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DIRECT NONPERIODIC AND PERIODIC CUBIC SPLINES

M. N. EL TARAZI, A. A. KARABALLI

This paper deals with two direct cubic splines, one nonperiodic (up to initial conditions), and one
periodic (up to boundary conditions) which both fit the second derivatives of a function at mesh points,

1. Introduction. Cubic splines were first introduced by Schoenberg [5] to fit
equally spaced data by analytic functions. Since then many authors have contributed
to the theory of splines. The genesis and characterization of cubic (and other) splines
are described in detail in Ahlberg et al. [l] and De Boor [2].

In a recent paper E1 Tarazi and Sallam [3] have constructed a quartic spline
which interpolates the first derivatives of a given function at the knots and the second
derivatives between them.

In this paper two different direct cubic splines are considered that interpolate the
second derivatives of a function at the knots. The first, called nonperiodic, satisfies
initial conditions. The second, called periodic, satisfies periodic boundary conditions.

Sections 2 and 3 contain the construction and the existence and uniqueness study
of the direct nonperiodic cubic spline. Error bounds for the function and its first three
derivatives are derived.In Sections 4 and 5 the direct periodic cubic spline with similar
error bounds is presented and finally in Section 6 several numerical examples are given
showing, together with the theoretical error bounds on the function and its first three
derivatives, the proposed splines to be efficient.

2. The Nonperiodic Case (Existence and Uniqueness). Let {x, i=0,1,...,N}
be a uniform partition of [0,1]. Denote by S} , the linear space of cubic splines s(x)

such that

s(x)eC?0,1];

s(x) is a cubic polynomial in each subinterval [x; xi+1]. Set A=x4,—x; (i=0,1,...,
N—1). If g is a real-valued function defined in [0,1], then g is g(x;) (i=0,1,..., N).

Theorem 1. Given the real numbers f; (i=0,1,..., N), f, and f, there exists
a unique s¢ S\, such that

"=f'(i=01,..., s
@) s;=f; (l' ! N)
So=fo So=fo»

where primes denote differentiation with respect to x. The cubic spline satisfying (2.1)
in Lx;, xi44] is

(2.2) s (x)=5,4,()+hs; A, (£)+ %, Ay (¢) + h3f, +xA3 (%),
where
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2.3) AoO)=1, AB)=t, A= Bt 1l As()=4

and ¢t (x—x;)h.
The coefficients s, and s, in (2.2) are given by the recurrence formulae:

. b "
Si:si»l_*-Azl-(fl—lJ‘hfi)'
. h? T
(2.4) s=Siaths_ +—5Qf_,+f)
so=fo So=fp (=12..., N).
Proof. If Pyf) is a cubic polynomial in [0,1], then it can be written as
Py(t) = P5(0)As(t) + PY0)Ay(t) + P3(0)Ax(t) + PY1)Ax(0)-

To determine A, A, A, and A; we write the equality for Pyt)==1, ¢, £ and ¢
We obtain the linear system

1=A(t)
t= A
£ 2A,(6)+ 2At)
2= 6AL?)
from which it follows that
A0=1. A=t AD="5—5. A= -

Now for a fixed i¢{0,1,..., N—1}, set x=x;+th, 0=¢=1.
In [x; x| the cubic spline s(x) which satisfies (2.1) is

s(x)= s, Adt)+hs Ay(t)+ B2f; A() + H3f; . As(D).

A similar expression holds for s(x) in [x;;, x;]. Since s(x)€C?[0,1], so the continuity
conditions s(x;)=s(x;) and s'(x;)=s'(x}) lead to the above recurrence formulae (2.4).

[For i=N (2.4) is directly satisfied by (2.2) and (2.3)]- This completes the proof.

3. Error Estimates for the Nonperiodic Case. In this section L., error estimates
re given for the above interpolating cubic spline and its first three derivatives in
0,1]. ||| denotes the L., norm.

