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COMPLEMENTED BLOCK SUBSPACES OF KOTHE SPACES
PLAMEN B. DJAKOV#, ED DUBINSKY

One of the most important open problems in the theory of nuclear Fréchet spaces is the follow-
ing question: Is it true that every complemented subspace of a nuclear Fréchet space with a basis
has a basis?

It is known that the answer is positive in some special cases (see E. Dubinsky [1],
E.Dubinsky, D. Vogt [2], B. Mitjagin (3], B. Mitjagin, G. Henkin [4]).

In this paper we consider only complemented block subspaces and prove that
every such subspace has a basis. Since every nuclear Fréchet space with a basis is
isomorphic to some Kothe space, we consider only Kothe spaces. It turns out that we
do not even need to assume nuclearity.

Let £ be a Kothe space and let {e, i€/}, /={1,2,...}, be its natural basis. Sup-
pose /== I, is a decomposition of the set of indices / into disjoint subsets and
let £, be the closed linear hull of the vectors {e, i¢/,}. Then we have E=@®,E, in
the sence that every element x¢F has a unique representation x=2X= x, where
x,€E,. We will call the subspaces E, blocks of E. We say that the subspace H—E
is a block subspace with respect to the decomposition £ =@®,E, if we have H=@®,H N E,.

Let Q,: E—E,n=1,2,..., be the natural projectors corresponding to the sub-
spaces £, i. e

Q.(x)= X ei(x)e;
i(ln
where the functionals ¢} are the adjoint functionals of the basis (e,). Then, obviously,
we have that x=X= Q,(x) for any x¢E. The subspace H—E is a block subspace
with respect to the decomposition E=@®,E, iff Q,H=H, n=1,2,....

Our main result is the following.

Theorem. Suppose E is a Kothe space, E=@®,E, is adecomposition of E into
blocks and H is a complemented block subspace with respect to the given decompo-
sition. If sup, dim E,< co, then the subspace H is isomorphic to some coordinate
subspace of E (i. e., the subspace generated by some subset of the natural basis of E).

Lemma 1. If HZE is a complemented block subspace, then there exists a
“natural projector’” P, on H such that PyE,)=H N E,=Q,(H).

Proof. If P: E—~E is a projector on /1, we put

P~ £ QPQx), Vx¢E.

It is easy to check that P, is a natural projector on .
Lemma 2. Suppose that X is a finite-dimensional linear space, (e));_, is a

basis in X and P: X - X is a projector onto the subspace Y=P(X). If (Py)i, j=1 is
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the matrix representing P with respect to the basis (e;);_, and dimY=~k, then we
have
X det (Piu,ﬂ){;. g =1

1=4< .. <y ss

Proof. Choose linearly independent vectors y,,..., y,€Y. Then, yx¢X,

PUO= X 1),

where the functionals &;(x) satisfy A{y,)=38,. Let h;=X_h; e, y;=Z;_ Vises; then

a=1
k k s s
P(ea)= X hfeg)yi= X h X ypes= X (I hjsYjp)€p.
J=1 Jj=1 B=1 j=1

Therefore,

Pyp= ,‘—‘l hia Yjp-
J:

On the other hand, we have
1 =det (hl(yl))zj=| =\ - /\hk( Yieeos yk)

where &y A --- Ak, is the exterior product of the functionals ..., hy. Using the
properties of the exterior product and letting £ denote the set of all permutations of
(1,..., k), we obtain,

BN o Ay (1o ¥ = 2 hy b€ A NE(Py ey V)
1Sy« oo lk:_\,: k

= Y (D gy hrig € A A€ (e I8)

_l§i.<'..<ik§: oex o’

= 3 S (—1)%%hy -k eEEN--Nes(Vyy e
ISi< o <l'k§-f( a‘zz( ) lig() kig(k) ,l/\ /\ ,'k(yl ’ yk)

: . R
= z det (hjla); a=l® det(yﬂﬂ); 1= ) det (151 hji, y/iﬂ)u

1si<.. . < ss 1S4< .. - <iyss p=1

= z det (Pi )k
ISi< . <iySs et “B)“-5=‘.
The lemma is proved.
Proof of the theorem. Let E,=[{e, i€/,}]. It is more convenient for us to
change the indices and write E,=[{ef,. .., e }], where s,=dimE,=card l,. Let H be

a complemented block subspace of £ and let "P: F—F be a natural projector on H,
i. e, P(E,)=HNE, Then we have

Plep)=Pre+ - +Py, €

is “s *
n n

Further we shall do some computations which depend on the n™ block and some-
times we shall omit the index n. We put 7,=dim H) E,. Now we use Lemma 2 and
choose for any n indices jy, ..., J,, such that

del (P, ), 24>0



280 P. B. Djakov, Ed Dubinsky

where d=inf f” )_1. We have d>0 because sups,<oco. Further, we shall write P,,

instead of P}, "
vR
A product of the form P, Py, - Py, yu, Wwill bé called a chain connecting p,
and p,. If p,=p, the chain will be called a cycle. For any n we consider the cycles
in the terms of det (Pc“)\:,"u=l and choose the one with the largest absolute value.

