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RIEMANNIAN P-MANIFOLDS OF CONSTANT SECTIONAL
CURVATURES

MARIA T.STAIKOVA, KOSTADIN I. GRIBACHEV, DIMITR G. MEKEROV

ABSTRACT. An essential problem in the differential geometry of manifolds with metric struc-
tures is the investigation of manifolds of constant sectional curvature. In the present paper we study
Riemannian P-manifolds of constant sectional curvature of a special kind.

1. Preliminary remarks. The Riemannian almost product manifolds are introduced
in [1] and basic classes of such manifolds have been given in [2]. The most important of these
classes is the class of Riemannian locally product manifolds with an almost product structure
P such that VP = 0. We consider manifolds of this class for which trP = 0. In [5] they have
been called Riemannian P-manifolds.

Let (M, g, P), dimM = 2n be a Riemannian P-manifolds with a Riemannian metric g
and an almost product structure P, i.e.

(1) g(Pz, Py) = g(z,y), P?= I, trtP =0, VP =0,

for arbitrary z, y € X (M), where X (M) is the algebra of all differentiable vector fields on M
and V is the Levi-Civita connection of g. The associated metric § is given by §(z,y) = g(z, Py)
and it is necessarily of signature (n,n). The curvature tensor R of g is defined by R(z,y)z =
VeVyz = VyVez = Vg2 for all z,y,2 € X(M). The curvature tensor R of type (0,4) is
defined by R(z,y, z,u) = g(R(z,y)z,u) for all z, y, u in the tangent space T,M, p€ M, and it
has the property

(2) R(z,y,z,u) = R(z,y, Pz, Pu), z,y,2,u € T,M, pe M.

This property implies that the tensor R defined by R(z,y, z,u) = R(z,y, z, Pu) has the property
R(z,y,z,u) = —=R(z,y,z, Pu).
In the theory of Riemannian P-manifolds the following tensors are essential:

mi(z,y,2,u) 9(y,2)9(z,u) - 9(z, 2)g9(y, u),

razy.u) = 3,2z ) - §(z, )iy, 2),
m(z,y,z,u) = g(y,2)§(z,u) - g(z,2)3(y, 2),
+ 9y, 2)9(z,u) = g(z,2)g(y, 2).

Every 2-plane (section) in T,M, p € M, has two sectional curvatures k(a) and k(a).

k(a;p) = I.f(r,y,z,u)/wl(z,y,z,u),
k(a;P) = R(x,y‘z,u)/m(z,y,z.u),
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where {z, y} is a basis of a.
Let T, M be the tangent space of M at an arbitrary point P in M. Then

M = (T,M)" & (T,M)",

where (T, M)* and (T, M)" are the eigen-spaces corresponding to the eigen-values +1 of the
structure P. A classification of the sections in T, M has been given in [4]. A section a in T, M
is said to be invariant (antiinvariant) if Pa = a (PaLla). We consider the following types of
invariant sections:

1) containing a vertical and a horizontal vector;

2) belonging to (T, M)" (vertical sections);

3) belonging to (7, M)" (horizontal sections).

We consider the following types of antiinvariant sections:

4) containing a vertical vector;

5) containing a horizontal vector;

6) containing neither vertical nor horizontal vectors (totally real sections).

For the curvatures of these sections we have [5]:

1. Any section of type 1) has k = k = 0;

2. Any section of type 2) or 4) has k = k. In this case k is called vertical sectional
curvature;

3. Any section of type 3) or 5) has k = —k. In this case k is called horizontal sectional
curvature;

4. The curvature k and k of a section of type 6) are called totally real sectional
curvatures.

Theorem A [4]. Any Riemannian P-manifold M (dimM = 2n > 6) is of constant
totally real sectional curvatures k(a;p) = v, k(a;p) = ¥ iff R = v(m + m2) + v7s.

Theorem B [4]. Any Riemannian P-manifold M (dimM = 2n > 6) is of constant
vertical sectional curvature k(a;p) = p iff R+ R = p(m + 73 — 73).

Theorem B’ [4]. Any Riemannian P-manifold M (dimM = 2n > 6) is of constant
horizontal sectional curvature k(a;p) = A iff R— R = A(m; + 72 — 73).

Theorem C [4]. Any Riemannian P-manifold is of constant vertical sectional cur-
vature p and of constant horizontal sectional curvature A iff the manifold 1s of constant totally
real sectional curvature v and i, where

v=(u+XN)/2, v=(p-XN)/2.

