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AN EXACT ESTIMATE FOR APPROXIMATION OF A CLASS
OF CONVEX FUNCTIONS BY BASKAKOV OPERATORS IN L,

V.A.KOSTOVA
ABSTRACT. The approximation of convex functions by polynomials and polygons in L, [a, b]-

metric is investigated in Ivanov (1979). In this paper an exact estimate for approximation of a class of
bounded convex monotone decreasing function by Baskakov operators in L; (0, oc] is obtained.

An estimate of the approximation of convex function by Bernstein polynomials in
L,[0,1] is given in (3] and [4]. Using the method from (4] we prove the following

Theorem. If f is a nonnegative, continuous, convezr, monotone decreasing function,
defined on [0,00]: f(0) =M, f(z) =0 forz > a, a € (0,00) then for every n > 2 we have:

(1) /0°° mod {B,(f;z) - f(z)} dz < (5 + a).M.{2(n - 1)} },

where B, (f) is the Baskakov operator:
= k\ [—n (—z)*
Bn ; = - —-———’ : | »
(fz) g}f(n)(k)(l_‘_z)n{-k ze(om)
The estimate (1) 1s ezact to the order.

First let us mention that the Baskakov operator can be represented in the form

oS (k) el
where ¢,,(z) = 1/(1 + z)™. It is not difficult to show, that the function ¢,, has the following
properties: (k=1,2,...)

(a) /0°°¢,.(z)d.t=/o°°(l+:)'"dz=(n—l)'l.

k .
®) ) =[[(-n-k+ 1 +2)"* = —n el V().

i=1
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(c) (—1)*¢$1k)(::) > 0 for every z € [0,00], n > 2

o (z)te®(z 0
@ [EEE s [Ta@d= -y

Lemma 1. Let f be a convez, monotone decreasing function, defined on [0,00]. Then
the following s true:

(A1) B.(f) is a monotone decreasing function on [0, oc];
(B1) B,(f) is a convez function on [0, x);
(C1)  Ba(9(A);z) > g(A;z) for every z € [0, 00],

where g(A;-), 0 < A < a, a € (0,00), 1s defined as g(\;z) = max{0, M(A —z)/A}, z € [0, ).

Proof. First we shall prove (A1l). We have for the first-derivative:

) 4Bullie) nZ { r(5)- (k:n)}(—z)*ﬁflx(z)

Further we take into account that f is a monotone decreasing function. Then from (3)
follows dB,(f; z)/dz < 0 for every z € [0,00]. Hence B,(f) is a monotone decreasing function.
Now we shall prove (B1). We have for the second derivative:

@) d? B;x({ ;) ﬂ(ﬂ+1)2{ (k+2)_2f(k+l)+f( )}(—z)*k?‘zz(x)‘

But the function f is a convex one and in view of (4) we have d’>B,(f;z)/dz? > 0 for
z € [0, 00). Hence B,(f) is a convex function on [0, o0].

Further we shall prove (C1). From the definition of the Baskakov operator (2) it is not
difficult to see that B,(g(A);0) = M, Bn(g(A);z) > 0 for z € [A, 00]. In the case z € (0, ) we
have: dB,(g()); z)/dz|s=0 = dg(X;z)/dz|:=0 = —M/A. Then for the convex function B, (g9()))
it is true: B,(g(A);z) > g(A;z) for every z € [0, o0].

Thus lemma 1 is proved.

Lemma 2. Let g(\;-), 0 < A < a, a € (0,00), be a convez, monotone decreasing
function, defined as follows:

g(A\;z) = max{0, M(A—z)/A}, z € [0,0).

Then we have:
(A2) If X € (0, a] is arbitrary, then

/w mod{Bn(g(A);z) — g(A;z)} dz < (24 A).M{2(n - 1)}~ 1.
0
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(B2) If X € (0, a] 1s an integer, then

./:0 mod{Bn(g9(A);z) — g(A;z)} dz = (1 4+ A).M.{2(n — 1)}~

Proof. Let us mention first, that

oo A
(5) /0 g(X;z)dz =/0 g(A;z)dz = MA/2.

Further we use (d) and the definition of Baskakov operators and we get the following

estimate: o
oo . a oo o0 . k (_z)k¢" (2)
/ Bn(g(A),z)dz-/o gg(A,;)__k!_dz

%(A-f)ﬂ@d,

n k!

Il
S~
8

[nA]

(6) - % ('\ - E) /0°° bn(z) dz

k=0
[nAl([nA] + l)}

M
= _—A(n—l) {,\([n:\]-‘-l)-— on

M nA(nA+1)+6(1-0)
An-1) o

MXA  M(14))  Mo(1-0)
2 T 2m-1) " 2A(n-1)n’

where 8 = n) — [nA]. ([z] is the largest integer < z.)
Now in view of (C1) from Lemma 1 and (6) we get:

) /0 mod{B,(g());z) — g(\;z)} dz = 1;’(("11-1? + gfr(xl—_lgv)l

But the result shows that the estimate of the approximation is increasing when A — 0.
Let us consider 0 < A < n~!. In this case 0 < An < 1 and then @ = nX — [nA] = nA. Hence it is
true

/

/m mod{ By (4(\); 2) — (A 2))} dz = HBFA=0) M2+ 1)
0

2zn-=1) ~ 2(n-1)’

which proves for every 0 < A < a the proposition (A2).
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If 0 < A < a is integer, then § = nA — [nA] = 0 and in view of (7) follows (B2). Lemma
2 is proved.

