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A TYPE FREE ABSTRACT STRUCTURE FOR THE RECURSION THEORY
J. ZASHEV

Partially ordered BCl-algebras satisfying some additional conditions were studied by Zashev
(1984, 1990) and Skordev (1980) from the viewpoint of abstract algebraic recursion theory as an
alternative to Skordev’s combinatory spaces and operative spaces of Ivanov (1986). In the present
paper we propose a variant of those algebras which provide a simplification of the basic system of
operations for producing recursive elements by excluding the operation v (least upper bound of two
elements).

1. Preliminaries. By an applicative structure (a. s.) we shall mean a set # with
a binary operation called application and denoted by oy (for ¢, v ¢ #) with the usual
convention of association to the left. An a. s. # is a partially ordered a. s. (p.0.a.s),
iff a partial order and a constant O are given, such that ¢<¢' & Y=y =oy<o'y’
and O=<g for all ¢, v, ¢, V' €#. An a. s. F with elements A, C, K¢ #, such that for
all 9, y, X€F

(1.1 Aoy =9 (1),
(1.2) Coy=vo, and
(1.3) Koy =0,

will be called an ACK-algebra in the present paper. Finally, a cartesian linear
combinatory algebra (c. L. c. a) is defined as an ACK-algebra #, which is
also a p. 0. a. s. with respect to its application operation, and two more elements
C', D' are given in #, such that D'O0O=0 and

(1.4) C'o(D'vr)=0vx
for all o, v, X € Z.

Let € be a set of operations (including constants considered as O-ary operations)
in an a. s. #, and let X be aset of variables for elements of #. Denote by Term (%,
X) the set of all terms, constructed from variables in X by means of (symbols for) the
elements of ¢ and the application. The same convention of association to the left is
adopted in term notations as well. The notion of value of a term #¢Term(%, X)
under a given evaluation of the variables is defined in an obvious way. Every term
t¢ Term (6, {x,, ..., x,}) defines an operation in # of n arquments corresponding to
the different variables x,, ..., x, and the operations (including elements in the
case n=0) of that kind will be called %-expressible. If in £¢ Term(%, {x;, ..., x,})
each variable x; occurs once, then the operation defined by ¢ will be called li-
near.

Lemma 1.1. Suppose # is an AC-algebra (i. e. ana. s. with combinators (1.1)
and (1.2) in it), and €= F is a set of constants, such that A, Ce%, and f is a l-
near €-expressible n-ary operation in’ F, where n=2. Then there is a 6-expressible
¢ € F, such that for all §,..., §,€F one has ¢§, ... B = (T o n):
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168 J. Zashev

Proof. This is a folkloric result, whose verification may be expressed as ‘apply
several times identities (1.1) and (.2). For every t¢Term (%, X) and each variable x,
such that x occurs in 7 exactly once and ¢=x (== means identity of terms) define a
term (A'x.f) by induction on # considering the cases:

1) t=xr; then (Mxt)=Cr;

2) t==sx; then (Axf)=s;

3) t=sr, x occurs in s, and x==s; then (Mx.f)=A(Cr)(A'x.s); and

4) t=sr, x occurs in r, and x=-r; then (Mx.f)=As(A'xr).

By induction on ¢ we have:

(1.5) 1f x occurs in ¢ exactly once and x==¢, then (A'x.f)¢ Term (¢, X"\{x}), each
variable y ¢ X\ {x} occurs in (A'x.f) as many times asin ¢, and the equality ¢=(A'x.f)x
is true in # for all evaluations of the variables.

The proof is completed by induction on #, using (1.5). When n=2, we have to use the
identity A (CC)AAC)E,E,=EE,, which follows from (1.1) and (1.2).9

Let # be a po.as. and ¥ F be a set of constants in #. Consider a system of
inequalities of the form

(1.6) fiGr v s Ep)=8 (i<n)
where f; (i<n) are %-expressible n-ary operations in #. A solution @g ..., 9, of
(1.6) will be called minimal, iff for every other solution &, ..., &, of (1.6) we have

¢, <& for each i<n. An element ¢¢.# will be called recursive in ¢ iff it is a
member of a minimal solution of a system of the form (1.6).

