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ESTIMATION THE ORDER OF MARKOV CHAINS IL
BAYESIAN INFORMATION CRITERION

IVA P. CANKOVA

This paper continues the information approach to the problem of how to determine the order of a
Markov chain. For the most general model of TDMP it is shown that asymptotically the Bayesian and
ML estimators for the transition probabilities are equivalent. An approximation of the posterior proba-
bility is obtained in the case of a fixed order multip'e Markov chain. A Bayesian information criterion
is proposed and the consistency of the minimum BIC estimator MBICE is proved.

0. Introduction. As shown in [9], the problem to estimate the dimension of a model
by means of information theory was initiated by H. Akaike [l]. The relative merits
of AIC, as discussed in [9], are significant but the inconsistency of the derived esti-
mator MAICE is something undesirable. Using Bayesian arguments G. Schwarz [7]
has obtained a modified cstimator of the dimension of a model for independent and
identically distributed observations with distribution from the Koopman — Darmois
family. With his procedure one can derive a consistent estimator. Under some speciflc
assumptions about the type of the loss function and the form of the prior distribution
this estimator is asymptotically optimal in the sense of minimizing the expected loss.
Akaike continues the investigation of AIC and gives a Bayesian interpretation of the
MAICE procedure. He shows that this procedure provides a minimax type solution of
the problem under the assumption of equal prior probability of the models [2]. Fur-
ther on he proposes a Bayesian extension [3]. Some comments on those criteria have
provoked the paper [8]. As an - alternative to the AIC procedure — the Bayesian one
(BIC) was extended to the case of Markov chains by R. Katz [6] We shall use his
definitions of BIC which is similar to AIC an1 is based also on penalized likelihood
ratio statistics.

Under the interpretation © =D (see § 5 of [9]) it is easy to elucidate the relation
between the order of a Markov chain and the dimension of the model. Thus it is
quite natural to try to develop Schwarz propositions to cover the case of Markov
chains.

First we link the Bayesian procedure to the investigated model as it was stated
in the proposed minimum procedure. After that an asymptotic approximation of the
posterior probabilities is obtained in § 1. The consistency of MBICE is shown. The
asymptotical optimality of both the proposed procedures is also discussed in § 2.

1. Bayesian Information Criterion. We shall discuss the Bayesian information
approach in the case the observed process is a Markov chain, even a multiple one
under A3, which means an irreducible aperiodic chain and whose every recurrent state
is nonnul ([9], p. 316). (Down some of the statements are more general to cover
TDMP model).

To determine the order of the model [X,, P(0), ©] we use the minimum proce-
dure discussed in § 3 of [9], i. e. we consider the problem in terms of decision theory.
Then, Bayesian information approach means that the loss function is related to an in-
formation quantity and a Bayesian approach to the whole procedure is applied. First
we have to formulate the large sample Bayes procedure in details.
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A5. Assume that the order of the chain is an integer random variable with finite
values 0,1...., m. Let B, [=0,1,..., m be the prior probability of the model with
parametric space ,0, k=s'*'—s', i. e. [ is the order of the Markov chain.

Since we are examining the asymptotic nature of the result, the prior distribution
of the transition probabilities g(@=2D) does not need to be known exactly. Then it
sufficies to assume:

A6. The prior probability of 0 is of the form X™ P, where p, is the conditional
prior distribution of 0 given the /-th miodel and has k-dimensional density which is
bounded throughout ,0.

To simplify the situation we need some more assumptions about the loss function:

C7. We assume a fixed penalty for having made a wrong guess for the model,
i. e. the penalty does not depend on 0 or the procedure is unrandomized. Such a loss
function is called O-1 loss function.

Comment 8. Indeed a 0-1 loss function is equal to O or 1 over the subspaces
where respectively a right or wrong decision is taken.

Actually a loss that depends on 0 and the guess would yield the same asymptotic
results provided the loss function remains between two fixed positive bounds for all
the wrong decisions.

Considering the introduced information loss function W{(8; 0) by (3.2) in [9] we
realize that it satisfies C7. Indeed if the decision is right according to Th.2.2 [9] the
loss is zero. But the order could be an integer not greater than m, thus there are
positive bounds between which the loss remains for all wrong decisions (see Com-
ment 8). Thus without loss of generality we can treat it as 0-1 loss function.

Under these circumstances the Bayes’ procedure consists of selecting the post-
eriori most probable model.

Before finding out a proper approximation for the posterior probability we can
recall the following general result:

Theorem 1.1. For the model [X,, P(0), ©] of fixed dimension the MLEs are
asymptotically equivalent to Bayes estimators for an arbitrary nonvanishing prior
distribution p(0) of the parameter 0. (Here we use O instead of ,©. The parametric
space could be of type ,© corresponding to the fixed dimension ).

