space &/
of all linear functionals on K¥ which annul on /*. The correspondence & *=/[* is one-
to-one. In ¢ these are the linear continuous functionals concentrated at the point s*,
which are zero on J, respectively in DV these are the linear continuous functionals
on [, concentrated at the point cp(s*) (without loss of the generality we may assume
9(s*)=0), which are zero on J'. It is well known (cf. [17-18]) that the general kind
of the linear continuous f{unctionals on 1)¥, concentrated at the zero is Za,D* 8(x),

where & is the Dirac’s function and D*=9d*/dx}: . dx n, Leta’ be the C-lmear space
of all linear constant-coefticient dlfferenhal operators which are annulled on " at o(s*).
Let a be the uniquely determined corresponding space of linear differential operators
on G, (which transfer is a’). So we have received a correspondence . — a. Such a
correspondence S — a is received and more directly in [12] (see also the proof of
Proposition 2). Also, as J =.#(s*), hence the operator /¢a.

Accordingly to Lemma 10, the space « is differential-invariant. If v=X\, then evi-
dently a is moreover and finite-dimensional.

Inversely, if a is a C-linear differential-invariant space of linear differential ope-
rators on G of order not larger than v, with coefficients in Cz and with /¢a, then
obviously the set S={f¢¥, Af(s*)=0 for yA¢a} is a closed primary ideal in € for
each fixed s*¢ Q.

Proof of Proposition 2. Let # be a closed ideal in ¢. Let fix an arbitrary
s€G. And let us study the image /; of the closed ideal # in the canonical homomor-
phisms w}: € — €/SY,(s) — K¥=K) (see Lemma 9). /; Is a closed ideal after the gene-
ral theory (cf. [5]). The closed ideal /; of the algebra

Kv= C[,X])/mN+t if v=N=0, 1,.
R

determines an unique C-linear space o/, of all linear functionals on K=K, annulling
on /. (If /;=K) then o ={0}) The correspondence / «~ &/  is moreover one-to-one.
Obviously the space &, is finite-dimensional if v=N=0, 1,.... Let (U, ¢) be a
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local chart of G with s¢U. Let # be the prototype in D¥ of /; in the homomorphisms
DY — DY/ #¥(¢(s)) —~ K*. The space ., uniquely determines a C-linear space a of
all constant-coefficients linear differential operators on R" annulling on # at the
point ¢(s). This is the natural correspondence in which to X* corresponds the differen-
tial operator D*=0* [dxfr. .. dx:". The space a; uniquely determines a C-linear space a;
of linear differential operators on U, annulling on  at the point s, with coefficients
in Cp.

The set {u,}s;¢c¢ constructs at least one C linear space a of linear differential ope-
rators A on @, such that A at the point s is equal to some operator B¢a,. (Even in
the case K—R", the coefficients of the operators of a may depend on s, as the ideals
[, depend on s.) If v=N=0, 1,..., the space a is moreover finite-dimensional. As 7,
S, S are ideals, all spaces «; must by moreover and differential-invariant. That is
why @ also must be differential-invariant. The space a determines uniquely the sets N
As the correspondences /s o/ < a; are one-to-one, and as to different ideals J*, #**
of € correspond different sets {7}, ,, {/;"},,; of ideals in {K}} ;. then the sets
{Napy}, V7, p=0, determine the ideal £.

It remains to prove that the space o can be chosen so that “the coefficients” of
its operators have the upper semicontinuous modules on G”. (For a manifold G, this
signifies that for each local chart (U, ¢) of G the coefficients a,(x) of the operator
Aoo~!, yA¢a, have upper semicontinuous modules |ayx)| on o(U).) Let F be the
closed set F={s: s¢G, f(s)=0 for yfe.#}, (classical result is that F=() if and only
if #=%). Evidently A=0 on G—F for all A¢a. For such operators it is sufficient to
prove our assertion only on F. Further, let assume that F--( (i.e., JS+%). Obviously
for each s¢ F, the maximal ideal M(s) at the point s contains the ideal .#. Let con-
sider all closed primary ideals at the arbitrary fixed point s¢F which contain 4. Their
intersection #(s) is also a closed primary ideal at s which contains . (And #(s) is
the least ideal with all these properties). We have M(s)>S(s)>F(s), where #y(s) is
the minimal closed primary ideal of ¥ at s. Let w,: ¥—%/#(s) be the corresponding
canonical quotient homomorphism. Let |.; be the quotient norm in €/#(s). Let fix an
arbitrary f¢% and examine the function A(s)=[|o,(f), if s€F