Suppose # is a cl.c.a. and k'€ # is an {A, C, K}-expressible element, such that
K'oy=Kyp=0 for all ¢, y¢Z. (The existence of K’ follows from Lemma 1.1.) Defi-
ning L—C'K and R=C'K’, we have L(D'oy)=¢ and R(D'¢y)=y. Define also

A(@gr -+ Ppy)=D'0o(D'oy ... (D'9pA) .0

Ay (@)= Lo, and A, (¢)=A;(Ro) (where ¢y, ..., 9, 1€ %) Then we have A;(A (g« + +?
0,-1))=;, i<n. Using these notations we may reduce each system of the form (1.6)
to one inequality in the following sense: there isa ¢ J{A, C, K, C', D'} — expressible
f:F—F, such that if 9€F is a minimal solution of f(§)=&, then Ay (@) oovy Ay (9)
is a minimal solution of (1.6). Indeed, define

FE=ASo(A@ - Api B -5 Jam1 (B0 (B)s - Brey D)

and suppose ¢ is a minimal solution of f(§)=&. Then

fi(Ao(@), -y Apey ((P))=Ai(f((P)):§A,-(<P)
and if &, ..., &, is a solution of (1.6) in #, then

fACGy s B D)=AfoEor oo Bamt) ovvs fa1 Gor oo s Ba) S A0 00 &)

whence 9=A (&, ...§,—) and A, (9)=8&.

Therefore we have

Proposition 1.2. Suppose F is a clca., and A, C, K, C', D' F. Then
©0€F is recursive in € iff ¢~ Ly, where y is a least fixed point of a €-expressible
mapping f: F—F. ™

2. Example 1. Let M be a set, and let » be an object such that «¢ M. Let M’
— MU {#}, and suppose a pairing (i. ¢. an injective mapping M"?—M’, (x, y) is given
in M’, such that («, *)==+ Denote by # the set {¢=M’|+¢o}, and define an applica-
tion in # by

(2.1) py={xeM [3yev((y. x)€9)}
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F is closed under this application because (#, ¥)==. Define also O={#}; A={{x, ¥)
(2, x) (2, I X9, 26 M} C={x, ((x, ) YN %, YEM}; K={(x, (y, )| x, yeM'};
C'={Uz, (3 XN (2 ¥ XN|x, 3. 2eM'}; D'={x, (3, (x, YN x, yeM'}.
The sets A, C, K, C', D’ belong to # because (%, =)=3x

Proposition 21. # is a cl.c.a. with respect to = as partial order, and the
application and the constants O, A, C, K, C', D' defined above.

The proof is a direct calculation. We shall check, for instance, that C’, D' satisfy
(1.4) and D'OO=0. Let ¢, v, z¢F be arbitrary. Then by (2.1) and the definition of D' :

x€D'oy<3u, v({u, (v, x)ED &ucp&vey)
<30, V(X=U, V) &UCOEVEY) > XEQ X Y,
whence D'oy=0¢xy and D'O0=0, since (x, #)== Moreover,

W EC (D' oy)<>3u, v((u, (v, x)EC' &ucy &veoxy)
<3, ¥, 2, (2, ¥ XNEC' &ucr&zep&yey)
<, ¥, z@=(2, (¥, xN&ucx&zeo&yey)

<3y, 2((2 (), XNEx&zEo&yEV)>XELQY.

The identities (1.1)—(1.3) for the constants A, C, K are checked in a similar way. oo

The usual theory of recursive enumerable sets may be treated by this example,
with the set of all natural numbers for M. Then the extensions a|){«} of the recursi-
vely enumerable sets a—M can be described as the recursive in ¢ elements of the
algebra # for a suitable set ¥C%. More generally, if #=(M; Ry, ..., R,) is an
existentially acceptable structure (in the sense of [5]), then for a suitable subset ZCF
of the algebra # of the Proposition 21 we have: a—M is existentially inductively
definable in . iff a | {+} is recursive in 2.