Riemannian P-manifolds of constant totally real sectional curvatures were investigated
in [5].

Theorem D [5]. If M is a connected invariant umbilic hypersurface of (R***2,g, P),
(2n 4 2) > 8), then M lies on an invariant sphere.

Now we consider Riemannian P-manifolds of constant vertical (horizontal) sectional
curvature.

2. Vertically umbilic and horizontally umbilic hypersurfaces of a Riemannian
P-manifold.Let (M’, g, P) (dimM’ = 2n + 2) be a Riemannian P-manifold and V', R’ be the
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Levi-Civita connection and its curvature tensor, respectively. A submanifold M (dimM = 2n)
is said to be a P-invariant hypersurface of M’ if the restriction of g on M has the maximal
rank and P(T,M) = T,M, p € M. We denote the restrictions of g and P on M by the same
letters. Then (M, g, P) is also a Riemannian P-manifold [5]. There exist locally vector fields
N and PN, normal to M such that

3) g(N,N) = g(PN,PN)=1, g(N,PN) =0.

As in [5] by A = Ay we denote the second fundamental tensor on M, with respect to the vector
field N. Using Theorem B, Lemma 1 [5] and Lemma 2 [5] we obtain immediately

Lemma 1. If M’ is a Riemannian P-manifold of constant vertical sectional curvature
u', then

(4) p(y,z)+ﬁ(y,2) =2(n— l)p[g(y,z)+§(y,z)]
+[trA + tr(A o P))[g(Ay, z) + §(Ay, 2)] — 2[9(A%y, 2) + §(A%y, 2)),
where p and p are the Ricci tensors for R and R respectively.

Similarly we have
Lemma 1. If M’ is a Riemannian P-manifold of constant horizontal sectional cur-
vature X', then

Py, 2) + Ay, z) = 2(n — 1)X[g(y, 2) + §(y, 2)]
+[trA — tr(A o P)][g(Ay, z) — §(Ay, 2)] — 2[9(A%y, 2) + §(A%y, 2)].

Let H be the mean curvature vector on M. Then we have
(5) H =tro/2n = [trAN + tr(Ao P)PN]/2n,

where o is the second fundamental form on M.
Definition 1. A P-invariant hypersurface M is said to be vertically umbilic if in every
point on M the equality

(6) 0+ Po=[tro +tr(Poo))(g+3)/2n=(H+ PH)(g+3)

holds.

Definition 2. A P-invariant hypersurface M is said to be horizontally umbilic if in
every point on M the equality

(6") 0= Po = [tro —tr(Poo)l(g —§)/2n=(H - PH)(g9 - 3)

holds.
From these definitions it follows that M is simultaneously vertically and horizontally
umbilic, iff
o = [trog + tr(c o P)g]/2n = Hg + PH§.
In this case, M is said to be P-invariant umbilic [5]
Lemma 2. A P-invariant hypersurface M 1s vertically umbilic 1ff

) A+ AoP =[trA+tr(Ao P))(I + P)/2n.
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Lemma 2. A P-invariant hypersurface M 1s horizontally umbilic iff

(7) A—AoP =[trA—tr(Ao P)|(I - P)/2n.

Theorem 1. Let M’ (dimM’ = 2n+ 2 > 8) be of constant vertical curvature u'. If M
is vertically umbilic, then M is of constant sectional curvature yu and

(8) p=p +9(H H)+§(H H)

Proof. Using (7), we have for z € T, M
(9) (A+AoP)z=c(z + Pz), c=[trA+tr(Ao P)]/2n

Applying Theorem B for M’ we have R’ + R’ = /(7 + 73+ 73). On the other hand, according
to Lemma 1, we have

R'(z,y,z,u) = r(z,y,z,u) — (pi1 + pi2)(Az, Ay, 2, u).

From (2) we obtain R + R = (4 + ¢®)(7y + 73 + 73) and Theorem B implies that M is of
constant vertical sectional curvature u = u’ + ¢?. Now (8) follows form (5) and (9).
Analogously we have
Theorem 1. Let M’ (dimM = 2n + 2 > 8) be of constant horizontal curvature X'. If
M is vertically umbilic, then M is of constant horizontal sectional curvature A and

(8" A=XN+g(H H)+3(H H).