Corresponding to this cycle we choose an index v(n) from those indices which are
used in the cycle. (For example, if the cycle is Pyy,Pvy,Py,v, we choose one of the
indices vy, vy, v3).

Now we consider the main inequalities:

M VA3 Cmin Il 115, I SCl S P ity
These inequalities will follow from

(2) VEICrmn ) | A ||l €5ny s SCi [l €7 [lmem
where A5 is the adjoint subdeterminant of Py . Indeed we have,

2,

e
~

n

| I tPw ! I A_v(n)u ' ” e':'-('l) ”k

u=1 v=1

Cell E‘ tP(€]) |lmy = le Sltvpvﬂlck” e |lmw =
v= p=1 v=

,’l ”l
= | ;\-E_ltv u‘\—::l PvuAT(,.wl I esm lle = ‘tv(,.) || det (Pw)| |l e_v:,.) l|a= dlt;in)l I e"_v(n) [l

To prove (2) we need the following statement:
Lemma 3. Every term of det(P,)",_, is a product of cycles.
Proof. Every term of the determinant has the form

(_ 1 )“naplo(l)PZo(?) “ee Pmo(m).

where o is a permutation of the indices 1,..., m. On the other hand, every permu-
tation is a product of <“elementary permutations™ that is, permutations which inter-
change two indices. Therefore it is enough to prove that interchanging two indices
in a term which is the product of cycles, results again in a term which is the pro-
duct of cycles. Obviously we have two cases — either to interchange indices in one
cycle, or to interchange indices from two different cycles. It is easy to see that in
the first case the original cycle becomes a product of two cycles, and in the second
case, the two cycles become a single cycle. Since every term of the determinant is a
permutation of the indices in the term PPy ... P, which is a product of cycles,
the lemma is proved.

Corollary. Every term of A,  is a product of some cycles and a chain

- vinu
connecting the indices p and v(n).

Proof. Indeed, if we multiply a term of A, by Py, we get a term of

det (P}, n..; Which is a product of cycles by Lemma 3. Removing P, from the

cycle where it occurs, we get a chain connecting the indices p and v(n).
Now we are ready to prove the inequalities (2). Since the projector P is conti-
nuous, we have
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vk3C, k3| Pe|=C|e*||x, ynandi=1,.,.,s,.
On the other hand,

Sn Sn ‘ )
|| Pe; [[y= |;j;‘-‘l Pret|ly= I-\;llpfll llef le= [ Pf | Il €5 e

SO,
) vkaC k)| Pyl lle;x=Clletlls, wnandij=1,.,.,s,

Suppose P - P"" ) is a chain connecting the indices p=p(n) and v(n). Then using.
(3) we get '

) vE3C B | Pl - Pl e 1=Cler| .

Since sup,dim(E,N H)< o, the constants C, £ can be chosen independent of 7.
Using again the same argument, we conclude that if P2 o S 1S the cycle

v—(n)v. v
with the largest absolute value among the terms of det (PC',.):’.'..=1 then
) VEIC kY|P, o Pl | €5 n=Clief, 5

v(n)vy vm

where the constants C, £ do not depend on 7.

By the corollary to Lemma 3, the absolute value of every term in Ay is not
bigger than the absolute value of a product of a chain connecting p and v(n) with
some power of the cycle P:lT(n)v, R i Hence, using (4) and (5), we get (2).

Let H' be the subspace of /1 generated by the vectors (Pe':—(n) )z, Then H'is a

complemented subspace of / and the vectors (Pe"v'—(")):;"=1 form a basis of H'. Indeed,
we have H'=@®,/!, where H! is the one-dimensional subspace generated by the
vector Pef .

Consider the projectors n,: AN E,— H) given by the formulas

RN CORITR.CIN
Using (1), we obtain

vk3Cp m(R) ) || 7 (x) [h=Ci || Xlmny v X €H,e
Therefore, the operators n, define a continuous projector m: H — H, such that n(H)=H".
It is evident that the vectors P(e";(n)) form a basis for H'. From (1), choosing t—v(”)=1,
ty=0 for v¥v(n), we get

n 1
vk3Cp m(k)) || €5,k = 5 Call P(€50) lImenr-
These inequalities, together with the continuity of P imply that the restriction of P
to the subspace E!, generated by the vectors {ee(")} is an isomorphism between E*
and H1,

Now we can consider ihe subspace HE H', apply the same argument to it and
finish the proof of the theorem by induction on the number sup,dim /1 E,.

oo
n==1
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