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APPLICATION OF FRACTIONAL CALCULUS TO A THIRD ORDER
LINEAR ORDINARY DIFFERENTIAL EQUATION

KATSUYUKI NISHIMOTO, SHYAM KALLA

Fractional Calculus is used to obtain a particular solution of the following non-
homogeneous third order linear ordinary differential equation of Fuchs type:

03.(28—2) + 0. {(Ba+PB+7) 224+Brz—a}+ ¢,. {a(3a+2B+2y—3) 2+ afy}
+ 0 .a@—1) (a+B+y=-2)=f, 20, +1
o, B and y are constants, 2¢C, 9=0(2), ¢,=do/dz, ©,=d%/dz?, ¢3=d%p/dz and
f=f(z) is a known function.
1. Introduction. Fractional calculus deals with the derivatives and integrals of
arbitrary orders, called the differintegrals (7, 10, 11, 12]. The concept of differintegral
of complex order v, which is a generalization of the ordinary n-th derivative and

n-times integral, can be introduced in several ways. One of the simplest definitions
of an integral of fractional order is based on an integral transform, called the Rie-

mann — Liouville operator of fractional integration [12]

() Rf=L10x) = rigy | =0/ dts Re(@)20

@) =d£"7 Re+#f, for Re (a) < 0.
X
Another fundamental definition of differintegral of order v, due to Grunwald [11]
is as follows:
x—a —V

=1 w3
avf T N I(j-v) R
@) @e-ar A ,f‘o Ty J6=i 5 D

where v is arbitrary. It is interesting to observe that here no explicit use is made of
classical definitions of derivatives or integrals of f.

K. Nishimoto [7, 10] defines the differintegral as follows: If f(z) is a regular
function and it has no branch points inside and on C (where C={C, C} C being an
- + -

integral curve along the cut joining two points z and —<o+ilm (z), and C being an
+

integral curve along the cut joining two points z and co+i Im(2)),

(4 fomefy @)= 0D A&

i ; (g-z)'t!
v¢Z-; vER and f_,= lim f,(n€Z%)
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where £+2, —n =~ arg (§—2)=n for C and 0 < arg (§—2) = 2n for C then fu(v>0)

is the fractional derivative of order v and fuv<<0) is the fractional mtegral of order v,
if f, exists (consider the principal value of f for many valued functions).

Various authors [i, 2, 5, 13] have defined and studied differintegral operators
and their applications. These operators have applications not only in analysis, but also
in many physical problems [6, 11].S. Kalla, B. Ross [3], S. Kalla, B. Al-Saqabi [4]
have applied them in summation of series, while K. Nishimoto [8, 9, 10] has ob-
tained the solution of several differential equations by invoking the fractional calculus.
In the present paper, we obtain a particular solution of a differential equation of
Fuchs type by means of the fractional calculus. The method presented here can be
easily extended to solve other similar differeritial equations.

2. Differential equation and its solution. Here we shall deal with a third order
linear non-homogeneous differential equation of Fuchs-type.

Theorem 1. /f f( +=0) exists, then the non-homogeneous third order linear
ordinary differential equation of Fuchs type

(B)  93-(2°—2) + 0. {(Bu+B+7) 22+ Pyz — a} + ¢, .{a(3a+ 2B+ 2y—3) 2+ aPy}
+¢.a(a—1)(@+B+v—2)=f (20, 1)
has a particular solution of the form

© o= ((fu O FE O o e
where ©=o(2), f=f(2), 2¢C, and o, B and v are constants and A= (B+y+By)/2’
= (B+v—PBy)2.
Proof. Putting
(7) 0 =W, =wy(2)
®) yields  ¢,=wi4a
(C)) P3=Wr4a
and
(10) P3=W3+a,

where w=w(2).
Substituting (8), (9) and (10) into (5), we obtain

(11) (w3 2%)g—(w3.2)a+(B+7) (Wy.22)y+ By (@y. 2)s=f,
that is,

(12) Wyt Wy (B+7)z+07 a1 —J-a" zs._z ’

since (7]