0 if s¢G~F. We shall prove
that F(s) is upper semicontinuous on G. Since F(s)=0, itis sufficient to prove it only
on F. This is equivalent to prove that all sets F,={s: s¢F, F(s)=A} are closed for
v A€R. Let fix an arbitrary A¢R, and let the arbitrary sequence {s.} —s,, s.€ F, So
F(s,)=A. It is sufficient to prove that also F(s5)=A: The definition of the quotient
norm ., is |o,(f)|,=inf{|[e], 0€€, (9—f)€ F(s)}. We have J(s)>7, but it is true
| f)|,=inf{||o], 0€%, (f—9)eJ(s), (f—9)|Us.o €S |Use, where Uso is an appro-
priate neighbourhood of s}: Since K= [C[X]/mN*' if v=N,

s if v=co, and since any ideal /,
of KY one-to-one determines a closed primary ideal J'(o(s)) of DY (resp. a closed pri-
mary ideal S*(s)of ¥) which primary ideal J'(¢p(s)) (resp. #*(s)) is the closure of the
prototype of /[, in the maps D — D¥/ #¥(¢(s))—>K" (resp. € — €/ J7(s) — K"), hence
Proposition 1 yields that the ideals J'(¢(s)), JS*(s)=JS(s) are defined by some
corresponding spaces G, o, and for each f¢#(s) we have Af(s)=0, yAc¢ca,.
The functions of J have the same property at the point s. As the differention is a
local property and as the infinimum for .|, can be taken only on functions ¢, which
are equal to zero out of a neighbourhood U=U(p, f) of s, then we can affirm that
|o, ()|, =inf{| o] (f—@)eLs)=inf{][o], (f—0)eS(s) (f—0)|Uso€S |Uso where
U, is an appropriate neighbourhood of s}.

Let scrutinize
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As)=|o|=inf{| e[, (f—9)€F(s) (f—0)Uso€S |Use}-
Let €0 be an arbitrary fixed. So there exists a function ¢*, with (f—0*)€J(so)
(f—0%)|Us, o€ F | Usyor, such that F(s))>| *||—e. For every sufficiently large p,
(B>H,) we have 5, €Us,ee. For such p>py: F(s)=inf{||e |, (f—o)€F(sn) (f—o)\Us,,
€S| U, J=<|9*|. Thus F(s0)>| 0*||—e=FAs,)—e=A—¢e. As £>0 is arbitrary fixed,
then F(s,)=A. This finishes the proof that the function F(s) is upper semicontinuous.
Let (U, 9) be a local chart of G with s¢U. Let o be the canonical homomor-

k
phism @) ,,: D*—~D*/.#" (o(s))—K". We get for g=T =" Dt gf) with t=0(s) that
k

Rl
R
“’;(:) ()= = —f—!- D*g(t). Let assume for simplicity that v=N. Each ideal /,=1los)=1;

k| <v
has a basis @ [/,]= I BjX% j=0,1,...,p, where the elements X B X*, j=0,
Q< |K=N Q< |k|=N .
1,..., p, with B)=0, Q=0 if s¢F, are linearly independent; B] are constants in X

but eventually not in £; @(s)=¢£ Therefore we may determine X'i=% AjX* (mod /es)

where t,={k=(k;,.... k)€Z": Q<IR|SN, ksky |k|<|k/l, ¢ j=0'. 1,...,p}; s is
fixed; A)=0, A/¢C, and if |k|>|k;| then A/=0, j=0, 1,...,p. Thus

K,<:>=K,=K,=K”/I.(,):{MZ X", X'i= £ AjX*, j=0,1,...,p.
|=4 T
Let

P
K, I aXt= p> a, X+ T a,, p> Al X*= I a,X*
k<N |K| SN, ke j=0 ! ogksN |*=Q
ket RISIR)

14
+ (a,+j}:oa,lA{)X‘, q, j=0,1,....p

where if |k[>|k;| then A/=0.

The norm in the finite-dimensional algebra K*//, up to an equivalence is deter-
mined by each basis of the linear functionals on K¥, which are zero on /. The norm
in K™/I, is determined uniquely, with precision up to equivalence by:

»
= J
(11) | R §~ a, X*| o) MZSQ b,,(t)|a,|+‘:"d,(l)|a,|+lfo a'lA*(t)l'

where A/ (8)=0 if |kI>|k; |5 t=0(s)=(¢t, ..., t): 0,(t)>0; dy(£)>0. This implies for
A
P(x)=X = (D*P, 1) that