Lemma 1. Let s(x) be the cubic spline defined in (2.2) and (2.4). If feC4[0,1]
hen (i—0,1,..., n)

.o h? .
@) |s;—fils55- I /9]l
Proof. We have from (2.4)
S PP
s;=so+ 5 (fot/fi +2/§_‘ Ik
Thus

i—1 X,
(3:2) Si=fi=si—foty Gt fi+2 & f)= [ f'w) du
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(2.3) A,()=1, A (B)=t, A:_,(t);:A;——ﬂ——:.)-ts, As(t)= ¢ 1

and f- (x—x;) h.
The coefficients s, and s, in (2.2) are given by the recurrence formulae:

, ’ h ” 1
=8+ (fia+ )

(2.4) S;=S,.,+hs, ,»H{ii Qf =)
So=fo Sy=fp (=12,..., N).
Proof. [f Pyt) is a cubic polynomial in [0,1], then it can be written as
Py(t) = Ps(0)A(t) + Py(0)A (1) + P3(0)Ag(t) + P(1)Ax(2).

To determine A, A, Ay and A; we write the equality for Pyt)==1, ¢, > and &
We obtain the linear system

1=Ay0)
t—= A1)
t? 2A5(£)+2A4(t)
ti= 6A4(8)
from which it follows that
£

A0=1. AO=t. AB=5—5. AD="g -

Now for a fixed i¢{0,1,..., N—1}, set x=x;+th, 0=t=1.
In [x, x..,] the cubic spline s(x) which satisfies (2.1) is
s(x)= S, Aft)+hs Ay () - h2f; Ay(t) -+ R3f /. Ax(D).
A similar expression holds for s(x) in [x;,, x;]. Since s(x)€C2[0,1], so the continuity
conditions s(x;)=s(x) and s'(x;)=s"(x) lead to the above recurrence formulae (2.4).

[For i=N (2.4) is directly satisfied by (2.2) and (2.3)]. This completes the proof.

3. Error Estimates for the Nonperiodic Case. In this section L., error estimates
re given for the above interpolating cubic spline and its first three derivatives in
0,1]. ||| denotes the L., norm.

Lemma 1. Let s(x) be the cubic spline defined in (2.2) and (2.4). If feC0,1]
hen (i--0,1,..., n)
h?

3.1 |si—fils—5 I /@1l

Proof. We have from (2.4)
P PV L™
Si=5‘0+ 2 (f0+f‘+2j£lf/)

Thus

i—1 X,
(3.2) S fi=Sy—fot - (Fyt 42X )= [ du
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But s;=f,, therefore, using the error term of the classical trapezoidal rule, (3.2)
leads to

2
Si—f; 1= {5 %I I= g5 1£01).
This completes the proof.

Lemma 2. Let s(x) be the cubic spline defined in (2.2) and (24). If f¢C*[0,1],
then for i=12,..., N

(3.3) sS—fil= ('lh;"*h%’.;:') e |
Proof. Using (2.4) we have
. h2 “
3[’_fi=5i—1 —‘fi—l+hsi,1 + _6 (inil"}'f,')'f'fi—l—fi'

Expanding the right hand side about x,_, using Taylor’s expansion of order 4 with
integral remainder and the Mean Value Theorem for integrals, we get

S .fi:Sx‘~l_‘f.x‘41 +h (S,"_.l-f/’_x)'i‘-_ g:’f(“ (é) ’

where & ¢[x,,, x]. It follows, using (3.1), that

| _ Y o
S; “fl’ = 'S fi—-l T2 f(h‘ Tog ‘f“)l‘

which leads to (3.3)

Theorem 2. Let s(x) be the cubic spline defined in (2.2) and (2.4). If feC*
[0,1] then for any x¢[0.1).

S’”(,\’) ‘f”’(x) ::; ; /] E f(-l)

) —f ()] = g A

34
- S W= Gy i+ IO

S~ S (g B+ B+ RO
Proof. Differentiating both sides of (2.2) with respect to x (x=x;+th) we get

(35) S(X)=S,+(t— 5 O+ 5 LR,
(36) S = (1O f + 1
(3.7) S = (£ — 1)

Subtracting f'”’(x) from both sides of (3.7) and expanding the right har}d side
about x, by Taylor’s expansion of order 4 with integral remainder and using the
Mean Value Theorem for integrals, we get

SR~ (6) = - B (@)+ 5 (1= (B,

8 Cn. Cepauka, Ku. 2—3
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where «, B,€[x,_,, ;). Therefore (3. 4. 1) is satisfied. (3. 4. 2) follows from the clas-
sical error of the linear interpolation since s”(x) is a linear interpolation for f'’ in
[%;—x;]- To show (3.4.3), we subtract f'(x) from both sides of (3.5) and expand using
Taylor’s expansion of order 4 about x,. We get

