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COMMUTATIVE FIELDS NORMED BY A G-VALUATIVE ORDER
J. STABAKIS, A. KONTOLATOU

A G-valuative order is a kind of valuation defined on a field and ranging over an ordered group
The valuaton of a field ranging over R+, the positive cone of R, induces a topological structure on this
field. So archimedian and nonarchimedian valuations of Q induce a metric or hypermetric structure on
it and lead to the construction of the fields R and Qp, of real and p-adic numbers, respectively, Here,
we are making an attempt at an analogous study referring to a commutative field and using the G-va-
luative orders.

1. Generalities. 1.1. The purpose of this paper is twofold: given a commutative
field, valuated by a G-valuative order v, to make it a topological field and simulta-
neously to complete it by using the uniform structure established for this field.

More precisely, in theorem 2.1 it is proved that a G-valuated field K becomes a
topological field. Hence it has the structure of a uniform space.

Moreover a geometrical representation of the field is described in sections 3.1-3.3.

Finally, in 3.4 we construct a new field, completing the uniform structure of K.

1.2. It is known that every ordered space (G, <) can be embedded to a complete
lattice which is the well-known “Mac Neille’s complement” of G.

It is also known (see [2]) that every ordered space (G, <) can be embedded to
another ordered space, called “Kurepa — Dokas’ complement” (symb. (G <))

We have the following:

(1) (G, =) is a complete lattice (see [8]).

(2) Let (A, B) be a cut in G, in the meaning of Mac Neille’s theory. If (4, B) is a
gap (that is A has not a supremum and B has not an infimum), then in Mac Neille’s
complement there exists a new element lying between A and B.

On the other hand, in G the new elements have been put at the end of every
class A (resp. B), which has not an end point, that is maximum (resp. minimum).

So, for the a, Nb non-compgrable elements of G, the infimum of a and b in G will
be an element of GN\G={x¢ G: x ¢ G}. Denote this element by infy {a, b}.
1.3. Let us consider a commutative field (K, +, .), a partially ordered Abelian

group (G, +, <), and its Kurepa—Dokas complement (G, <). The structures in the
ordered group are compatiable in the usual meaning; that is, for every a, b, ¢ of G,
the relation a<b implies a+c<b+c.

We also considered a new element <o, such that for each y¢€ G, y<oo and y+
=oo+y=cotoo=co and let G=G | {}.

A G-valuative order v (see [5]) having the commutative field (K, +,.) as a
domain and (G, +, <) as a range, is a function which satisfies the following condi-
tions:
for every x, y of K

(i) x)=coe>x=0

(i) v(x.y)=v(x)+uy)
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(iii) ?(x)=7v(—x)
(iv) o(x+y)=infz {v(x), x(v)}, the triangle inequality.

It has been proved that the last statement is equivalent (and this equivalence is
used for every ambiguous case) to the following one:

if v(x)>c, v(y)>c then v(x+y)>c, for c€ G

1.4, We end this paragraph with an arrangement of the structure (G, +, <),
which further will be often made use of.

If we denote by G* the (maximal) torsion subgroup of G, then the factor greup G/G*
will be a torsion free group and considering the structure (G/G¥, +, =), where < is
the natural order induced by the initial one, we can extend this structure to a totally
ordered Abelian group by Lorenzen — Simbireva — Everett’s theorem (see [4], p. 39).
Denote this total order by =. Thus the extension of the initial order < of G to
another partial order <.,

as,b=a = b,

where a, b are the corresponding classes (mod G*) of @ and b respectively will be the
consequence and the following statements will hold
(Al) Every class of G (mod G*), for G*<{p}, contains parallel elements.

(A2) if a<a’, then for each b¢a and b’ ¢a’, we have b<<,b'.

2. (-valuated topological fields. Supposing that a G-valuative order is defined
on a field we induce a topology on it (cf. (7], p. 65 for the case of a linear ordered
value group). In this paragraph the structure (K, +, .) is a commutative field and v
is a G-valuative order with domain the field K and ranging over an Abelian group;
the image of K*\ = K{0} by v is a group (G, +, =) too (cf.[5), p. 66). In this case K is
called the G-valuated by v and G the value group of . The set G*={x¢ G: 0=x}is
called the positive cone of G.