0, (P)= T b0\ DP0)) [k1+3d(0)| ZRO + & AL D" PO/
s 5 Bl e

The ideal /, is the canonical image of the ideal J'(f)=D¥ in D¥— D¥/J™(t)—~ K¥ at
the point f=¢(s). Then the coefficients k! B{ of its basis are k-derivatives at the

point ¢ of some functions in . The coefficients A/(?) are rational functions in these

derivatives, which are continuous in £ That is why: 1. If we can determine M. XD
by the others at the point £, then we can do so and moreover in an intersection
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F U, of a (hyper) ball-neighbourhood U; of £,; 2. In U, all A} are continuous func-
tions in #; 3. Since |, (f)|,=inf{|| v | (f—v)€SF(¢)} and since the norm .| is the
usual norm in DV, and since Bj(t)=0 if |[k|=Q, then all by¢), |k|=Q, are nonzero
constants in £ So moreover we can deem b,(f)=1, |k|<Q. 4.1f all derivatives k! Bj(£),
Q<|k|=N, and all Aj(t), Q<<|k|=N, k=+ky |k =|k;l, g, j=0, 1,..., p, are not annul-
ling at any point of U/, then d,(t) are also nonzero constants in U,. But this even-
tually is not true when some of the indicated Bj or A/ is zero at some point of Uj.
That is why we shall prove: (i} Let k+k, Q< k|<=N. There exists a neighbourhood
U° of £, U°<U, such that all d,(f) are upper semicontinuous on U,; (ii). All
dy(t)| A/(t)| are upper semicontinuous on U° as immediately follows from (i) and
from 2; (iii). Let S be a compact in ¢(U). Hence there exists a finite number of points

ty,...,t, in S, such that J U, =S8, where U, is a neighbourhood of £, corresponding

to U°. Then (11) determines a C-linear finite-dimensional space ag of linear differen-
tial operators on S, which ag is generated by the operators: {D* wk with |k|<Q;
B,= X BuDtl=1,...,r}; B, are received by the operators M,=(D*k!+%;
Q<|kI=N
A{(g)[)*//k, ) and by a C= decomposition of the unity, submised to U, ..., U,; That
is why the “coefficients” | B,,| are upper semicontinuous.
It remains to prove (i) by Induction: Let |k’|=Q+1, A'#4=k;. Let put in (11)
P(x)=(x—t,)¥'. Then @, (P(x)) s, = I (D*P)ty)+dw (t,). Since | (P)|, is upper semi-
' X =Q

continuous function in £, hence d.'(i) is also upper semicontinuous in £ at least on
a neighbourhood U} of £, U;=U,. The intersection of all U7 for y &" with [&'|=Q+1,
k'+k;, is also a neighbourhood Uy of £, in which all d,, |k|=Q+1, k==k;, are upper
semicontinuous in # Analogously, by inductive arguments, all d,(f), Q<|k|<N, k+k,
are upper semicontinuous on a ball-neighbourhood U°= U,

The case v=-o: We can make the above construction for the closure . in the
norm of D¥ of the ideal () DY) in DY for N=0, 1,..., . So we can receive the
corresponding C-linear, finite dimensional differential-invariant spaces o,Ca;c.cczay
of linear differential operators on G with coefficients which absolute values are upper
semicontinuous. The space a= || ya, is with the required properties.

Remark. There are also other properties of d,(f) with which we may call a func-
tion d,(f) “accessible”. So inversely,. if a is a C-linear differential-invariant space of
linear differential operators on G of order not larger than v, such that in any local
chart (U, ¢) of G the coefficients of their transfers are of the form of .(11). where
d,(t) are “accessible’” functions and A/ are continuous and continuously differentiable
till order v—*k, inclusive, in any sufficiently small “ball” U*<@(U), then there is an
ideal closed # in Dy, determined by (2). .

Inversely, let @ be a differential-invariant finite-dimensional C-linear space of linear
differential operators on G of order not larger than v with coefficients in C7. Then
there exists (cf. [12]) an algebra R of c¢—v functions on G of type C, which R is a
completion of D7 by the norm (4) and moreover R is with the norm (4). Let denote
the minimal closed primary ideal of R at the point s¢G by pf#(s) (such an ideal exists
according to the general theory (cf. [5]). Let denote by ., the intersection ,#(s)N €.
After the construction of R (cf. [12]). J,={f: f¢®, Af(s)=0, v A€a}. Let denote
by # the closed ideal in ¢ equal to (),(q#,. After the construction of R, and as
every function of € which belongs locally to some closed ideal, belongs to it ([5]) (or
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after Theorem of Whithey of ideals), we have, that the ideal . is determined by the
sets Nupy VPEZ7,.

If « is not finite-dimensional, then we must construct a projective limit R* of
algebras of type C (cf. [12]) and by R* also can be proved the existence of a closed
ideal # in %, determined by the sets Ny, vp.

Proof of the Proposition 3. The necessity is obtained gimmediately by
the Roll’s theorem. To prove the sufficiency, let investigate all closed ideals / of DY
for which its corresponding sets

(12) M={x: x€R, fO(x)=0 for yfel, yr=<s} contain M,

Obviously there exist such closed ideals /. The intersection of all these ideals / let
denote by .#. We shall show that this closed ideal  satisfies the requirements og
Proposition 3. Let .#°={x: x¢R' and f)(x)=0for yf¢ S, yr=s}. Evidently M°=.4
and MSc.#°5 for s=1,...,N. We want to prove moreover that M*=.#° for all s=1’
«.., N. Suppose the contrary — that for some s, 0<s<N, there exists a point a¢.#*¢
with a¢ M. So, a¢ M M e MO=H°. Let j be the largest integer such that
a¢M’ and a ¢ M/+.. From the data (requirements) of Proposition 3 it follows that such
a point must be an isolated point for all M*, k=0, 1,..., j. Then evidently we can
construct such an ideal /, with the property (12), that does not belong to the set
AM}+' corresponding to this ideal /o That is why the point cannot belong to the
sets A/t ... >.4°. The obtained contradiction proves that .4 =M, s=1,...,N.