(wy.2%), = Wita.28+3 0Wria. 22+ 30(a— Wi 4a. 2 +a(a—1) (a—2)w,,
(W3.2)a =Wata.2+0Wra, (Wy.2?)y=Wr4a-2? + 20W 4.2+ a(a —1)w,,
and (wg.2),=W244.2+0W) 4a

Putting w,=u=u(2),
we have then
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(13) uypu A2 _p

28—z

22—
from (12).
A particular solution to this first order linear differential equation is given by

(z—1)A(z+1)B 1
(14) U=wy= (f—q- 2z )1 E—DAz+1)B

Therefore we have

—1Az+1)B 1
0=, =naa=((foe - ETRE . - DAGFTE a2

as a particular solution to the equation (5).
Inversely, substituting (6) into the left hand side of (5), we have then that the
left hand side of (5) equals to
(@3- 28 —w3. 2+ (B+7Y) @y. 2%+ Brwy . 2), = (W5.(2°—2) + @, . {(B+7)22 +BY2)),
(z—=1)A(z+1)B 1
=((fa—F57" )" e=1ae+1s h (F=2)

1 1 2
+(f-—-u' (z—1)A(z+1)B )_1 . _@-}-‘I)Z + Byz )a

8-z (z—-1A(z+1)8
- (z—1)A(z41)8 . 28—z
(15) LA il P S )

(z—1)A(z+1)B 1
+(f—a' 2Bz )1 ( (z—1)A(z1)B )l(za_z)

(z—1)A(z+1)B (B+v)z2+Byz

+(f-a- 232 =1 (z=1)A(z+1)B Jo=(f-a)a=/f-
Changing the order

L (z=DAz+1)B 1
(fror ) ad oy
we have another solution:
1 —1)A(z4+1)B
(16) *= (G U %)—1)«1—2

for a¢ 2z [10].
3. Solution of homogeneous difierential equation. In this section we shal
obtain a particular solution of the homogeneous differential equation of Fuchs ty pe
Theorem 2. Homogeneous third order differential equation

93.(2°—2) + 09.{(3a +B+7)2? + Brz—a}+o,.{a(3a+ 2B +2y—3)z +aBy}
(17) +9.a@—1) (a+B+7—2)=0 (240, +1)
has a solution of the form

1
(15) ¢ = (GonaErip e
where ¢ = @(z) and z¢C.
Proof. Putting ¢ =w, we have that

(19) w; + w, . CENIFR g
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from (17). Hence
(20) u,+u.ﬁ;gl+ﬂ=o
form (19), where wy=u=u(2).
. o i 1

And a solution to the equation (20) is given by u= CoDAGEIE Therefore we

obtain
1

(21) (P=wa=uu—2=(mm)a-2
as a solution to the equation (17).

Theorem 3. If f,(==0) exists, then the fractional differintegrated function

_ (z=1)Az+1)B ! 1=
(22) ¢ = ((f*u : 232 )-1° (z=DA(z+1)B Ja—2+( (Z=1A(z+1)B Ja—2

satisfies the non-homogeneous third order linear ordinary differential equation of
Fuchs type (5).

Proof. It is clear by the Theorems 1 and 2.

4, Examples. Here we consider some examples of the theorems of the previous
section.