3. Example 2. This example deals with continuous functionals over complete
partially ordered sets (c.p.o.s.) in the sense of [6, 1.2.]. Next we shall use some nota-
tions and results from [6, 1.2.]. Let M be a c.p.o.s. and define finite types, as usual,
by: a) O is a type; b) if a and b are types, then a—b and axb are types. The set
C,(M) or shortly C, of the continuous functionals of type a over M are defined induc-
tively, as follows: Cy=M; Cuup=[C,—C,]; C,p,=C,XC,. Denote by C the union
UC, and by =, and O, the partial order and the least element in C,, respectively,

a

(We shall omit @ in =, when the type ais clear from the context.) Then for all types
a b, ¢ there are functionals -:135;6C(a-vb)—v((t—m)—o(c—ob)). C,,,,ECa-.<(a-+b)-.b), Kabeca—o(b—m).
Case € Clams(bmep-((axpy—ey and D € Casspaxpy, such that for all f, g, h€C of proper
types

A (FYXR)=F (X)) Cap(/NQ=8(f): Ku(/NO=F;
Car f)(g m) = f(g)(h); and Dar(FX)=f. &)-

The existence of those functionals follows easily from the results in [6, 1.2].

A set ¢<<C will be called an ideal, iff:

a) pNC, is a c.p.o.s. with respect to =, for each type a;

b) feo & g=,f=g€o for each a and all f, g€C,

Note that if ¢—-C is an ideal, then O,¢¢ for every type a. Denote by F the set
of all ideals —"C, and let O be the ideal {O,| a is a type}. The set F is partially
ordered by < with the least clement O. The intersection of an arbitrary family of
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ideals is an ideal too; denote by idY the least ideal 1 {p¢F|Y "¢} containing the
subset Y C. Define also A=id{A4,, |a, b, ¢ are types}; C=id{C, |a, b are types};
K=id{K, a, b are types}; C'=id{C,, a, b, ¢ are types}; D'=id{D,,|a, b are
types}; and

(3. oy -id{f(g) fco & gev & !f(g)}

for all ¢, v€#, where | f(g) means that f and g have proper types, i. e. f€Cass and
gC, for suitable types a, b.

Proposition 3.1. # is clca. with respecttothe application (3.1), the partial
order —, and the constants O, A, C, K, C', D' defined above.

To prove this proposition we need the following lemma:

Lemma 3.1.1. Let ¢, a¢ F. Then the set

(3-2) (o//a)y={f vgea (f(2)=f(g)¢€0)

is the greatest solution in F of the inequality o=@ with respect to & Similarly,
if aOZ o, then

(3.3) (p/a)={flvgea (! g(N)=g(N€w)

is the greatest solution in F with respect to & of e€=g¢.

Proof. We shall prove the second part only, the first being similar. Let aOCo.
Suppose w=C,(p/a) is directed with respect to =,, and f=supv. To prove f¢(p/a)
suppose g¢a and !g(f). Then for each f ¢y !g(f), and since y=(p/a) we have
2(f)eo. The set {g(f)|f' €v} is directed and since ¢ is an ideal g(f)=sup{g(f)|
f €vieo. So C,M(o/a) is closed under suprema of directed subsets and since
0,¢(p/a) (because of aO ¢ and definition (3.1)), it is a c.p.o.s. with respect to =, Let
fé€(p/a)and f'< f. To prove [’ ¢(p/a) suppose g¢a and g(f"’). Then !g(f) and therefore
g(f)€op, but g(f)=g(f) because g is monotone as a continuous function. Therefore
g(f)€o since ¢ is an ideal. So f'¢(p/a), and (p/a)=F. The inclusion a(e/a)=¢
follows directly from definitions (3.1) and (3.3). Also if a€<¢, £€¢.#, and f€E, then
from géa and ! g(f) follows f€@, which proves f¢(o/a) and E=(9/a). 2]