(Another proof of the sufficiency can be received by a more algebraical way, or
also by a decomposition of the unity, constructing a function F for which M={x:
X€R, FN(x)=0 for yr=s}, s=0,1,...,N)

Also it is clear that the sufficiency of the requirements of Proposition 3 can be
extended not only for the dimension n=1 (exiging for the closed set Nug) (see (2))
1. Napy2Nary i p'=p"s ¥Pp', p"€Z7, and 2. it @€ Nugn), then a€ Nugp) for yp which
is compared with p° (i. e, either p°<p or p=p°.))

Remark. Since the algebra D(a) is examined with the norm ¢, (4), hence fur-
ther we can and we shall consider as a maximal such a space, i. e, containing all li-
near differential operators A on G with coefficients in Cg, which A are dominated
by @ in the suprem norm (see [19, 20)).

Proof of Proposition 5. According to the definition, every primary ideal S
of D(a) is contained in some maximal ideal M of D(a). Since the algebra Dg is dense
in D(c) and since the maximal ideals of Dg are of the kind M(s), hence (cf. [5]) such
are also and the maximal ideals in D(a). Then S =#(s) for some s¢G. Let #(s) be
the minimal closed primary ideal of the algebra D(a) at the point s¢G. (Such an
ideal #(s) exists since D(a) is an algebra of c¢—wv functions of type C, i. e, also a
regular Banach algebra (cf. [5]). Let NV (resp. Q) be the least (resp. the largest) integer
for which D¥=D(a)=Dg. Such N (resp. Q) exists as this inclusion is true when N is
the largest order of the operators in a (resp. for Q=0 since /¢a. Let J%(s), FJUs)
be the minimal closed primary ideals at the point s¢G of the algebras DY and DY
correspondingly. Further we shall use.

Theorem 11. (G. E. Shilov [5)). Let R,cR, be fwo regular Banach al-
gebras without radicals and with a same space G of their maximal ideals. Then
there exists a continuous algebraic homomorphism s for which the following diagram
is commutative
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Ry Ry
Y1 1 l Ya
R/ 7 1(So) . Ry/F o(S0)

where $(s,) and Fis,) are the minimal closed primary ideals of R, and R,, res-
pectively, at the arbitrary fixed point sy€G; vi, i=1, 2, are the canonical homomor-
phisms; 0 is the including map.

Applying this theorem at first to R =D(a), R,=DY, and afterwards to R;=Dy,
Ry=D(a) we receive continuous algebraic homomorphisms s, and s, such that the
following diagram is commutative

Dy 6, D(a) 0, D9
Y1 l Y l l Ya
KN =D #N(s0)———D(0)] £ (5o)——D/ I Y50) =K.

The composition of these homomorphisms s; and s is the natural projection (in-
clusion) as follows from the commutativity of the diagram in Shilov’s theorem 11.
Thus D(@)/F(se)=K" /s, wthllere Js, is an ideal in K%, generated by a finite number

of elements of the form I a,X* Let S%(s,) be the closed primary ideal at the point

k=
so in D% which is the prlolt?)?ype of #(s,) in the natural including homomorphism
DY — D(a); Let I7 be the image of *(s,) in the canonical homomorphism DY — DF
155 (So)-

As F(s))DF(s,), then I;.DJW Let fix an arbitrary local chart (U, ¢) of G with
s,€U. The ideal /; uniquely determines the C-linear differential-invariant finite-dimen-
sional space P of linear constant-coefficient differential operators such that the ideal
F*(o(sy) in DY, S*o(s0)={g: geDY, g|o(U)=(f|U)o@™" for some f¢.5}, is de-
termined by the space B as in Proposition 1, (1). Let o;* be the C-linear differential-

invariant finite-dimensional space of linear constant-coefficient differential operators
A* on R”", such that for every A*ea;: there exists A¢a with Ao~ at the point
o(s,) is equal to A* According to (12] o}* is uniquely determined by the ideal Js,, ag
the corresponding prototype of the space /s, of all linear functionals on K%, annulling
on Ji,. Since J;, =1}, hence B* is a subspace of a;". The space Bs. (as resp. the space o)
uniquely determines a C-linear differential-invariant finite-dimensional space B (resp. a;) of
linear differential operators on G with coefficients in Cg. Evidently B;, is a subspace of'a:n.
Moreover, B; is such that I*(s,) is determined by B, i.e. I¥so)={f: fe D%, Bf(s,)=0
for y BB ). Since the space a is pointwise equal to the spaces aj (a is constructed
by a} — cf. [12]), hence there exists a C-linear differential-invariant subspace By, of
the space a which is “equal” at the point s, o B, As D(a) is a completion of
Dz =D} by the norm ¢ (4) and as the ideal J*(s,) is determined by the space Ps,