Corollary 1. Let M’ (dimM’ = 2n+2 > 8) be of constant vertical sectional curvature.
If M is connected and vertically umbilic, then we have on M:

1) trA +tr(Ao P) = const;

2)g(H,H)+ g(H, H) = const;

Corollary 1’. Let M’ (dimM’ = 2n + 2 > 8) be of constant horizontal sectional
curvature. If M 1s connected and vertically umbilic, then we have on M:

1) trA +tr(Ao P) = const;

2)g(H,H)+ g(H, H) = const;

3. Examples of Riemannian P-manifolds of constant vertically and horizon-
tally curvatures.Let M’ = R?"+2 be equipped with the canonical structure P and the metric
g, given in [4]. Then (M’ g, P) is a Riemannian P-manifold. In this case, the curvature tensor
R’ of M’ is zero. We identify an arbitrary point z = (z!,...,z"*!;y!, ... y"+!) in M’ with
the position vector Z.

Definition 2. Leta € R (a > 0) and zo € R**?. Every P-invariant hypersurface
S¥(z0;a) or R*™*? for which

(10) g(z—20,2—20)+3(2—20,2—20)=a
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is said to be vertical sphere with a center zo and parameter a.

Definition 2’. Let b € R (b > 0) and zo € R>"*2. Every P-invariant hypersurface
Sh(z0;b) or R*™*? for which

(10) g(z —z0,2—20) + (2 — 20,2 —20) = b

is said 1o be horizontal sphere with a center zo and parameter b.

Obviously, there exist an infinite number of vertical (respectively horizontal) spheres
with given center and parameter. It is clear that a P-invariant hypersurface of R*"*? is a
vertical sphere S*(z0;a) and a horizontal sphere S*(zo;a) in the same iff is the P-invariant
sphere S?"(zo; (a+ b)/2, (a — b)/2) [5].

Let N and PN be vector fields normal to S¥(zo; a) satisfying (3). Since V' is flat, then
from (10) we obtain that z + Pz is a vector normal to S¥(zo;a). Then there exists a real { such
that

(11) N 4+ PN =1(z+ Pz), ?=1/a.
Tt is known [5] that
(12) Apy =PoA=AoP, V_N=-Az, z€T.,S"

Taking into account (11) and (12), we have —(A+ Ao P)z = V(N + PN) =I(V_z + PV;z).
Since V' is flat, then V. z = z, where z is the position vector field. Therefore we obtain

(13) A+AoP=—I(I+P).

Applying Lemma 1, Theorem 1, and the equalities (11), (13), we obtain
Theorem 2. Every vertical sphere S¥(zp;a) in R*™*? (2n + 2 > 6) is a vertically
umbilic hypersurface of constant vertical sectional curvature pu = 1/a.

In a similar way we obtain
Theorem 2'. Every vertical sphere S*(z9;a) in R*™*2 (2n + 2 > 6) is a horizontally
umbilic hypersurface of constant horizontal sectional curvature A = 1/b.

Thus, we obtain P-invariant hypersurfaces of M with prescribed constant vertical (hor-
izontal) sectional curvatures.

Theorem 3. Let y (4 > 0) be a real number. Then S*(zo;1/p) 1s a vertical sphere in
R*™*2 (n > 2) of constant vertical sectional curvature p.

Theorem 3'. Let A (A > 0) be a real number. Then S*(z9;1/)) is a horizontal sphere
in R?"*2 (n > 2) of constant horizontal sectional curvature \.

4. A classification of P-invariant hypersurfaces of constant vertical and hor-
izontal sectional curvature in R?"*2. In the previous section we proved that the vertical
(horizontal) spheres have constant vertical (horizontal) sectional curvatures. In this section, we
consider the inverse question.