Proof of Proposition” 3.1. To prove (1.1) let ¢, v x€¢# and define q,
=(o(w2)//1)) @;=(a,//v), and a=(a,//¢). Suppose f€q, gev, hex and !Ag (f)&)(A).
Then ! f(g(k)) and because f(g(h))€o (vy) we have ! A, (F)(g) = A, (f)(g) €y The same
shows  that | A,,. (f)=Au.(f)€a, and A, €a. Therefore Aca, whence Aoyy apyy
S,y aex o (yy), since the operation (3.1) is obviously monotonic. To prove the
reverse inclusion notice that O Aoyy. Indeed, if fe¢o and ! f(O,), then for each type
¢ £(Op)=f (0caa(0.))= A (/N Oeaa)O,) € A oyy. Therefore (A@wy/g) exists. Then let
g€, hey and !g (k). Suppose feo and !f(g(h)). Then for suitable a, b, ¢ f(g(h))
= Aupe (X&)(R)€ A gy, whence g (k)€ (A ovy/9). By definition (3.1) vx<(Aoyy/) and
o (vy) < ¢ (Apwyy/o) = Aeyy, which completes the proof of (1.1). Equalities (1.2) and
(1.3) are proved in a similar way (it is essential for (1.3) that vy is nonempty). To
prove (1.4) notice that for all vy, LEF .

(3.4) D'yy—=(vxXyx)N 0.

Indeed, the inclusion (wx 1)) O< D'y is trivial from the definitions and (yXx)UO
is an ideal, because if aC (yXx)U O is a directed subset of C, and d=axb, then
aC w7y and the projections agcy and «,Cy are directed subsets of C, and C,
respectively, whence supayéy and sup o, €y, but sup a=(supa,, supa,)eyxXy; and if
d is not of the form a<b, then «c.O and supa- O4€(y>y) ) O. Therefore we may
define ((v>Xx) 1) O//x) and prove D'w-((w><x)1)O//3x) by definitions (2.3) and (3.1) as
above. From (3.4) it follows that D'O0=0. Finally, suppose f¢¢ and !C,, (f). Then
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if keD'yy and !C,, (f)k), then k¢yxXy, k= (g k), where g¢y and A€y, and
Cope (FYR)=F (&)(R)€ovy, whence C,, (f)€(pvyx//D'yx) and C'o=oyy//D'yy). Thus we
prove C'¢(D'yy)=ovy, and the reverse inclusion is proved in a similar way. M

A notion of recursiveness can be defined for the typed algebra C in the same
way as that for cl.c.a. Namely, consider a system of the form (1.6), where &; are typed
variables of type a; and the operations f; are defined by typed terms of type a; con-
structed from the variables &, and constants belonging to a given subset ¢ of C. Then
the members of least solutions in C of typed systems of that kind are called recursive
in ¥ elements of C. Note that typed systems of the form (1.6) are not trivially redu-
cible to one inequality of the form fx=x because combinators are not all supposed to
belong to . Then the elements f¢C recursive in 4 can be described by means of
recursiveness in cl.c.a. # in the Example 2 as follows. For f¢C define f = id{f}
={f€Clf'<f}UO. An element f¢C is recursive in € iff f is recursivein € ={g|g¢¥}
in the algebra #, and for every element ¢¢ F recursive in % there is an element f¢C
recursive in %, such that ¢ =f. The proof of this fact will not be treated here.

4. Other examples. Next we shall consider two other examples, which are well
known models of the A-calculus of graph type, but also fall under the scheme consi-
dered here.