such must be also the ideal # and we receive (5). Thus
F(so)=1{f: feD(a), Bf(so)=0 for y BeBs,} and also
J(sg)={f: feD(a), Af(s)=0 for v A¢al
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The inverse part of Proposition 5 is almost evident: each such space B uniquely
determines an ideal J%(s,) of DY after Proposition 1 and as for the corresponding to
I*(s,) and to J(s,) ideals in K%, is true /] >J;, then the set J(so)={f: feD(a),
Bf(s,)=0 for y B¢B} is a closed primary ideal of the algebra D(a) at the point s,.

The proof of the Proposition 6 will use the construction and the nota-
tions in the proof of Proposition 5 for the arbitrary fixed point s¢G. Let N be the
largest order of the operators in a. Let J*=DY[ #. Evidently J* is a closed idea]
in DJ. After the Proposition 2 the ideal #* is determined by the sets Np,), yp, for
some C-linear differential-invariant finite-dimensional space P of linear differential ope-
rators on G with coefficients which absolute values are upper semicontinuous on G
For each point s¢G we can construct the spaces B.* and B corresponding to the ide_
als #* and # at the point s. Evidently B"=p!. As # is an ideal of D(a) then B} is
a subspace of o}, where a is a C-linear differential-invariant finite-dimensional space
of linear differential operators on G with coefficients in Cg, constructed by the ideals
F(s) and J; (see the former proofs), or by the space a (see [12]). Nevertheless for
each A!¢a] there exists an operator A€o equal to A} at the point s. Then if 2 is
the space of all ¢c—o functions with upper semicontinuous absolute values on G, the
space B is a 2-linear subspace of the space a. Since D(a) is a completion of Dyzc=D¥
by the norm ¢ (4), and S*=D¥ 4, hence the ideal .# isalso determined by the same
sets Npg), VP g

The inverse part of Proposition 6 is a consequence of the existence of a closed
ideal J* of DY, determined by P after the Proposition 2. The sought for the ideal #
of D(a) is the completion of #* by the norm ¢ (4).

Proof of Proposition 7. All maximal ideals in C[x] are determined by
the points of R% i.e, I. each maximal ideal M of C[x] is of the kind M= M(x*) for
some x*¢R” (cf. [2], which may be proved also directly); Il. for each point x*¢R” the
set M(x*)={p, peClx], p(x*)=0} is the maximal ideal at x* (The latter is evident,
since there exist polynomials annulling at and only at x¥, for instance p=2;‘=1(x,—x,-)3).
Let the primary ideal .# belong to the maximal ideal M= M(x*). Then J =.#(x*). The
ideal .# is finitely generated after the Hilberts’ theorem. Let J be generated by the
polynomials py, ..., . (So pA(x*)=0, j=1,...,m.) Let N be the largest degree of
Oh ey Pore

As KI’W:;J D MN*1 then the natural homomorphisms C[x]/M—C[x]/F—KV=C[x]/MN+1
imply that there exists an ideal /* in KV — the image of .# in canonical homomorphism
Clx]— C[x])/M¥*1, that C[x]/#=K"/[*. Let /.« be the unique C-linear finite-dimen-
sional space of all linear functionals on K%, annulling on /*. This space /.« uniquely
generates the C-linear finite-dimensional space a=a(#) of all linear constant-coefficient
differential operators, annuling on 4 at the point x* « isthe prototype of «/.«, where
formally to X* corresponds D*. So the order of operators in « is not larger than N.
This space a is moreover differential-invariant. Let A¢o. It is sufficient to prove that
if A=Xa,D* with some of £,>0 for corresponding a,+0, k=(k,,...,k,), then the

operator AU+ 0. -s Dea. Let f, g¢Clx], and f¢S. We have A(fg):l’.?ll—g(')A")f. For

g&=(x;—x]) we have 0=A(fg)(x*)=A"0 ... 0 f(x*)=0, i. e, AM0.--.0¢qa  Then
inductively all A" ¢a, yx. Moreover, the operator /¢a since J=.(x*).

