Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



ON CURVATURE THEORY OF DIRECTION DEPENDENT
HERMITE CONNECTION ON COMPLEX MANIFOLDS

P. TAMIA-DIMOPOULOU

This paper is concerned with the curvature theory of the direction dependent Hermite connec-
tion and with the study of generalized Hermile spaces with special curvature properties.

1. Let us consider a 2n-dimensional manifold V,, and a n-dimensional complex struc-
ture on it. We denote by U(V,,), W, W* the spaces of non-zero tangent vectors of
V,, of orientated directions on V,, and of tangent complex lines of V,, respectively.
It (2% 2*") is a complex coordinate system at z ¢ V,, the corresponding complex coor-
dinate system at u ¢ U(V,,) is the system (2%, 2, u® u*' =u—°), where (u° u*) are
the components of the tangent vector u at z ¢V, with respect to the natural fra-
mes of local complex coordinate systems on V,, The space U(V,,) is a fibre bundle
over V,, with structure group GL(n, C)and standard fibre C". The space Wis a fibre
bundle over V,, with structure group the unitary group U(n—1) and standard fibre
the complex projective space M,_,. Similarly, the space W* is a fibre bundle over V,,
with structure group U(n—1) and standard fibre M,_,. Let T4(V,,) be the complex
tangent space at x ¢ Vj, and Jy the map which maps T¢(V,,) into itself (y.x €V,,).
This field of maps is difined on V,, by the complex structure of Vi, Let E(V,,)
be the set of bases (RS) of T4(V5,) such as the set (RS, R$) is an adapted base to
the almost complex structure of 75 (V,,) [2].

We regard the following diagram:

ﬂ“‘(E"(Va,.)) E(V3,) 0 (E (Vo)) g (E(Vaa)

UVa) -V - — W

Definition 1.1. We call a) almost complex vector connection every connec-
tion whick is defined on the induced by n fibre bundle n'(E<(V,,)) over U(Vy,); b)
almost complex direction connection every connection which is defined on fibre
bundle p~' (E“(2V,,)) over W and c) almost complex line connection every connection
which is defined on fibre bundle q—\(E‘(V,,)) over W

Definition 1.2. We call tensor field on U(V,,) in a large sense a map t,
which maps an element of tensor algebra on T (Vy,) at z ¢ U(V,,).

If 2, 29 € U(Vsyp), 2,= A2y, b € R and #(2,)= #(2,), then we can regard that ¢ is a tensor
field in a large sense on W. Similarly, if z,=pz,,p¢C—{0} and #(2,)=#z,), we say that
t is a tensor field in a large sense on W*.
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There is a canonical vector field in a large sense on U(V,,), which maps the tan.
gent vector V(7% v**)¢ Tr(Vy,) at 2(2¢ 2%, v°, v*°) of U(V,,). We denote this field
by V.

Let (m3) be an almost complex vector connection. Then the covariant differential
of canonical vector field is defined by

0 = yv° = dv* + b,
04" = Vet = doe + meTTP,

If (dz', dz**, dv*, dv*) are the natural coframes on U(V,,), then an almost complex
vector connection is given by the relation:

ng=T%g, dz"+15,. dz"*+ Ty dv'+ T} dv"
and its conjugate.

Proposition 1.1. Let («P,a®) be an arbitrary adapted base of (T<, (Vy,)*. The

set (a®, af, 08, 0°*) is an adapted base of T<(U(Vs,))* if and only if

det (EY)=det (6;'.-1— T;;/fv”):#O and T4 .=Tg.=0.
Greek indices take the values 1,..., n and Latin indices take the values 1,..., 2n.
Moreover, a*=a+n «— (a*)*=a.

Definition 1.3. We call adapted complex wector connection the almost com-
plex wvector connection such as: the set (af, o, \yvP, 7vP*) is an adapted base at
the almost complex structure of T<(U(V,,))*, when (o o) is an adapted base of
T:z(v%)..

We will regard adapted complex vector connection at the following. It is easily
to see that an adapted complex vector connection satisfies the relations

my=Tpe+ G0 or m=Lyde+ B 0"
and their conjugates.
Then we have the following identities:

Ly +Bg Tlve=Tg, Bg;+ By Tive=T;

By” od B Br” od pa»
Chs+Cq, Tlve=Tg; and their conjugates.