41. Example 3. Let M be an admissible set (some notations from [7] will be
used below), and let # ={p o< M}. Define application in &# by

oy={xeM 3y((y, x)€o & y=V)}
It is well known that Fis a A-algebra with respect to this application (see, for instance,
[8]), so the combinators (1.1)—(1.3) exist in #. To show that there is a cartesian pair
in # define
D' ={ ¥o (¥1 X)) <2y €y (x=(y, D)},
and check directly that
X€D'yow >3 ¥, ¥1(3i<23yeyi(x=(y, D)) & .SV, & y, V)
<>3i<23y ey (x=(y, D)<>x€(voX {0 U (v, X{1}),
where v, v, €F. Thence D'@P@ =@ and defining
C'={z, (3, XN |3Ve V1((Yo (Y1, XN€2 & y=(¥oX{0}) U(y1x{1})}.
we may easily check that

XEQWY1<>3 Y0 V1V (V1o XNEQ & VoSV & ViSW)
<3 Y0 V1 (Yo (Y1 X0 €0 & (¥, {0 U (¥ {IN=(woX{0}) U (wy X {1})
<39, 2, Yo Y1 (Yo (Y1 XNE€2 & y=(¥oX{OHU (¥ X{1}) & 20
& yD'yoyy)e>x € C'o (D'yovy)-

So C’, D' is a cartesian pair in # and # is c.lc.a. with < as partial order and @
as the least element O.

42 Example 4. Let M be a set with a pair coding (i. e. an injective mapping
Jj: M3*—M) and suppose there are c,, ¢, ¢ M, such that ¢,+¢,. Denote by M> the set
of all finite sequences of elements of M and let Tr (M) be the set of all trees
over M, defined as subsets tc-M> satisfying:

1) ( Yet (where ¢ ) is the empty sequence); and )

2) x*y€t=>x€t (x, ¥EM=), where « denotes concatenation of finite sequences.

For x¢ M= and t¢ Tr(M) define (t|x)={y|x+ye€t}. Then x€t=(t|x)¢Tr(M).
Define also
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xxt={x*y|yettU{zeM=[3ye M= (2xy=x)},

so that x=t¢ Tr(M); and for 1, o ¢ Tr(M) define (1, 6)=c,%1 )¢, *T where x as usual
denotes the one-membered sequence (x). It is clear that (r, o) is a pair coding in
Tr(M). Then we may define an application in the set F={p ¢=7r(M)} as follows:

ow={t¢ Tr(M)| 30 ¢ Tr(M)(o, 1)¢0 & yxe¢ M(x€o=(c]|X)€W)).

Then # is a combinatory algebra with respect to this application and there is a car-
tesian pair in #. This can be shown by the same method as in the previous example.
So # is a c.lca. with respect to (» as O and < as partial order.

5. Iterative c.l.c.a. Definition 5.1. Suppose # is a c.l.c.a. Then

(a) @ normal initial is a nonempty subset o/ —F of the form F] {8¢7 | a;9<B;},
i=0

where a;, B¢ F for every natural number i;

(b) a subset o/ —F is invariant with respect to o¢#, iff oA, i. e. E¢c.A
=oE¢ for each &€,

(c) clca. # is iterative iff for every ¢¢F there is an element |(¢)€ F, such
that ol(9)<V(9) and V(o)€ o/ for every normal initial %, which is invariant
with respect to ¢.

The definition of iterative c.l.c.a. is similar to those of iterative combinatory and
iterative operative space in Skordev [3] and [vanov [4] respectively. Note that if
Z is an iterative c.l.c.a., then I(¢) is the least solution of the inequality ¢&<E& with
respect to & in #, and therefore the least fixed point of the mapping &—o& in Z.
Indeed, if @x=7y, then it is easy to see, that &/ ={9¢# 9=y} is a normal initial
which is invariant w.r.t. ¢. Therefore I(p)¢.o/ i. e. 1(@)=1y.

The following proposition is similar to the corresponding criteria of iterativity for
combinatory and operative spaces in [3] and [4].