S =[x =5, —f;+ 0 foa)— " fOB,)

{a; B;€[x,—, x;]} which, with (3.1) gives the result. Finally, in a similar manner, we
get after expansion

SC6) — )= 5, + (s, — )+ 55 fO @) =35 F (B,)

o, Bi€[x -y, x;- This, using (3.1) and {3.3) leads to (3.4.4). This completes the proof.
4. The Periodic Case (Existence and Uniqueness). Using the same notation as
the previous case, we prove the following theorem.
Theorem 3. Given the real numbers f, (i=0,1,..., N), fo and fn such that

fo=fw, there exists a unique periodic cubic spline s¢ S\, such that
S;,' =f:' (l == 0,1, ceey .'\/),

(4.1)
sy=Sy="Fy=fn given.

The cubic spline that satisfies (4.1) in [x;, x;,] is
(4.2) S(x)=8;A8) + ks, Ay() + k2 f; Aft) + R*f ], A(2),

where A, A, A, and A; are the same given in (2.3) for the nonperiodic case.
The coefficients s, s, in (4.2) are given by the recurrence formulae

, el . .k ,
sy=h* L (z-N)f,—-—6~ [_r~+(3N—l)f;,],

i=1y
’ ’ h " " ’ ¢
(4.3) s,':s,'_4|+ 2 (fi—l+f1)’ (l=l. 2,.. .y A’),
S =S+ RS+ Qfi A0 So=fo (i=1,2...., N).

Proof. (4.2), (4.3.2) and (4.3.3) are the same as (2.2) and (2.4) except that here
s, is unknown. To compute it we observe, from (4.3.3), that

’ h? ' "
stzso'*‘hso'*"ﬁ_ @R +£)

. h? " "
Sg=38, +hsl+—b_(2f| +f2)'

- h? " .
Sy=Sy_y thsy + g (2f 5+ 1))
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Adding both sides and using the periodicity s, s, we obtain

S , o APPSR .o S
(4.4) “o*}'sl"f'"'+SA‘--1~‘*T(2)‘1F‘fiv*'3 23_:1 fj)'

This equation, together with the N equations of (4.3.2), forms a linear system of (N+1)

equations with the (NV+1) unknown s, s....., s,. This system is
[ -1 10— o ] i i i ]
So b,
0 -1 1 Q =========0 s, b,
| AN N N N '
] \. N \\ \\ b ] ]
] N N N N 1 r :
1 \\ \\ \\\ \\ 1 : :
(4, 5) . RS NN i I '
A N N ~ 1 1 — 1
1 AN Sl 1 = !
: \\ \\ \\ 0 ! =
1 AN = : '
] N \\ A H ]
0 ==r=========== 0 -1 1 Sh_ s b, _,
1 1 cccmcmcccaccaaa 1 0 ,
L - L 'sn - L by J
Fig. 1
where b= 4 (f{+f/, ) i~01,...,N—1,and by is the right hand side of (4.4). The

coefficient matrix of the above linear system say A, is nonsingular with inverse
equal to

“(N-1) —(N-2) -(N-3) === === -1 0 1
1~ ~WN-2) —-(N-3) === =-=— -1 0 1
~
\\\

1 20 —-(N=3) = - —— - -1 0 1
S ~ ] ' ]
NS \ ] ]
T2 SR ey a8
1 ! ' LI So \ \ !
Al=— ' : : S~ S ! 1 '
N 1 ' 1 \\ S~ 1 : :

' ' [ Sa ~o 1

\\ \\

1 2 3 AR -1 0 1

~ ~

~o ~
\\\ \\

1 2 3 e e == - - N-1 0\ 1
\\\ \\\
1 2 3 -- e - - - N-1 SN 1

Fig. 2
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Table 2. Maximum absoluie errors for Example 2.

f (x)= —x + sin ; x in [0,1] (nonperiodic case) for various values of &

Step size h = /:/
Maximum error o - . . . R
bound for | |

0.1 0.05 0.025 0.02 0.0125 [ 0.01
|'s—f 1.2x10-3  29x10~¢ 7.3.1075  47x<10~% 1.8x107° 1.2%10°3
|'s"— £l 3.2x1073%  81x10~t  20x10* 13xI10—* 5.0<107% 3.2x10°5
lis” — £ 76103 191073 4.810~% 3.0x10—* 12%10—* 7.6X10>
s = 3.0>101 1.5 10—t 7.6X10—2 6.1x1072 3.8x10~2 3.0Xx10 2

riodic cubic spline of Section 2. given by (2.2) and (2.4). We notice again the agree-
ment of these numerical results with the corresponding error bounds (3.4).