Proposition 1.2. Let(ng) be an adapted complex vector connection.lt can be re-
garded as adapted complex line connection on W<, if and only if

5, (21) =74, (22), C§(2)=nC} (22) and Cj VP=0, or C§ =0, where z,, zy€ U(Vy,)
and zy=pz,, p ¢ C—{0}.

The torsion tensor of an adapted complex vector connection (ng) are the tensors
(1.1) S8, = —(L%—L3)),
(1.2) k% =—Bj; and their conjugates.

Theorem 1.1. The torsion tensor of an adapted vector connection of the type
(: ?) and their conjugates wvanish identically.

The curvature tensor of (rf) are defined by the following relation:

R =Risy+ By EL RE N, Risot Rigs =0 Risequ=0,
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s

bos = Ppast By E;P{/
Pgseq=Pgseq + By, E} PV, Pgioga=0,

QBo/ ﬁ’»/ + Bﬁv oQkSJVl Q|350+ Qﬁo& =0, Qacrs-
w here Er=(3"—B1,v°)7,

Re=DsLs —Dolg, +L2,Lo — Lo L,

Rg&,. = _DQ'L%G,

i);éo:DéBﬁo_D& LES—BE1L06+LH B B;GBBO
i)é'w =—D;. Ly
TJ“ =DsBy,,

p&
Qgétr:D‘sB;a 'D& 3"M+B‘éy(335 )+Bas po 3"903‘85-

50 = — D Bjs, where D denotes the partial derivatives

with respect to the coframes of the form (dz’, d2", 67, 67°).
Thus we have:
Theorem 1.2. The curvature tensor of an adapted complex vector connection
of the type (i 0) and their conjugates vanish identically. '

2
Theorem 1.3. If an adapted complex vector connection is an holomorphic con-

nection, then the curvature tensors of the type ( 1) are zero.
If 28 and Q¢ denote the torsion form and the curvature of an adaped complex vector

connection respectively, then from the Bianchi identities
d¥P=dnb \ a'—rhAda”,
dﬂg=dn';/\ng—ng/\dng and their conjugates,

we have the following relations:

(1.3) Vi Ry 5= ;R s=0s

(1.4) Tue Phys = s Pyp =0,

(1.5) vu~0,.,5=v,'.Q,,;,= .

(1.6) [ VoSt + [ S8 S8 = [h5RE + [ RS,
where [ denotes the circle permutation of o.v.p

(1.7) 1/206-8% +h%RE, . +RE, .. =0,

(1) 1297 Sy Sy o= 2SS, + Ly —Ply=0.
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(1.9) 127,88 =h8.P3 .+ P5 .
(1.10) Ve hgo—hgohgc =1/2 hBSQOW-{— QSDO'
(l.ll) vo‘hs :hBSQ po* +QYDG°
(1.12) Vo = —h Py e — Plous

and their conjugates.
From (1.3), (1.4), (1.5) we have

Theorem 1.4. The curvature tensors of an adapted complex wector connection
Ry s Pgs Q. and their conjugates are holomorphic functions of the local coordi-

nates of U(Va,)-

2. Let L be a real-valued, positive function on U(V,,) which satisfies the strong
homogeinity conditions

L(2% 2°° =2 puo, p*uc* = pu)=|u| L(z°, 2°*, u°, us*), peC—{0}.
The norm of a vector u(u®, u** =u*)¢ T(V,,) is defined by the relation
L(z%, 2z, u®, u*)=|u|.

Then the metric tensor k;=*0{’ g, = (0 g‘g‘) of L,
a*p
where
8s=58; ,F and 2F=1L%

defines a Hermite structure on 7g(V5,), ywe W*, when det (3, ﬁ.f-):izO. The operator

*0%; applied to a general covariant tensor gives the hybrid part of it. It is defined by
the almost complex structure of Vj,.

Definition 2.1. We call generalized Hermite structure of direction dependent
Hermite structure, the metric structure which is defined on V,, by the tensor field
hy in a large sense on W<, when det(3; ;. F)+0.