Inversely, each fixed point x*¢R" and each C-linear finite-dimensional differen-
tial-invariant space a of linear constant-coefficient differential operators with /¢a, de-
termine a primary ideal S =J4(x*) in C[x]: F(x*)={p: peClx], Ap(x*)=0 for y A¢a}.
Let N be the largest order of operators in «. o uniquely determines the corresponding
space o of linear functionals on K¥. Let /* be the ideal in KV on which all functio-
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a

nals of & are annulling. Then #(x*) is the prototype of /* in the canonical homo
morphism C[x]— KV =Clx]/(M(x*))N*'. F(x*) is an ideal as the space a is differential-
invariant.

Proof of Proposition 8. Let F be the analytic variety of all zeros of the
ideal #. If F=( then #=C|[x]|, and the space a={0}. Let now F=( and x*¢F. For
the arbitrary fixed x*¢F, let the ideal /.« be the image of J in the canonical homo-
mophism C[x]— C[x]/MY+!, where N is the largest degree of the polynomials in a
finite basis of # (such a finite basis exists after the Hilbert’s Theorem.); M, = M(x*)
is the maximal ideal of C[x] at the point x* At first we receive the C-linear finite-
dimensional space /.« of all linear functionals on K¥ annulling on Je. &/« uniquely
determines the C-linear f{finite-dimensional space «.« of all linear constant-coefficient
differential operators on R" annulling on .# at the point x* Morecover, since  is an
ideal, hence the space a.s is also differential-invariant (cf. the proof of Proposition 7).
Let if x*¢ F a.»={0}. By the set of the spaces {u,}x“\,,, we can construct a C-linear
finite-dimensional differential-invariant space « of linear differential operators on R" in
a way that if A¢a then at each fixed x*¢R" there exists an operator A.«€a,« such
that A.« is equal to A at x*

Furthermore, @ may be so constructed that the coefficients of each operator in
@ to be with upper semicontinuous absolute values. The proof almost literally follows
the corresponding part of the proof of Proposition 2: Let x*¢F be arbitrary fixed. We
have M(x*)>JS. Let #(x*) be the least primary ideal at x* with S(x*)oS. (#(x*) is
the intersection of all primary ideals at x* which contain ). Let @« : Clx| — Clx]/#(x*)
be the canonical homomorphism. Let fix arbitrary p ¢ C[x]. Let F(x*)=|ow(p)|sv, where
<[« is the factor norm in KV (S (x*)oMN+1), determined by the norm Q in C[x]:

m

Q( T axf)= I k! |a,|. In the same way as in Proposition 2 we see that the func-
k=0 k=0

tion F(x*) is upper semicontinuous in the indetermine x*. Further, repeating the proof
of Proposition 2 we can see that a can be chosen so that the absolute values of the
coefficients of all operators in a are upper semicontinuous on R".

So: Flx)=|o(p)=inf{| g|, (g—p)€eF(x)}. Let x=x"* be fixed. Every ideal /.
of K¥=KY, one-to-one determines a primary ideal #'(x*) of C[x], which primary ideal
J'(x*) is the prototype of /.« in the canonical map C[x] — C[x]/MY*'. Proposition 7 yields
that the ideals #’(x*) and #(x*) are determined by the corresponding spaces a’, and
e =a/,, moreover for each p€.#'(x*) orp ¢#(x*)we have Ap(x*) =0, yAER, (resp. y A¢ a,-).
The polynomials of # have the same property at x*, is i.e. the coefficients of Taylor’s formula
at x* for polynomials of #'(x*) and of J satisfy the same requirements. The norm in
Clx]/M¥+V is determined by the coefficients of Taylor’s formula at x* But these
coefficients are determined by the local means of the polynomials. Hence we can affirm
that Flx)=|o,(p)|, =inf{[lg|, (p— g eSF(0)} =inf{|q], (p—@)€F(x), (p—q)|U,,
€J|Us, o where U, , is an appropriate neighbourhood of x}. Let scrutinize

F()C) s {i“’x(l’) !x’ xE‘F.
0 if xeR"—
where F is the analytic set of all mutual zeros of the polyqqmials of . We shall
rove that F(x) is upper semicontinuous. As F(x)=0, it is sufficient to prove that on F.
Eet A€R be arbitrary fixed. Let x*¢F be also arbitrary fixed and (x,) be a sequence
with x,€ F, F(x,)=A, and (x,)—x* It is sufficient for the upper semicontinuity
of Flx) at the point x* to prove that F(x¥)=A. Let €=0 be arbitrary fixed. Then
there exists a polynomial ¢g* with (¢*—p)€F(x*), (§*—p)|Up.+€F|Ugp,v, such
that F(x*)>| ¢*||—¢. We have x,€ Uy for every sufficiently large p, (W>p,). For
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such pu>p,: FAx)=inf{|/ql, (p—@)€F (%), (p—9)|Ugx, €F|Uqgx, } <l ¢*||. Thus
Fx*)>| ¢* | —e=Fx,)—&e=A—e. As €>0 is arbitrary fixed, then F(x*)=A. This fi-
nishes the proof that the function F(x) is upper semicontinuous.