Proposition 5.2. Suppose # is a cl.c.a. and % is a cardinal number, such
that either n=w, or »>card #. Let for every increasing transfinite sequence (¢.)ix,
0.¢ F, the least upper bound sup ¢, exists in F, and for each o ¢F

<%

o SuUp @,= sup Q..
<% <%
Then # is an iterative c.l.c.a.
The proof is by an usual argument. (See, for instance, Skordev [3], Propositions
1.1.5, 1.2.5.)) Namely in the case x—=o we define inductively ¢,=0O and ¢,.,=0¢0,,

and I(¢)=supo,. It the case »>card # we define a transfinite increasing sequence
now

(¢ such that ¢,=supoee, and ¢, <¢@, for each 1<x, and we define I(p)=g¢,, where

p<x is the first ordinal, such that ¢, =¢, 1. In both the cases we have to prove that
¢, € o (respectively ¢t¢ o) for every normal initial o/ .#, such that ¢/ /. The proof
is by induction on 7 (respectively on 1<x), in the basis of which we use that O¢«/
because &/ is nonempty.

clca. # in examples 1 and 2 satisfies the conditions of Proposition 5.2 with
=0, and the algebra # in the examples 3 and 4 satisfies the same conditions with
» >card #.

Up to the end of the paper we shall suppose that # is an iterative cJl.c.a. and
¢ F is a set of constants. Denote by %, the set €1/ {A, C, K, C’, D'}

Theorem 53 (“first recursion theorem”). For every %-expressible mapping
[:F-+F there is a least fixed point of I' in F, which is € -expressible.
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Proof. For every o¢# define an operation ¢":#—# by induction on n:
00 (E)=E&; 0"+ (§)=0@" (€). Suppose the term defining I'(§) contains exactly % occur-
rences of the variable (for) & and >0 (if =0 the assertion of the theorem is tri-
vial). Using Lemma 1.1 and (1.4) we may find an {4, C, C’, D'} U ¢-expressible cr¢ 7,
such that for all ¢, v, $¢€F#
(5.1 crd ((D'9)f (v) =D'T (0)(3w)-
Let y=I(cr) and for ¢¢F define y(¢)=I(D'¢). Then we shall show that for every
0EF
(5.2) v (9)=rv(9)-
By the definition of v(9) we have D'oy(9)=v(e), and therefore

D'T (9)(vv (9)=crY (D'9)* (vo)) =cr1v (9) =7V ().

whence v (I (9)<7vv(9). To prove the reverse inequality consider o/ ={3¢F |8y (o)
<v([ (). & is a normal initial because Sy=Cy8 and Oy=KOy=0 for all vy,
9¢#, whence O¢.o/. Suppose 9¢./. Then

crdv () =crd (D) (v (9))=D'T (9)8v (9)=D'T (9) v(I'(9)) =V (T (¢)),
i. e. cr9¢sf. Therefore cro/ o/, whence y¢s/ and the proof of (5.2) is complete.
Now suppose I'(§)<E, &¢#. Then by (5.2) () =v(§), whence 1(y)=vy(§) and LI(y)
<Ly(E)=L(D'ty(E) =& (Where L=C'K) Therefore to complete the proof of the
theorem it is enough to show that I'(LI(y))=LI(y). To do that we shall prove that

Yu=D"V¥n

by an induction on n, where y,=y"(0O) and y,=I"(0). Indeed, ¥o=0=D'00=D"yyY,,
and by the hypothesis of the induction for n and (5.1)

Yoir = YY=1 (D", () =cry (D'v,)* (v4))

=D'T (v, XY= D"V 1 Ynt1

Therefore Ly,—y, and since v,=I(y) is obvious by induction on n, we have D'(Ly,)v,,
<I(y), and because v,=7v,s, (by induction on n) we have as well
(5:3) D' (Lyp)t,=1(v)
for all natural numbers m, n. Then fix m and define

A ={9¢F | D' (LY, Xy" (8)=1(y) for all n}.
By (5.3) O¢#, and «/, is a normal initial, and obviously y#/,= ;. Therefore I (y) ¢ ,,
whence

D' (L) (1) =D" (LY)(Y° A ()= (7).