Theorem 4. Let M’ (dimM’ = 2n + 2 > 8) be a Riemannian P-manifold of constant
vertical sectional curvature y'. If M is a P-invariant hypersurface of M’ with constant vertical
sectional curvature p, then M 1s vertically umbilic.
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Proof. Since M’ and M are of constant vertical sectional curvatures, Theorem B and
Lemma 1 imply
(14) 2(n—1)(u— p')(y + Py) = [trA+ tr(A o P)|(Ay + Ao Py) — 2(A%y + A% 0 Py)

for arbitrary y € T,M, pe M.
Applying Lemma A [5] to the invariant - symmetric operator A, we get

(15) Al = N+ pi Pl A2 = p2 #£0,i=1,2,...,n),

where {l},l2,...,ln; Ply, Ply, ..., Pl,} is an adapted basis for T,M, P € M of invariant eigen
vectors of A. Using (14) and (15) we find

trA+tr(AoP) = 2(n—1)(Aj + ;) + 2(Me + p)
= 2n— DA +pe) +2(%; +45), T # k.
Since n > 3, these equalities imply Aj + p; = m = const for all j=1,...,n. Hence
(16) A+ AoP=m(I+P), m=[trA+tr(Ao P)]/2n

because of (15). Lemma 2 implies, that M is vertically umbilic.

In a similar way we obtain

Theorem 4'. Let M’ (dimM’ = 2n+2 > 8) be a Riemannian P-manifold of constant
horizontal sectional curvature X'. If M is a P-invariant hypersurface of M' with constant
horizontal sectional curvature A, then M is horizontally umbilic.

Applying Lemma 2 and Lemma 3, we obtain following propositions.

Corollary 3. Let M be a P-invariant hypersurface of R*"+? (2n+2 > 8) with constant
vertical sectional curvature u. Then M is vertically umbilic and

p=g(H H)+g§(H H).

Corollary 3'. Let M be a P-invariant hypersurface of R*™+2 (2n + 2 > 8) with
constant horizontal sectional curvature A. Then M is horizontally umbilic and

A =g(H H)+ §(H, H).

Theorem 5. Let M be a connected vertically umbilic hypersurface in R+2
(2n+ 2> 8). Then M lies on a vertical sphere.

Proof. Let U be a coordinate neighbourhood on M and {N, PN} be normal vector
fields on U, satisfying (3). From the condition of the theorem, we have A+ Ao P = q(I+ P) on
U, where ¢ = [trA + tr(A o P)]/2n. Theorem 1 implies that M is of constant vertical sectional
curvature g = ¢2. Hence, ¢ = const on U.

Identifying = € U with the position vector Z € R?"*2 we consider the vector field
N + PN + q(Z + PZ) on u. Using the Weingarten formula (12) and taking into account that
V'’ is flat, we obtain

V.[N + PN +q(z+ Pz)]=—q(I +P)z + q(I+P)x=0
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for an arbitrary vector field z on U, tangent to M. The last equality implies
(17) N + PN + q(z + Pz) = q(z0 + Pz0), zo = const.
If ¢ # 0 from (17) we find
z—204+ P(z—20) = —(N+ PN)/q.
Thus, for every z € U we have
9(z = 20,2 — 20) + §(z — 20,2 — 20) = 1/¢%.

Hence, U lies on a vertical sphere S¥(zo; 1/¢?) with center zo and parameter 1/¢g%. So we proved
that for every z € M, there exist U 3 z, such that U lies on a vertical sphere S".

Let U be a fixed coordinate neighbourhood and S¥ be the vertical sphere, such that
U € S¥. By M, we shall denote the set of points z in M belonging to S" together with a
neighbourhood V; 3 z. Obviously, My # @ and M is open.

Let W be in the closure My of My. Then, there exists W 3 w and W lies on a vertical
sphere SY. The open set WN M, # O lies on S} and S¥. Hence, S} = S and My = M because
of the connectedness of M.

In a similar way we obtain

Theorem 5. Let M be a connected horizontally umbilic hypersurface in R>"+? (2n 4
2> 8). Then M lies on a horizontal sphere.

Using theorems 4, 4, 5 and 5’, we obtain the following classification theorems.

Theorem 6. Let M be a connected invariant hypersurface of (R***+2 g, P) (2n+2 >
8). If M is of constant vertical sectional curvature yu > 0, then M lies on a vertical sphere
§¥(20;1/p).

Theorem 6. Let M be a connected invariant hypersurface of (R***? g, P) (2n+2 >
8). If M is of constant horizontal sectional curvature A > 0, then M lies on a horizontal sphere
5% (z0;1/A).

From Theorem 6, Theorem 6’ and Theorem D we obtain

Theorem 7. Let M be a connected invariant hypersurface of (R*"*2, g, P) (2n+2 > 8).
If M is of constant vertical and horizontal sectional curvatures p and X respectively (A > 0, pu >
0), then M lies on an invariant sphere S?"(zo; (A + p)/Ap, (A — p)/An).
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