Theorem 2.1. If K is a G-valuated by a G-valuative order v with value group
G and if for every subset of G there exists an upper bound in G*, then a T\-topology
is introduced in K, which makes K a topological field, hence a Tychonoff uniform
space. :

Proof. Let us consider the class I of the subsets V,(x,), V(xo)={x€K:v(x
—Xo)=>>7}, for every x in K, where y goes through G*. This class I' forms a funda-
mental system of neighbourhoods of x, and the demonstration will be realized in four
steps. (We denote by — V,(x,) (resp. by [V,(xo)]™!, x,30) the subset:

{x € K: —x €V (xy)} (resp. {x € K:x71¢ Vy(x)}.

It step. (K, +) is a topological group. First we remark that for every y¢ Gt
the subset V,(0) is a subgroup of (K, +) and that V,(0)=—V,(0). Indeed; for x, y
in V(0), o(x—y)—=infz{v(x), v(y)}>v, hence x—y ¢ V(0), while the second assertion
is obvious.

Now it is sufficient to show that

(i) the class F(,:(V,(O))”O'_ is a filter-base in K.

(i) (Vy€GY) (3v, € GY) [V4,(0)+ V4, (0)c V(0))-

The (i)-statement is a simple consequence of the fact that G is up directed and
that: if y<<y’, then V,(0)c V4(0). On the other hand, V,(0) is a group, so V,(0)
+V(0)c V,(0) and (ii) is proved

2" step. (K, +,.) is a topological field. We should prove
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(iii) If x, y are elements of K and y¢ G*, then there is a ¢ G* such that
Vs(x) . Vs(y) = V(xy) and ,

(iv) if x¢ K*=K\ {0}, and y ¢ G*, then there exists a & € G* such that [V5(x)]?
< Vi(x™).

Demonstration of (iii). Firstly,

(1) V(x0)= V(0)+{x0}-

Indeed, if ¥ € V,(0)+{x,}, ¥=x+ x, with o(x)>7, then v(x,—y)=v(x)>Y = y € V,(x,)
On the other hand, if y¢€ Vy(x,), then o(x,—y)>y and putting x=y—x, we have
v(x)>Y, y =x+x, with x ¢ V,(0), and (1) has been proved.

Now from (1) we have successively

Vi(x). Va(y) = [Vs(0)+1{x}] . [Vs(0)+ {¥}] = V&(0) . Vs(0)+ Vi(0) [{x} +{¥}] +{x} . {»}
and it is sufficient to find a & ¢ Gt such that
(2) Vs(0): Vs(0)+ Vi(0) [{x}+{y}ICV4(0)

if Z is an element of the left side of (2), then Z=2Z2,. Zy+ Zs(x+y), where Z,, Z,, Zs
in V5(0).

UZ)=UZy . Zy+ Zx+y)) = inlg (02, . Zy), UZo(x+9))=infp{o( Z)) +0(Z,),

(3) U Zs)+v(e+y)}<infz {8+, 8+v(x+y)}=38+infz{5, v(x+y)}.
It is evident from (2) and (3) that it is sufficient for 8 to fulfil the relation
(4) y=38+infz{8, v(x+y)}.

Suppose that 8>v(x+y) and consider a x ¢ G* such that, x>—v(x+y). Hence for
8=v+x, there holds 8+infz{8, v(x+y)}>>8—x%=v and the statement (iii) has been
proved.

. Demonstration of (iv). Let y € Vis(x); then ©(y—x)>8. The required state-
ment “y ¢ [V (x1)]1” is equivalent to “y—'¢€ Vy(x~!)", that is to say,

5) Ay —E)>Y, v () = Ay — ) — o) — () >T.
But v(x—y)—v(x)—v(y)>3—v(x)—v(y) and (5) is changed into
(6) S —v(x)—v(y)>7.

If 6>wv(x), we have:
oy)=infy {2(x—y), (x)}=infx{s, v(x)}

as well as (x)=infz {8, ©(y)}. The last two relations mean that o(x) and v(y) are
equal or parallel. :

On the other hand, there exists a » ¢ G, such that x>o(x). So if §>2%x+7, then
for every y, such that v(x—y)>& hold (because v(x) and ©(y) are equal or parallel)
—y)>—x and §—v(x)—v(y)>06—2%>7.

Hence (5) is satisfied and (iv) is proved.

3 step. (K, +,.) is a uniform space and certainly it is a proximity space be-
cause (K, +) is a topological group.

4™ step. {0}={0}, O is the neutral element of (K, +).