In the canonical homomorphism ,s: C[x] — C[x])/MX+!, we get for

g== (" =2 prg(av)
k

that
0(g= X ——D"g(x*)
k= k!
Each ideal /,» in KV has a basis
Bllel={ X B{X% j=0. 1.4,

where the elements
I BIX% j=0, 1,
Q< k=N
with BY=0, Q=0 if x*¢F, are linearly independent; B/ are constants in X but even-
tually depend on x*. Therefore we may determine
Xti= z A} X*(mod /s), r, j=0,1,...,¢; A%=0,

Q< [kSN *
ke R

where x* is fixed; A/¢C, and if |k|>|k;|, then A/=0. Thus
Ko=KN/[+={ ;,fw a Xt X'i= X ALXY, o r=0,1,..., 8

<k<N

Q
Ktk [RI|k )
Let

t

K+) L aX*= T aqX'+ X

[k[=A [k <N j=0
ktk

a,. z Al Xk= I a, Xk+ 2 (ap+ 2 a,, ')X", Syr=0,1,...,¢
I o<k =N |k|=Q 0<|
hk s RISkl |k|s|k|

where if |k|>| k|, then A,=0. The norm in the finite-dimensional algebra K™/l up

to an equivalence is determmed by each basis of the linear functionals on K%, which
are zero on /,~. So the norm in K¥/[,. is determmined uniquely, with precision up to
equivalence by :

t
| Z apX*|e= I byx*)|a,|+ z dy(x*)|ay+ T a,, Al (X)),
[kl N |k|=Q QL IkISN Jj=0
ke, KT Al
where A/=0 if |k|>|k;|; by(x)>0; d\(x")>0. Moreover, as K¥=C[x]/M¥*' is scru-
tinized with its quotient norm Q, then &,(x*)=#k!. This implies for

P(x)= X Tt (D) (%)

5 Cn. Cepanka, ku. |
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that
(0 (P)e= £ |DP(x* T ey 2P LY an Db,k |
I X‘( )!X*‘ Kl =Q I t(x )|+ Q<IMSN k(x )' Y + '—20 Ak\x ) th(x )/kl'l-
- kerky 5 [RISIA| ~

The ideal /,« is the canonical image of the ideal J (x*)—C[x| in the canonical homo-
morphism C[x]— C[x]/M¥+'. Then the coefficients %! BJ(x*) of its basis are D*-deri.

vatives at the point x* of the polynomials p,,...,p, Then the coefficients A/(x*)
are rational functions in these derivatives (which hence are continuous at x*), and so
are rational functions in x. That is why: 1. If we can determine X*,.. ., Xt by the

others at the point x*, then we can do so and also in the intersection Fn U, of a
hyperball neighbourhood U of x*; 2. In F1U; all A} are continuous functions in x>
3. Since |0 (p)|e=inf{| q|, (§—p)€F (x*)}; since the norm /||| is the norm Q in
Clx]; and since B](x*)=0 if |k|=Q, then all b(x)=k!, |k|= Q; 4. If all derivatives
k! Bj(x), Q<|k| =N, are not annulling at any point of UjN F and the rang(B/(x));..
=t on U;N F, then dy(x) are equal to k! on UyN F. But this is eventually not true
when some of BJ is zero at some point of U;N F or the rang (B/(x));,+¢t on Uy F
That is why we shall prove: (i). Let k=%, Q<</k|=N. There exists a neighbourhood
U of x*, U= U,, such that all dy(x) are upper semicontinuous on U Fy (). All
d(x)| Al(x)| are upper semicontinuous on U°N F, as it immediately follows from (i).
and from 2. (iii). Let S be a compact in R" Hence there exists a finite number of
points #,,...,t, in S, such that U:_, U,DS, where U, is the neighbourbood of £,
corresponding to U° of x*. Then it is determined a C-linear finite-dimensional diffe-
rential-invariant space g of linear differential operators on S, which as is generated
by the operators {D* vk with [k|=Q; B,——;2 X B,D* l=1,..., u}; B, are received

<|h =N
{ty)

by the operators M,=(D*k!+ z Al (D ijks)), Q<|k|=N, kk,=k,(t), v=1,

..., 1 and by a C= decomposition of the unity, submissed to Uy, ..., U, That is why
the coefficients | B,,| are also upper semicontinuous.
It remain to prove (i) by Induction: Let |&'|=Q+1, A'#k;. Let put in o the

polynomial P(x)=(x—x")". Then [0::(P)e= T |(DHPYx")|+du(x). Since fo(P),

is an upper semicontinuous function in x, hence dy (x) is also upper semicontinuous
in x at least on a neighbourhood Uj of x* Ujc=U, The intersection of all Ug for
y k' with |k'|=Q+1, k'=k;, are upper semicontinuous in x. Analogously, it follows
by inductive arguments that all dy(x), Q<|k|SN, k-k;, are upper semicontinuous
in x on F( UP where U° is a “ball” neighbourhood of x* U°cU;