Lemma 3. Let f be nonnegative, continuous, conver, monotone, decreasing function,
defined on (0,00] : f(z) = M, f(z) =0 forz > a, a € (0,00). Then for every ¢ > 0 there
exists a function such that:

m(e)

®) Qz) = Y pi-gi(zisz)
i=1

where:
1. 0=z0<2;< - <z2;< <z, =a, (m=m(e)).
2. gi(zi;z) = max{0, M(z; — z)/z;}, z€[0,00); i=1,2,...,m.
3. Pi = i{f(ri+1) - 2f(.l'.) +f(.2'.'_1)}/M, Bi 2 0, (l =12,....m-— l),

pm = m{f(zm-1) = f(zm)}/M, pm 20, D mi <1,

i=1
which has the property mod{f(z) — Q(z)} < € for every z > 0.

Proof. Let £ > 0 be arbitrarily small. The function f is continuous on the bounded
interval [0,a] and therefore it is uniform continuous. Then there exists §(¢) > 0 such that for
every choice of z1, z2 € [0, a] for which mod{z, — z2} < é(¢) it holds mod{f(z,) — f(z2)} <.

We set: .

k(e) = [a/b(¢)]
m=m(e)=k(e)+1; §=a/m; zi=2z0+1 i=12,... m
and we define:

a(e) = {5'1{f(1'-‘+1)—?f(-‘fi)+f(2i—1)}(li—3-')| T € [z0, 7y e i2med
0, >z
Y f(zm-1) — f(zm)Hzm — 2), z € [z, Zm)

am(z) =
0, z>zp,;

Now we consider the function Q(z) = Y/~ ¢i(z), defined for every z € [0, o). In view
of the properties of f and the type of g¢;- construction, it follows that for Q(-) the following
properties hold:

Q(zi) = f(zi), i=0,1,...,m
(9) Q(z) = f(z), forz > zm;
mod{Q(z) — f(z)} < ¢ for every z € [0, o0);

Now we shall show that the function Q(-) can be expressed as in (8). To this end we
transform ¢;(+), i = 1,2,... m — 1 as follows:
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zi f(zigr) = 2f(zi) + f(zi-) M
s(z) = { M 2 z—‘_(z. oz [zo, zi];
0, z>z;
= pigi(zi; z),
where
gi(zi; z) = max{0, M(z; — z)/z;},
pi = i{f(ziy1) — 2.f(zi) + f(ziz1)}/M,
and
Zm f(Zm-1) = f(zm)) M
gm(z) = { M é ;(Im -7, , Z € [zo,zm];
0, z>z.,;
= l‘mgm(zm;r);
where

Im(zm;z) = max{0, M(zpm — z)/zm},
pm =m{f(zm-1) — f(zm)}/M.

It is not difficult to show that if f is a convex function, then y; > 0fori=1,2,...,m.
One can show directly that

Y owi =Y i{f(zi) - 2f(zi) + f(zic)/M < 1.
i=1

i=1

Lemma 3 is proved.

Proof of the Theorem.

In view of Lemma 3 for every choice of € > 0 in particular for ¢ = M/na, there exists
a function Q(-) such that for every z € [0, o] it holds

mod{f(z) — Q(z)} <e¢,

where
m

Q) =Y migi(zi;2);

i=1

9i(zi;z) = max{0, M(z; — z)/z:},

w20, (i=12,...,m) Y m<l

i=1
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Now applying Lemma 2 we have:

/oon mod{B.(Q;z) — Q(z)} dz

(10) - mod{}jua{Bn(y.-(z.-);z) —ye(ze;z)}} dz
0 i=1
< i / mod{B,(gi(zi);z) — gi(zi; )} dz < ——-- M1t
= 2(n-1)
Further using (9) we get:
[ mod(Ba(@i2) - Balio) do
[na] (k)
() <3 mod(se/m - Qu/m) [~ CLE D g,
k=0
[na]
)Zmod{f(k/n) Qk/n)} < —
and - R
(12) [ mod(s(e) - Qe e = [ mod(s(z) - Qo)) de <
Estimates (10), (11) and (12) lead us to the conclusion:
Jo {mod{B.(f;z) - f(z)} dz
< fom mOd{Bn(Q; z) - Bn(f; :)) dz
(13)

+ [ mod{B,(Q; z) — Q(z)} dz

+ J5. mod{f(z) - Q(z)}dz < (5+a).M.{2(n— 1))}

The result (13) cannot be improved. The estimate is exact to the order, as according
to Lemma 2 there exists a function g(A), 0 < A < 0o, A- integer, for which (B2) holds.
The proof of the theorem is completed.
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