Indeed, for x+0 and §>v(x), 0 ¢ Vi(x).
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Remark 2.1. If the partially ordered group is not up directed, the induced topo_

logy in K will be a discrete one.
Remark 2.2. Constructing the surroundings of uniformity, we consider for every

v € G*, the subset D,={(x, )¢ KXK:x—y¢V,(0)} and that will mean that D,={(x,

¥) € KXK: v(x—y)>7).
Remark 2.3. Constructing in the usual way the proximity induced by the above

uniformity, we are not able to express this proximity in an explicit form. However
there exists a relation — denoted below by &-between the subsets of K, which is a
proximity ; the topologies induced by the preceding uniformity and by this proximity
coincide.
So, if A and B are subsets of K define:
ASB iff the subset {V(x—y);x € A, y¢€ B} is cofinal to Gt or contains the element oo.
We prove that & is a proximity on K. It is sufficient to show the following state-
ments (the remaining are obvious):
(B1) A3(B 1 C) if “A8B or ASC”, for A, B, C subsets of K.
(B2) If AéB, then there exist non void subsets C and D of K, such that CND=Q)
and A8(K\C), Bi(K\D).
Demonstration of (Bl): First it is not difficult to prove the next two state-
ments :
(i) If in the expression A— (B C), the symbol “—" is an algebraic operation, then it
holds that: A—(B1C)=(A—B)U(A—-C)
(ii) For every couple of subsets A and B of K, such that the union A (JB is cofinal
to G*, one of A and B is cofinal to G* and conversely.
Now, by (i), it holds that: {v(x—y): x€¢ A and y¢BlC}={v(x—y): (x€A and
yeBlor (xeAand ye C)}={v(x—y): x¢A and y¢ B} U{v(x—y): x€¢ A and y¢C}.
These relations and (ii) imply that A3(B | C)<>(A3B) or (43C).
Demonstration of (B2): We suppose that A3B. It means that there exists an
element y € G*, such that each element of {v(x—y): x¢ A and y ¢ B} is smaller than
or parallel to y. Consider vy, € G*, y;=v and the set M of all x in K, such that each’
element of the set ©(x—B) is smaller than or parallel to v,.
Next we consider v, € G*, v,==v,, and the set C={x¢ M: (3a ¢ A) [v(x—a)>Y,]}.
Evidently: Ac=M, M+@ and AcC.
Suppose that A3(K—C). Then the set: {#(x—y): x ¢ A and y¢ K—C} is cofinal to
G+, that is, there exist a ¢ A and x ¢ K—C, such that ©(x—a)=>7,, hence x ¢C, which

is absurd. So,
(a) AS(KN\C).

Symmetrically, choosing v,, v, € G*, v,~v;=v, we define the subsets: N={x¢A:
each element of the set v(x—A) is smaller than or parallel to vy, ¢G*} and D={x¢N:
(3b¢€ B) [v(x—b)>7,]}.

Similarly :
(b) B3(K™\D).
We have to prove that
(¢) CNnD=@

Suppose that x ¢ C D. Then (3a ¢ A) [v(x—a)>v,), because x ¢ C. Besides, “x belongs
to D” means that for every a ¢ A, each element v(x—a) is smaller than or parallel
to v,. But we can suppose that y,=>y and so the element x cannot satisfy the last

two statements at one and the same time. Thus (¢) has been proved.
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The assertion (B2) is derived from the above (a), (b) and (c).

We must point out that the proximity structure is a separated one. In fact, for a
and b elements of K, adb implies a=0b.

We intend to prove that the topology induced by the above proximity coincides
with the one induced in theorem 2.1.

For A+ (@ a subset of K, put A its closure for the proximity and A its closure

for the second topology, i. e. A={x ¢ K : the subset v(x—A) is cofinal to G* or con-
tains oo} and

A={x ¢ K(v Y € G*) [Vy(x) N A=)}

Let x € A. Then, for every y ¢ Gt, there exists an element a ¢ A, such that (x—a)
>v, hence a ¢ V,(x).

Now let x¢ A. Then, for every v ¢ Gt, V,(x)N A+ and that means that there
exists an a ¢ A, with o(x—a)>7v, hence the subset v(x—A) is cofinal to G*. The proof
is completed.

3. G-Hypermetroid Spaces. 3.1. In this paragraph we use the term “G-hypermet-
roid space” for a space K, on which has been defined a function p, ranging over a
partially ordered abelian group (G, +, =) and having the properties (for every
x, ¥, z of K):

() plx, y)=o<x=y
(ii) p(x, y)=ply, x)
(iii) p(x, 2)=infz{p(x, y), p(y, 2)} (the triangle inequality).

The above statements are the dual ones of those which hold for a hypermetric space.
Also it is evident that the G-valuative order v of K, makes the field K a G-hyper-
metroid space by the relation p(x, y)=u(x—y), while for every y¢ G*, the subset
{(x, y) € KXK: v(x—y)<y} is a surrounding for the uniformity defined on K by w.