Using this inequality, we see that

Ay={3€F| D (Ly™ (8) 1 (y)=1(y) for all m}

is a normal initial, and &/, is invariant with respect to 7. Therefore |(y)€ .9/, whence
D' (L1 ()1 (y)=!(y) which by the definition of the operator y shows that

v (L ()=1(Y)
whence by (5.2)
V(T LI @) =9 (L @) =1 () =1,
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and
C(LI(7)) =Ly (T (LI () =LI(y).

From this proof and Proposition 1.2 we have also:

Theorem 5.4 (“normal form theorem”). For every recursive in € element ¢ ¢F
there is an % |J{A, C, C', D'}-expressible c¢F such that ¢=Ly1*(cy=L(LI(1(c))),
where Ly—ALL. B

In order to prove a parametrization theorem for iterative c.l.c.a. we shall consider
some properties of the operator y (¢)=1(D’¢) introduced in the proof of Theorem 5.3.

Lemma 5.5. There are elements 1, pn¢ F recursive in {A, C, C'} and {4, C, C’
D'} respectively, and such that for all ¢, y€#

(a) w(e)=1(¢). and

(b) nv () v(¥)=V (ov).

Proof. Define by means of Lemma 1.1 and (1.4) an {4, C, C'}-expressible

a¢#, such that an(D'EE)=E(n) for all &, n, {€F, and let 1=I(a). Then

0 (w(9))=a1(D'ey (9))=ay (9)=1v (9),
whence 1(9)=1y(p). To prove the reverse inequality consider the normal initia
oA ={9¢F |9y (p)=1(p)}. Suppose 8¢ Then vdv(¢)=0a3(D'oy(¢))=¢ (v (p))=ol(¢)
=1(9), i. e ado/. Therefore 1=I(a)¢o/, whence Ily(p)=I1(p). Similarly, define
u=l(b), where b as an {A, C, C’, D'}-expressible element, such that for all & n,

¢ Ny, 5 €F
b& (D', )(D'EL,)= D" (nE)En,E,).
Then

D’ (oy)(ny (¢) V(W) =b 1 (D'oy (@)UD'yyy (V) =hkv (¢) V (V).
whence y (@y)<py(¢)y(v), and to prove the reverse inequality consider the normal
initial 2={3¢Z Yy (9p)v(v)=Vv (ov)}. Let 3¢Z. Then
b9y () v (w)=0 3 (D'ov (@))XD'vy (¥))=D’ (¢w)(SV (¢)v (V)
=D (ov) v (ov)==V (oV)
i. e. b3¢#, whence p=I(b)¢ B and

wy (@) v (v)=v(oy). 3

Now suppose there is a representation n—n¢F of natural numbers n in F,
which is normal in the sense: there are %, |J{l}-expressible element S¢.# and opera-
tion R,:#2 % such that for all ¢,y ¢ # and natural numbers n, n+1=38n, R, (9, v)o
=¢, and Ry(@, y)n+1=yn. (See [9] where the operation R, is called “primitive re-
cursive branching”.) For instance, we may define a normal representation in # as
follows: 0=CK: S=DK’, where K’ is defined in section 1, and D is the combinator
defined by D&nt—=(En (Lemma 1.1); n+1=3S8n R, (9, y)-=C(Doy). Using Theorem 5.3,
we may define a primitive recursive iteration (in the sense of [9]) R, (¢, y) as the
least fixed point of the operation I' (§)=R; (¢, AyE). Then R, satisfies the equalities

R, (@, y)o=¢ and
R (9, v)n+ 1= (R, (¢, v)n).