Proof. The posterior risk function has the form

Jw(©; 8)exp {L (0)}u(a0)
[exp{L (8)}n(ad)
where 0 is an estimator of the parameter.
In order to obtain a Bayes estimator it is necessary to minimize (l.1) or equiva-
lently to find a minimizing 0 with
(1.2) K, ®)= [n(@0)W(0 ; ) exp{L,(0)}.
Using the LLN for TDMP (Th. 1.1, [4]), we have

phm ln 1“::l guv(xi' Xi+15 9): —chle)-

besides this C1.3 and MLEs are asymptotically normal (Th.2.2, [4]). Expanding each of

the functions g(x;, x;4+,; 0) with a center 0 and taking the sum up to n (similarly as
in (4.7), [9]), we obtain

LAO=L@+12 £ £ Va0, —0Nn @ —0)1/n 2 gl xis13 O)+0,1)
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or
~ ~ 2
L,(0)=L,(0) —n/2 || 0—8]z@ +0,(1),
where 0¢ 7.

Let 4(0) denote the prior density corresponding to p(6) and
(1.3) o(0; 0)=W(0; 0)k(0).

From the explicit relation between the loss function and the information quantity
(Th.22 and C1, C3, [9]) it follows that o(0; 0)=0 and o(6; ) is continuously diffe-
rentiable with respect to 0. Let expand it with a center 6 up to the first order. Asymp
totically we derive that

~ ~ . + o .
(149 K®) ~o(0; 0)exp{L,(0)} [ exp{—n/2||0—0];g}d0

= \/2_"“’(9\; 6) 1131 fxi x5 6){3(6)}‘1'2'

Thus the minimization of K, (V) is asymptotically equivalent to the minimization of
w(0; 0) with respect to 0, but o(@; 0)=0 only when 6=6. Hence the Bayes estimat-
ors and MLEs are asymptotically equivalent.

A similar result is announced in [10] for the case of independent observations.
From the above statement we can expect that in a large sample the leading term of
the Bayes estimator is simply the maximum likelihood estimator and only the second
term reflects the singularities of the prior distribution.

Although Bayes’ theorem allows an arbitrary prior distribution, it is convinient
theoretically to sclect the one which leads to simple posterior distribution or so-called
conjugate distributions (§10.3, [11]).

If we fix [ for the investigated model [X,, P(0)={p; ...i;: i;s1} 4O} then Py be-
ongs to the exponential family since

no.,.d
L. -, n’ l’il{ . .1lli+lll+l "'CXP{’_ “'T"” R el Inl’il i B
1 I 1 il
where p; ... 4 i+, are constrained to lie in a s/(s—1) dimensional subset ;© of ,0O.

As it is suggested in [11, p. 409] or [5, p. 96] for each set of transition proba-

bilities {p,l oo @yt Q) for fixed tuple (4. ..4,) in ,O,let assume to have an inde-

pendent Dirichlet distribution D(ay, ..., a;) with density
s a 5
(1.5) (X aptp/t, .,/ I T(ay), Jj=12,..., s
J=1 J 1 1} Jj=1

Thus the density of the conditional prior distribution p, is properly determined in
accordance with A6. Then the posterior density given n; ... 404, €41, 2,..., s

and (¢,,..., i) is fixed as

4 d a 4+n ... d j=1 s _
(1.6) O O A R AT

If we assume all the a;, j=1,..., s to be equal to 1, i. e. a,=1, then the transition
probabilities are uniformly distributed over the simplex P, .../ .« lf‘:O. i, P = b

(44, ..., i) fixed. We shall use the rewritten form of (1.6)
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s s a +n hd
. . Y — 1! VAN A -1
(A7) (ot B o= DU O @y = D)D)
Let us denote by BP(x,,..., x,,+,) or briefly BP, the posterior probability and by

Lne = ﬂ/l..,..'1.-”1;:"1”',‘;1\‘1 the likelihood function for the MLEs. Then we can gene_
vt

ralize Th. 3. of [6].

Theorem 1.2. Consider the model (X, P(0), ,0| for fixed | and large sample
size n, when all the transition probabilities. have independent Dirichlet prior
distribution D(a,, ..., a,). The following approximation holds

(1.8) InBP, ~InL,,—1/2s(s—1)Inn.