Example 3. y"”=12x2—6x in [0,1],

¥(0)=y(1)=0.
This example has the exact periodic solution y-= f(x)- x*(x—1). The numerical results
in Table 3 gives the maximum absolute errors for s-f and its first three derivatives at
any point in [0,1] for the values of h:—;%—,(N:lO, 20, 40, 50, 80, 100). s hereis the

direct periodic cubic spline of Section 4, defined by (4.2) and (4.3). We can see how
the numerical results agree with the corresponding theoretical ones of (5.1). Again the
error bounds in (5.1) are best possible for | s"—f” | only.

Table 3. Moximum absolute errors for Example 3.
f(x) = x3 (x—1) in [0,1] for various values of &

Step size h = .
N
Maximum error

bound of § i ' N 1
o1 o005 | 002 | 0.02 00125 | 00l

S S A | I I S
s—/] 25%10-3  62%104  1.6x10~1  1.0XI0+ 3.9%10—> 25%10-5
" — 7] 10X10-2  25%10-3  6.2x10~1  £.0X10* 1.6x10—%  1Ox10
s — 77| 30X102  75x10°3  19XI0 3  1.2x103 17104  3.0x10—
I8 — £ 12 6.0x10-1  30%10°1 24101  15¢100  1.2x101

2
Example 4. v'—— " sin ~ x in [0,1],
P : 1 2

Y(0)=y(1)=0.
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This example has the exact periodic solution y=f(x)=—x+sin ,!2‘_ x. Table 4 gives

the numerical results for this example. On the one hand, we notice the agreement of these
numerical results with the corresponding error bounds of (5.1). On the other hand, we
observe that the direct periodic cubic spline, (4.2) and (4.3), and the direct nonperiodic
cubic spline (2.2) and (2.4) give the same approximation for f“ and f’’. (Thisis always
true since s”(x) and s'”(x), computed from (2.2) or (4.2), are identical.) Also the direct
periodic cubic spline gave slightly better results than the nonperiodic cubic spline for

the same function f(x)— —x+sin —f- X.

Table 4. Maximum absolute errors for Example 1.
f(x) = —x+ sin l; x in [0,1] (periodic case) for various values of A

. 1
Step size h =
Maximum error N

——
|
o
|

bound of ! ‘ | ‘ |
0.1 E 0.05 | 0.025 0.02 | 00125 | 0.01
|s—f 4.3x10—4 1.1x10—4 27x10-3 1.7X10~® 6.8X10—% 4.3X10—¢
s'— 7 211073 5.1x10—4% 1.3 10— 82x10—° 3.2x10—3 2.1 X105
s —f 7.0x10—3 1.9x10—3 48x10—4 3.0x10— 1.2 10—4 7.6X10—*
\s 7" — £ 3.0% 101 1.5x10—t  7.6x10—? 6.1x01—2 38xI0—2 3.0x10—2

7. Conclusion. We have studied the existence and uniqueness of a direct nonpe-
riodic (up to initial conditions) cubic spline and of a direct periodic (up to boundary
conditions) cubic spline that both fit the second derivatives of a given function at
mesh points. Error bounds for the function and its first three derivatives are derived
for both cases which, together with the numerical results, showed the proposed splines
to be efficient.

REFERENCES

1. Ahlberg, Nilson and Walsh. The Theory of Splines and Their Applications, 1967.

2. C. de Boor. A Practical Guide to Splines. N. Y., 1978.

3. M. N.el Tarazi, S. Sallam. On Quartic Splines with Application to Quadratures. Computing
38, 1987, 355-361.

4. M. N. el Tarazi, A. A. Karaballi. On Even-degree Splines with Application to Quadratures
(To appear in the Journal of Approximation Theory.)

5. 1. J. Shoenberg. Contributions {o the Problems of Approximation of Equidistant Data by Analytic
Functions. Q. Appl. Math., 4, 1946.

Mathematics Department, Received 10. 05. 1990
Kuwait University

P 0. Box 5969

13060 Safat Kuwait