Let %, be the set ¢, J{o, S} and let #={A, C, o, S, R, R;}. By Theorem 1 in [9]
all primitive recursive functions f are representable by a AR-expressible element ¢ ¢ #,
i. e. on-—f(n) for all natural numbers 7.
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Lemma 56. (a). There is d¢F, which is recursive in ¢y, and dn=vy(n) for all n.
_ (b) For every ot F there is o*¢F, which is recursive in {A, C, C', D', ¢} and
o*n=I1(pn) for all n.
Proof. (a) Using p from Lemma 5.5 define 6=R,; (v (0), uy (S)). Then (a) follows
by induction on 7:
dn+1=py (S)8n)=pv(S) v (n)=v(Sn)=vV(n+1).
(b) By Lemma 5.5 and (a) we have

Hem) =1 (9n) =1y (9)V(m)=A(uy ()3 n)=0*n,
where ¢*=A(A1(py (¢)) 3. M
We need some additional constructions. Suppose p(n, m) is a primitive recursive
pairing function of natural numbers with primitive recursive projection functions p,
anld P i e pi(p(ng ny))=n; i<2 Then there is a R-expressible B¢ #, such that for
all § nerF

(5.4) Bann=E (7o (M)(py (1))

Indeed, by Theorem 1 in [9] there are R-expressible m,, ¢, such that mn=p;, (n),
i<?2, and by Lemma 1.1 and the identity oyy =Co (Dyy) we have

(5.5) & po(n) (0 () =& (my n)(0 (m, ) = a&n (D n)

for suitable #-expressible a¢ F. Then defining 0=R,(Do,0 d,), where d,¢#F is an
{4, C, S}-expressible element, such that

dy(Dn n)=D(Sn)(Sn),
we may prove by induction on » that

(5.6) on=Dnn,
whence by (5.5) and Lemma 1.1 we may find B¢#, which is R-expressible and satis-
fies (5.4).

Theorem 5.7. There is a recursive in €, element ¢ %, such that:

(a) for every recursive in €, element ©¢F there is a natural number n, such
that on=9; and

(b) there is a primitive recursive function s of two arguments, such that
os(n, my=onm for all natural numbers n, m.

Proof. Let us denote co=A; ¢,=C: ¢g=C"; c3=D"; ¢,=K; cz=0; ¢;=S5; and
suppose €={c7, ..., Cg4z). Then define a numeration [#] of terms £¢ Term (%, @) as
follows: [¢,1=i for i<T+k;: [ts1=p (¢, [sN+T+k There is an element y¢.# re-

cursive in @, such that y[£)=F for every t¢Term (%, (), where 1 is the value of
¢t in #.Indeed we may define y by Theorem 5.3 as the least fixed point of the ope-
rator

T(E)=Ro(co -y Ro(Coppe BEE) .- 2)
Then y satisfies yi=c, for i<7+k, and yn*%7+k=Byyﬁ=ypZ(5)QE(;i)); whence by

induction on the construction of ¢¢Term (%, (&) we have y[¢7]=t. Thence by Theo-
rem 5.4 for every recursive in @, element ¢ ¢ % thereis a natural number n such that

@=Ly1?(yn), and by Lemma 5.6 (b)
@=Lyl (Y*n)= Ly (y**n) = ALsY**n.
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Therefore to complete the proof it will be enough to find a recursive in %, element
o¢Z, such that for all numbers n

02n=AL,y*n and ©2n+ 1=0p,(n)p,(n).
To do that define by the theorem of representation of primitive recursive _functions
(Theorem 1 in [9]) two recursive in @, elements o, 6, ¢ #, such that 6,27n=0;c,2n+1
=1; 6,2n=n; and 6,2n+1=n; and then define ® by Theorem 5.3 as the least fixed
point of the mapping

I'(&)=AAC (AR, (A (ALyy**) 5, Ro(A(BE/) oy, A)) 6)0,
where [=A(CAYK, lp=¢ for all ¢¢ #. Then for every number m
om =T (0)m=C (AR, (A (ALyy**)o,, R, (A (BEl) o1, A)) o) dm)

=Ry (A(ALyy*™*) oy, Ry (A (Bol) oy, A))ogm) m,

whence

02n = A(ALyy**) 6,2n = ALyy** (5,2n) = ALyy**n,
and

02n+1=A(Bol)o,2n+ 1 =Poln—opn) p(n). B
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