3.2. As usual we will say that an (unordered) triple (x, y, z) of elements of K is
a triangle with sides xy, yz, xz and vertices x, y, z.p(x, y) expresses the “proximity
of the vertices x and y". If p(x, y)>p(w, 2), we say that the side xy is larger than
the side wz, while the term “isoscele” preserves the usual meaning. Finally the sub-
set B,(a)={x¢K: p(a, x)=r} is called “a sphere with a centre x and a radius r",
reagt.

We give two results related to these notions; some other results are established in
an analogous way as in the case of hypermetric spaces.

Proposition 3.1. If the sides of a triangle are comparable one to another,
then the triangle is isoscele with a base larger than or equal to the equal sides.

Proof. Let (x, y, 2) be a triangle. Put p(x, y)=a, p(x, 2)=0b, p(y, 2)=".

Suppose that y=a. If a=v, the proof is completed. Now let y>>a. Then b=infz{a,
v}=infz{a} and because of the comparability of a and b, b=a.

On the other hand, a >infz{b, vy} and because a<y, we have a=b.

Proposition 3.2. In a G-hvpermetroid space, every point of a sphere can be
considered as its centre.

Proof. For a sphere B,(a) and x, y being two elements of it, we hase p(x, y)

-infz {p(x, a), p(y, @)} ~r. Hence B/a)=B[x).

3.3. We consider again the structures (K, +,.), (G,+, =), the G-valuative order

v of K onto G=G|){=}, as well as the fully ordered Abelian group (G/G*, +, =) and
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the extended structure of G, (G, +, =,), as they have been described at the end of
1. Put e for the image-by v-of any element e ¢ X, C.- for the class of e (mod G¥)
and S, for the subset {x¢ K: ©(x) ¢ C-}. For simplicity we suppose that the index e
of any §,, is a preimage of an element belonging to a system I' of representatives of
the factor group G/G*.

We also note, for each e*¢S,, .={x¢S,:x=e*¢ C-} and we always consider

that 1=0, (0 is the neutral element of G and represents G* in TI).

For this notation, S, covers G* by 7.

Proposition 3.3. (/, .) is a subgroup of (S, .) while (S,,.) is a subgroup
of (K* .), K*=K—{0}.
The proof is obvious.

Proposition 3.4. S,=1/,.y where y, is a system of representatives of the factor
group S,/1,.

Proof. Let x be an arbitrary element of S, and x* ¢ x, such that x=x*. Then,
if e*=x.x*1, e*=0. It means that ¢* ¢ /, and x=x*.e* where x*¢y and e*¢/,.

On the other hand, for each x*¢y x* ¢ G* and /,.x=S,.

Proposition 3.5. If a¢ S;\J,, then I,=a.l,.

Proof. Let x €/, Then x.a~'=x—a=0, that means that a*=x.a" ¢ /;. Conver-
sely; let y¢(a.l,), that is y=a.x, where x¢/,. Then y= a.x= a+ x=a, hence y¢/,.

Proposition 3.6. For each e*¢ S, there exists an element x* ¢y, such that
loe=1,.1 s, where y is defined above (fig. 1). B

Proof. Let x*=e*.e"L If x'.x"€/[,. [, then x' . x"=xX"+x" =e+x*=e.x*
=e*, hence /,. [ o[,

On the other hand, if y € /.., then y.e*'=y—e*=0, hence y.e*"'¢/, and y=e*.,
where i€ /. So, y=(e.x*).i=e.(x*.i)=e.k, where k¢ J.; hence y€/,.[,» and the
proof is completed.

Fig. 1

The following proposition holds too. Its proof is obvious.

Proposition 3.7. Each class S, (mod S,) is equal to [,.x, where % is as
above.
Now it is easy to define a natural order a on K* by the statements:

(1) If e, e* are preimages of two representatives e and e* resp. of G/G*, then
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— A~ —

eac*se* e,

(2) If x, y are elements of K* x ¢S, y¢€Se, then “xay if eae* and “x=y or
x/ly ife=e*".

34. As it has been explained in 2, K would be considered a uniform space and
so we can define on K Cauchy filters and by them we can complete K to another
uniform space and K will be a dense subset of it.

Evidently this procedure will be analogous to the construction of the fields R
and Q, of real and p-adic numbers respectively, from the set of rational numbers Q.
This construction is realized, completing Q, by the natural or p-adic distance on Q.
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