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ABSTRACT. We prove that some sets of mappings of a topological space X into the space
S(r)", where S(r) being the standard r-star-space, are residual in the function space of all continuous

mappings of X into S(7)". The results on existence of residual sets in spaces of mapping are applied
to constructing a sufficient number of compactifications with reminders of given dimension.

Introduction.The present paper is connected with the results of H. J. Kowalski [7],
E. Pol [10], W. Olszewski [9], M. M. Choban and Attia [2,3,4]. In section 1 we define the
introductory notions. Sections 2 and 3 generalize some results of E. Pol [10]. In section 4 and
5 the class of almost n-dimensional spaces and the class of almost weakly infinite-dimensional
spaces are studied. this Sections are applied in Section 6 to constructing a sufficient number of
compactifications with remainders of given dimension. The sections 4, 5 and 6 are a continuation
of the paper [3].

1. Notations and definitions.

1.1. All spaces are considered to be collectionwise normal and mappings are continuous.
By dimension we understand the covering dimension dim. Below |X| is the cardinality of X,
w(X) is the weight of a space X, d(X) = sup{|Y|Y is a closed discrete subspace of X}.

Our paper uses the terminonology from [5,6,8].

1.2. Let (Y, p) be a metric space and ¢ > 0. A family £ of subsets of Y is c-discrete if
p(A, B) = inf{p(z,y):z € A,y € B} > c for all distinct A, B €£.

1.3. By Bf: X — BY we denote the continuous extensions of the mapping f: X — Y
onto the Stone-Cech compactifications X and BY of the spaces X and Y.

1.4. A subset L of a space X is a first category set if L is a union of countably many
nowhere dense sets. A subset H is residual in X if the complement X \ H is a first category
set.

If X is a Cech complete space, then H is residual in X if only if H contains a dense
Gs-subset of X.

Note that a countable intersection of the residual subsets of a space X is residual in X.

1.5. Fix a cardinal number 7 > Ro. By S(7) we denote the r-star-space, i.e. the
space S(7) is obtained by identifying all zeros in the set U{l, = [0,1]:a € A}, where |A| = T,
equipped with the complete metric

d _f lz=uyl, fz,y€l,for a€A,
@v=9 ;4 y, if z,y belong to distinct intervals.
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In the countable power S(7)V = II{S;(7) = S(r):i € N = {0,1,...}} we fix a complete

p({zi} Aw)) = Q_{27"d(zi, )i € NDE.

Zero 0 of intervals I, in S(7) is the origin of S().

Let Ko(7) = {{zi:i € N} € S(r)V: the set {i € N:z; is a positive rational number}
has at most n elements} K, (7) = U{K,():n € N}, E(7) be the Stone-Cech compactification
of S(r)N. The space Ko(7) and the generalized Baire space B(7) of weight 7 are homeomorphic.

1.6. Fix a space X and a metric space (Y, p). By C(X,Y) we denote the space of all
continuous mapping of X into Y with the topology of uniform convergence. Let

p(f,9) = min{2,sup{(f(z), 9(z)): z € X}}.

If p is a complete metric on Y, then p is a complete metric on a space C(X,Y).

1.7. The perfect preimages of the metric spaces are called paracompact p-spaces (see
(1]).

1.8. let F: X — Y be a mapping. A mapping g: X — Z is an F-factorization, if g is
continuous and F = fg for some continuous mapping f:Z — Y. If F is a perfect mapping,
then the mappings g and f are perfect,too.

1.9. A space X is called of countable type every compact subset of X is included in a
compact subset of countable character in X. A space X is of countable type if only if X\X
is a Lindeldf space.

1.10. The set C is a partition between A and B in a space X if there exist the open
disjoint sets V' and W satisfying the conditions ACV, BC W and X\C=VUW.

1.11. A space X is said to be weakly infinite-dimensional or A-weakly infinite-
dimensional (S-weakly infinite-dimensional) if for every sequence {(A;, Bi):i € N} of pairs
of disjoint closed subset of X there exists a sequence {C;:i € N} (a sequence {C;,:i € N} and
an integer n € N} such that N{Ci:i € N} = @ (N{Ci:i < n} = @), where C; is a partition
between A; and B; in X for alli € N.

A space X is said to be strongly infinite-dimensional (S-strcngly infinite-dimensional)
if it is not weakly infinite-dimensional (S-weakly infinite-dimensional).

1.12. clxh or ¢l H denotes the closure of a set H in X.

metric

2. Auxiliary assertions.
Lemma 2.1. Let Y be a closed subspace of a space X. Then the mapping

r:C(X,S(r)¥) — C(X,S(r)V),

where r(f) = f|Y, 1s continuous, open and onto.