Theorem 2.1. If a generalized Hermite structure is defined on V,,, then there
is only one adapted Hermite connection which is defined by the following relations :

(2.1) LE = g%"5,gup— g%°°8°"3, Gupe - By Gap-Vh,
(2.2) By, = 8" Boepy = g°°°8; oo+ =By, and their conjugates,

where § stands for the partial derivatives with respect to the natural frames. We
call this connection generalized Hermite connection of direction dependent Hermite
connection.

Theorem 2.2. The curvature tensors of the generalized Hermite connection
Ry Pis Qs and their conjugates vanish identically [5].

Then the non-zero curvature tensors of the generalized Hermite connection are
the tensors Raae-' P;&o.. Pgw Q“aw and their conjugates, which are defined by the
following relations:

(2'3) R;&,. =R_;“. + ﬁ 08a* " where Eﬂ =—Do‘L;5o
(2.4) P = Po . + B3 Po ., where Pg . =—D,Ls

23 Cn. Cepanka, Ku. 4



354 P. Tamia-Dimopoulou

(2.5) Po = Pis.q +Bi, Py, where Pi. =DsBj,
(26) Q% = Qisr + BY, Q0es Where Qi o =—Dg.Bj,.

Thus the curvature of the direction dependent Hermite connection is given by
the form

Q= Re . d2" Nd2¥ + PG, dz' N6 + Py ..d2"" N03+ Q. 0"\ 0%

and its conjugate.
From the proposition (1.2) and the relations (2.5) and (2.6) we derive

(27) Pgé'c :Pgs‘a ZO’

(2.8) o8a* = 638«:* =0,

and then

(2.9) Pseo =DseBy,

(2.10) foar = —Dge Bis -
From (2.2), (2.9) and (2.10) we get:

(2.1 1) pg&*cr = Pg&*y ’

(2.12) Qfsor = Qgpor-

Thus we have:

Proposition 2.1. The curvature tensors Py, and Q.. of the direction Her-
mite connection are symmetric with respect to B, c and B, 8, respectively. The Bianchi
identities of direction dependent Hermite connection are given by the relations

(2[3) fv"Sgp.*-ngySgp:O’
(2.14) 1/270+8%, +RE,,.=0,
(2'15) l/QVGSED—SEShgo_ v«:hss— I/thss:.,:()y
(2.16) 112,88 =P .,
(217) T kB =R RE kB PR =0
(2.18) Vool = Q8 e
From (2.14) and (2.16) it follows directly by means of (1.1):
(2.19) RS + RE_.=0,
(2.20) Pt + P ..=0.
Thus
(2.21) RP . =0,
(2.22) Pt .=0,
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which are an immediate consequence of the following calculations:

RS .=RE .v*=R} ., by virtue of (2.3) and
proposition 1.1 and

Rgoo‘ = RB

ayc* vivY = RB

ooc*

= —1/27S vovr,
VoeSB,vevr=0 by virtue of (L.1).

3. Let X and Y be two vector fields in a large sense on W¢ Then for every
ze We the X, Y€ T,(Vy,). We assume that (Xe X), (Yo, ¥Y*) are their components
with respect to the natural frames on V,,. Then (X¢, 0), (0, Y**) are also components
of vector fields in a large sense on W We denote by p(2, X;, Y;) the element
plane of X;=(X¢ 0) and Y,=(0, Y**) at the point z¢ W*. This plane is subspace
of Tqz(V,,).

Definition 3.1. We call first sectional curvature of the generalized Hermite
space on the element plane p, the function :

Rpge e XP XY Y%
(3.1 k(2 W) =———p—
where
(3:2) Rparyse = 8a*pR,;. .

Definition 3.2. The generalized Hermite space is called isotropic, if k, does
not depend on W,.
The relation (3.1) may be written as
(R QaryQps*— Rparyse) XPX 1YY =0.
If 2, does not depend on p,, we have

(3-3) 2k)(Za*+Zps* 1 La*p8rs*) = Rparys* + Ryaspss + Rpserar + Rysepar.
If we multiply (3.3) by Vv, v, we get
(34) 4k, GuryQpsrVPvY =0,

by virtue of (3.2) and (2.21).
If we multiply (3.4) by v*', v&", we have

ky|v[2=0 and then k,=0. Thus we have

Theorem 3.1. If the generalized Hermite space, is isotropic then the first
sectional curvature on |, is zero.