() Examples of Theorem 1

(i) Let a=1 and B=y=0, we have then

(23) 03.(2°—2) + 0;.(32=1)=f (%0, £1)
and
(24 o=((f-1" —251_7)~1)—1= (f-1- ZT_l_j)—a

from (5) and (6), respectively.
The function shown by (24) satisfies (23) clearly.
(ii) Let a=—1/2, p=0 and y=2, we have that

(25) 05.(F—2)a+ 0y o (@ +1DP+0,.7 5 —0 5 =f (0. 1)
and
(26) 0= (fin 5 )1 (=1 s

from (5) and (6), respectively.
Moreover, if we put f=z—"2 the equations (25) and (26) are reduced to

27) 00 (222 + 02 12+ 1) +0, - 5 —0 - =27 (20, 1)

and

i % : 1 2 T(2k—-1/2) __
(28) o= (J_’T kEl D) oo (2] > 1)= = *il e 24172

respectively, since [7] _
(= =2
N
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and

FAR—1) = B D ([2]>1),
1

That is, (28) is a particular solution to the differential equation (27).
Inversely, substituting (28) into the left hand side of (27), we have that the left

hand side of (27) equals to
—i_: (—-22“2)_1/2 =z,
Vn

Substituting ¢ and its derivatives from (28) into the left hand side of (27), we
have that the left hand side of (27) equals to

oo
] . 2

L2 ﬁﬁﬂ?) (T(2k+ 2+ 5/2)—1/2T(2k+ 2+ 3/2) + 1/4T(2k+2+1/2)
\ =

+3/8T(2k+2—1/2)} 2247

— :\5‘ Tarrar ((2k+5/2) + 1/2i Qk+3/2))e=24—7]= ,;l—; oy T@/2) 292 = 71,

(iii) Let a=—1/2, p=0, y=2 and
f=Ke%(23—1/222—3/42—1/8),
we have then
05.(2—2) + 95+ (2+1) + 0, 2/4— 0 - 38
29 :
) =Ke %23—1/222—3/42—1/8) (20, *I)
and
1 AP S K SRS
(30)  o=((fix 3)1 @—1 sz = G (e )sp=" (—ie~) =—Ke
from (5) and (6), respectively, since
f=Ke=(@—1/222—3/42—18)="X (. (22— 1)1.2)-1n
Inversely, we obtain that ¢,=Ke™, @y=—ke™*
31) and ¢3=Ke—*.
Substituting (30) and (31) into the left hand side of (29), we have that the left
hand side of (29) equals to
(32) Ke—#(z8—z—1/222—1/2+1/42+3/8)=Ke—*(2%—1/2 22— 3/42—1/8).
As,
(33) (6% - (—28+228+2)) 1 p=ie*(2—1/2 22— 3[4 2—1/8).

(IT) Examples of Theorem 2
(i) Let a=1, p=0 and y=2, we have then

(34) 03.(28—2) + 95.(522—1) + 9,.42=0 (20, £1)
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and
(35) 0= (51 )_,

from (17) and (18) respectively since A=B=1.
Inversely, substituting @ and its derivatives from (35) into the left hand side of (34),
we obtain that the left hand side of (34) equals to

6234221023422 4+423— 1z -0

(z2—1p
(ii) Let a=—1/2, B=0and y=2, we have then

(36)  03.("2)+ 03, 12(22+1) + 0,.2/4—0 - = =0 (240, £1)
and

(37) ¢ = ((@—1))-sn

(38) (E ey (2>

39) % T(2k-1/2) 2%+,

T k-0 T(2k+2)

from Theorem 2.
Inversely, substituting (38) into the left hand side of (36), we have that the left
hand side of (36) equals to

(W (2 —2) + Wy 22%)_1pp = ( éo 2-U4D), (29—2)= 0,

where

w= (3 z- Ak,
k=0

If we substitute (37) into the left hand side of (36), we have that the left hand
side of (36) equals to

(w3.(2°=2) + @y 228%) 1p =((2 = 1)), . (2=2) + (22— 1) 7. 22%) _1p=(0)-12 =0,

where w=((22—1)"1)_,.
And if we substitute (39) into the left hand side of (36), we have that the left hand
side of (36) equals to
- 1

i3

o, ST2kF2%2) {—8(2k+2+5/2)+ 412k +2+3/2) — 2I'(2k+2+1/2)

1

s e (2N(2k+5/2) +(2k+3/2)} 297 =0,

—3M(2k+2—1/2)) -2 4 3
A==()
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