Remark. Evidently if we suppose in addition that dy(x)=0 for x¢(R"—F), or
k=*k; for some j, then d,(x)=-0 is upper semicontinuous on R". Furthermore, d,(x) is
a constant equal either to k! or to 0 on any (N, — U N, ")

PP

That is why the assertion of Remark 2 is now obvious: Let all sets DcR" (or

D=G) be scrutinized with the topologies, generated by the topology of R" geSpec.

tively, by the topology of G). Then the corresponding spaces a in P{opositions and 8

can Ze chosen so that on the sets (N, — L(J N, ) the coefficients of the opera-
<P
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tors of a are continuous for the case of the closed ideals in Dy, (Proposition 2) and
moreover are rational functions in x in the case of the ideals in C[x] (Proposition 8).

(Added in the proofs:) The author is grate’ul to Professor Hugo Rossi for sponsoring these re-
sults at the Meeting of The American Mathematical Society, October, 1986.

REFERENCES

1. M. Noether. Uber einen Satz aus der Theorie der algebraishen Funktionen. Math. Ann., 6, 1873,
351—359.

2.B. L. van der Waerden. Aigebra Il. Berlin, 1967.

3. B. L. Manamonos. [o1MsoMHarbhbIe HAeATsl H YPABHEHHS B YaCTHBIX MPOM3BOAHBIX. Ycnexu mam,
Hayx, 18, 1963, Ne 2, 164—167.

4. F. Treves. Introduction to Pseudodifferential and Fourier Integral Operators. vol. I, 1l. N. Y., 1980.

5.T. E. Wuaos. O peryaapusix HOPMupoBaHHBIX KoAvlax. Tpyos Mam. uwcm. AH CCCP, 21, 1947,
1-118.

6. . E. Llnaos. Omxopotubie Korbla Qywkuuit. Yenexu mam. nayx, 6, 1951, Ne 1, 91—137.

7. W 3. Illnoab. 3aMkuyThe WAeals B KOblle HENpephisHO Ru(ipepenuupyembis Gyukuui, Mam. c6.,
27, 1950, Ne 2, 281—284.

8. 1. E. Wuaos O HeKOropsX HOPMHPOBAHHBIX KOMbUAX. COOPHHK CTyleHYeCKHX HAYWHBIX pabor,
MrY, Ne 18, 1940, 5—25.

9.H. Whitney. On ideals of differentiable functions. Amer. J. Math., 70, 1948, 635—658.

10. A. C. Maareposa O6 oasopoasbix aire6pax (QyHKUHA Ha TOpe W HX NpHMApHBIX WAearax. Ma-
TepHatl TpeTbed Hayd. koud. Goar. acampamros. M., 1978, 532—541.

1. A. C. Maareposa. O HEKOTOPHIX K1accax 01HOPORHWIX Ganaxoswix aire6p. Aucceprauus. M., 1978.

12, A. S. Madguerova. On some algebras of complex-valued functions on differentiable mani-

folds. C. R. Acad. Bulg. Sci., 36, 1983, 1479-1482; A. S. Madguerova. On some alge-
bras of complex-valued functions on differentiable manifolds. Pliska, (non printed).
13. U. 3. Wnoxab Crpoerre uaeanos B komsuax R, . Mam, cd., 27, 1950, Ne 1, 143—146.

14. B, B. [pywun. O CTpoeHHH 3aMKHYTHIX 114108 B KOJble JBOAKO-NEPHOAHYRCKAX BEKTOPHO-r1ai-
kux Qynkuuit. Becrnuk MIY, 1961, Ne 1, 17—23.

15. F. Lasker. Zur Theorie der Moduln und Ideale. Math. Ann., 60, 1905, 20—116.

16. B. 1. Maxamonos. O cucremax AudpepentHalsipix yYpaBHEHHH € NOCTOAHHBIMH KO3 PHULHCHTAMH.
Jloxaadse AH CCCP, 148, 1963, 523—526.

17.U. M. Teavgpann, I E. Wuaos Obobwennsie pynxmuy, Bom. 1 1 2., M., 1958—1959.

18. 10. AM bp ghé ; kos, A, [I. [Ipyaunkos. Hurerpaspiie npeobpasoanus 0606uieHHbIx PyHKIMIL

., 1967,
19. K. de Leeuw, H. Mirkil. A priori estimates for differential operators in L_ norm. /llinois J.

Math., 8, 1964, 112—124.
2. A. S. Madguerova. On spaces of complex-valued functions with strong generalized derivatives
of Laurent Schwartz-Sobolev type. C. R. Acad. Bulg. Sci., 36, 1983, 871—874.

Centre for Mathematics and Mechanics Received 12. 6. 1986
Sofia 1090 P. 0. Box 373