If the generalized Hermite space is isotropic, then

(3.5) Rparys++ Praspss+ Rpsrar + Rys*par =0

and, according (2.3), (2.19) and (3.2), we have

(3-6) Basgp R 215' + Ba*ye ,fgao + Bsepp R, g,.,. + Bseyp R ggﬂ. =0,
where

By =q¢'lB;,o.
Conversely, from (3.6) we obtain (3.5) and then
Rparys+ XBXTY Y3 =0
and &, vanish identically.
Thus we have
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Theorem 3.2. A necessary and sufficient condition that a generalized Hermite
space is isotropic is that the first curvature tensor satisfies the condition (3.6).
Definition 3.3. We call second sectional curvature on the element plane y,
of the vectors X,—(X¢, 0), Yo=(0, Y*') the function
Pﬂu'-(d-/\,ﬂ"(‘{yu.yﬁk

Rz, 1) == e

where  Ppyryse = gu.pP‘;’,’d. .
Theorem 3.3. If the second sectional curvature does not depend on g, then
we have ky=0.
Theorem 3.4. A necessary and sufficient condition that a generalized Hermite
space has constant second sectional curvature is that the second curvature tensor
satisfies the condition

Burpy P .+ Bayo P2y + Boego P2

0y6* oya*

+ Bs-pr“)’Bu, =0.

The proofs of the theorems 3.3 and 3.4 are analogous to the proofs of 3.1 and 3.2,
respectively.
Definition 3.4. We call third sectional curvature on the element plane nz of
the wectors X;=(0, X*%), Ys=(Ye, 0) the function
Pgyeyes XU X5YPYS
3.7) ky(z, H3) =X Y where Pyusy+s= utoPus.

We assume that k; does not depend on pj. Then from proposition (2.1) and (3.7)
we have

(3:8) 2ky(ga+18ps*+ 8ub&s+r) = 2Pparyes + 2Ppyvacs.
If we multiply (3.8) by v#, we get
(3.9) 2ky(Gar1Z85+VP + Barp&srVP) =0,

by virtue of (2.7).
It follows from (3.9), that
kyv?=0 > k;=0.
Thus we have
Theorem 3.5. If the third sectional curvature kyz, ns) does not depend on p.,
then it is zero.
If k3 does not depend on g then from (3.8) we obtain

(310) PBCI“Y‘G = — Pﬁy.utg.

Thus we have

Theorem 3.6. A necessary and sufficient condition that a generalized Her-
mite space has constant third sectional curvature is that the curvature tensor
Pgasyrs is skey-symmetric with respect to o*, y*.

Definition 3.5. We call fourth sectional curvature on the element plan p, of
the vectors X,=(X¢ 0), Y,=(0, Y*") the function

Qpasyge XPXTV Y
K;(Zv p.t): ‘B(Y;"’ y‘y T, where QBu"YS':gu'le,a. .
If &, is independent of p,, then we have
(3.11) K(8a*+8ss* + Larpgs*v) = Qparysr + Qpsrvar

K(8a*v8ps*V? + Gurp8s+1V?) =0,
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and -
K4gu~ygaa°VBV’ =0 imp]ies K4 — M% =0 K-t =0,
The tensor Qpurys+ has the property Qparyse= Qpseyar.
In fact Qﬂuh{st = gp“‘Q%'rS‘ = gW'( —D&k B%‘I) = gp“'(—.sst (gok.Bk'ﬂY )
- —g““'ss" g”"'Bk*BY—gpu.gP”*S;, Bispy
= — '3 Goas Brpy — 05, Buspy
=_.g)k'88-.") ot FSY B k,F——SS,Y Bd‘l:

jie F=0% jio F= Qoo
Then from (3.11) it implies that Qpes,s+ = 0 and consequently ng =0,
Thus we have
Theorem 37. If the fourth sectional curvature k, is constant then it is zero.
Theorem 38. If a generalized Hermite space has constant fourth sectional
curvature, then it is a complex Berwald space.

= -—gok'su-*") & F.51
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