Proof. We use the usual notations for the proportionality o<, i. e. P(B;|A)
o< P(A| B))P(B)) reflects the variability of P(B; A) under fixed A regarding j in accor-
dance with Bayes’ theorem |[11]. Here A is the observation for fixed n, i. e. (x,, ..., x,+,).
Then if we ignore the first term of the likelihood function (see Comment 2, [9]) and
apply Bayes' formula, we obtain

BP, < JB,Ln,ldp,oc_ n I Blp:il""_il+ldl.l,.
_k 11...l’+1 _ke 1

Taking into consideration (1.7) and the properties of the Dirichlet distribution over the
simplex O, we derive

BPo< T T(ny. iy +a D)+ S a=1) )71 B,
eoed  J i j=1

i
1 1

Hence, because of n ... =35 n
{

j=1 iy 7
n.
LT i (n +a n
BP n,oeeed, dy oo 4 i
5P s, m ' oo +1
Lnyu iy - e noi
1 (n, i+ = ;=i 1+1 1 I+n .
e T T nll“.ll+l
Using now Stirling’s formula k! ~*+12¢—*/2n one gets
BP, . s
Tiap o M @R, g S o= D (g D (g )P
Lnt ek My ! F=1 L !
X I (ny ooy +ap —1Deii(ny ... 1Xn, ... \12
11“( h TS T aeY ) (, ‘1+1+ X, '1+1) .

and for the logatithms

BP )
In_t>1/2s'(s=)In@r)+Inf—1/2 T ‘(... )+12 I In(m ... )
Ly, ' Wiyt ! ¢ oo s ! "1
v — - :
+ P ln("ll ""1+1+u‘1n D+ ...+ T ln(n“'“ "l+l+1)

1 i

s
_ ¥ . Y a1 _w
ey '“(”'n"",+ Iaq H—... .3 ln(n,l...,‘+l)

v I==1 1000
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or

BP s s
lnL\J— ~12s'(s—)Inn+( X ay—s)s'lnn—( 2 a;— )Inns'=—1/2s(s—1)Inn.
j=1 i=1

n,l

Above Jensen’s inequality has been used and the members not depending on n have
been omitted.

This approximation suggests a new risk function. In the terms of the initial model
of TDMP we can formulate.

Definition 1. For the risk function we find the statistics
(1.9) BIC(l)= \,,—(/s"—<7s") Inn,

called also Bayesian Information Criterion.
Lemma 1.1. The following are equivalent forms of (1.9):

f1: RI(k)=—2 2 Inflx; X;41;20)+kInn,
J=1

f2: R2(k)=mr+klinn,
f3: R3(k)=,nr—Inn(degrees of freedom of ,nr).

The most proper form for the multiple Markov chains model is the third one
The minimum procedure requires the minimization of the risk function (1.9).
Definition 2. The BIC estimator of the order of a Markov chain is called.
MBICE = lgic and is chosen in a way that
(1.10) BIC() = min BIC(l).

U=l=m--1
Theorem 1.3. The minimum BIC procedure is equivalent to the Bayes’ pro-
cedure.
Proof. Letl is MBICE, i. e. it satisfies (1.10). From Th.1.2. it follows that

BIC(l)= M\, —(s"—s')Y(s—1)Inn

BP
= —QInBP’ —(st=s"Ys—D)Inn—(s"—s')s—1)Inn=—2In(BP,/BP,).

Since BIC(l) satisties (1.10), it is equivalent to the event
{—2InBP;=—2InBP, yl} or {BP~=BP, 0<l=m—1},

i. e. for [ the posterior probability is maximal.

Thus we obtain that MBICE is a Bayes estimator of the order of the model.
A simple reflection shows that then -§ are the conditional Bayes estimators of the
transition probabilities.

2. Properties of both minimum procedures
Theorem 2.1. MBICE is a consistent estimator of the true order p of the

Markov chain: \im,P{l=p}=1. o
Proof. Let 0</=p—1. As in the part 1 of the proof of Th.5.2. [9] it is easy to

see that lim,... P{ =}=0.
Let p+1=<i=m—1,then P~=1} =P{BIC(l) < BIC(j), 0= j=m—1}=P{BIC()
<BIC(j), p=j=m—1}.
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But
PU=1}=P{}p—Inn( 78" —75') < hp—Inn(7s" — 7)) =P{A; < Inn(s' — s},

Since Th.5.1. [9] holds, then ,x; is chi-square with (7s/—<7s') degrees of freedom.
Thus lim P{{ =1} =lim,, .P{};< —(7s/ —s")Inn}=0, and lim",. P{l=p}=1.

Finally let us notice that besides the differences of the estimators MAICE and
MBICE, both of them are asymptotically optiinal in the sense that they minimize the
chosen statistics for the risk function.

We gave two minimuin procedures by which the problem of point estimation is
treated in terms of decision theory. The Bayesian and Akaike information approaches
are applied in solving the problem. The attractiveness of both the procedures is in their
easier computer implementation especially in the form F3 (Lemma 4.4, [9]) and the
form f3 Lemma L.1).
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