Proof. The continuity of r is obvious. For every continuous mapping f:Y — X there
exists some continuous extension on X. Therefore r is onto. Fix ¢ > 0, f € C(X,S(r) and
g € C(X,S(r), where d(f(y),9(y)) < e forallyeY. We put S,(r) = {z € S(r):d(z,0) < ¢,
X, = ¢7%(S(r)) and Y; = Y N X;. For some f; € C(X,,Sc(r)) we have f|Yy = fi|Y1. The
mapping f2: X2 — S(7), where X3 = X, UY, f2|X, = fi and f2]Y = f, is continuous and
d(fa(z),9(z)) < 2¢ for each z € X;. A set U = g~'({z € S(r):d(z,0) < ¢}) is open in X and
U C X3. The family of sets {Y, = g7'(Ia)\U:a € A} is closed and discrete in X. For every
a € A there exists a continuous mapping ga: Ya — Io such that g,|Y, N X3 = f5|Y, N X3 and
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d(ga(z),9(z)) < 4¢ for all z € Y,. Then the mapping h: S(7), where h| X, = f and h|Y, = ga,
is continuous and d(h, g) < 4¢. Thus r is an open mapping.

Lemma 2.2. Let v = {U,:pu € M} be an open discrete family and ( = {F,:p € M}
be a closed family of the space X, |M| < 1 and U, 2 F, # O for every u € M. Then the set
C(X,S(T)N,v,¢) = {f € C(X,S(r)N): for some € > 0 the family f(y) = {f(Uu):p € M} is
e-discrete and p(f(Fyu), f(X\Uy > €} for all p € M is open and dense in C(X, S(m)N.

Proof. Analogous to the proof of Proposition 3.4 in [10].

Proposition 2.3 ([10], Proposition 3.3). If X is an n-dimensional space, then for any
cardinal number 7 the set

Ca(X,S(r)Y) = {f € C(X,S(r)N):cl h(X) C Kn(7)}
is residual in C(X, S(7)V).

3. Main results. Let 7 be a cardinal number.

Theorem 3.1. Let X, be a closed n-dimensional subspace of a space X and F: X —Y
be a mapping onto a metric space Y of the weight w(Y) < 7. Then the set Cp(X, S(r)N, X, F)
={h e C(X,S(r)N):cl h(X1) C Kn(r) and h is an F-factorization} 1s residual in C(X, S(m)M).

Proof. Take the discrete and open systems {{W*:p € M}:m € N} and {{H]":p €
M}:m € N} in Y for which: F* = clH C W] for all m € N and p € Mp,; for every
neighbourhood V of any point y € Y there exist m € N and u € M,, for which y € H' C
W C V. Then |My| < 7 for every m € N. From Lemma 2.2 it follows that the set L =
N{C(X,S(T)N), ¥m,C(m): m € N, where ym = {F7'W:p € Mp} and (m = {F~Y(F*):p €
M,,}, is residual in C(X, S(7)V). Let g € L. We put h(z) = F(g~'(z)) for every z € Z = g(X).
The mapping h: Z — Y is single-valued and F = hg. If zo0 € X, z0 = g(z0), m € N, p € M,
F(zo) = h(z0) € HJ, p(g(F~'(F")), g(X\F~'WP) =e>0and U = {z € Z:p(20,2) < €},
then h(U) =C W*. Thus h is continuous F-factorization. Lemma 2.1 and Proposition 2.3
imply that the set r=1(Cn(X1,S(7)V) = {h € C(X,S(r)¥):clh(X1) C Kn(r)} is residual
in C(X,S(r)V). Then the set C,(X,S(r)¥, X1, F) 2 LNr~(Ca(X1,S(r)V)) is residual in
C(X,S(m)N).

Corollary 3.2. Let X; be a closed n-dimensional subspace of a paracompact p-space
X and d(X) < 7. Then for every continuous mapping F: X — Y into a metric space Y the
set Po(X,S(r)N,X,,F) = {h € C(X,S(r)N,X1,F):h: X — h(X) is a perfect mapping} is
residual in C(X, S(1)V).

Corollary 3.3. Let F: X — Y be a continuous mapping into a metric space Y of
weight 7, {X;:i € N} be a sequence of closed subspaces of X and dim X; < n; for everyi € N.
Then the set C(X,S(r)N,{Xi,ni:i € N},F) = {f € C(X,S(r)"): f is an F-factorization
and cl f(X;) C Kn,(7) for every i € N} is residual in C(X,S(r)N). In particular, if X is
a paracompact p-space and d(X) < 7, then the set P(X,S(r)V),{X;,n;:i € N},F) = {h €
C(X,S(r)N, {Xi,ni:i € N}, F):h: X — h(X) 1s a perfect mapping} is residual in C(X,S(T)V).

Remark 3.4. If i € N and F|.X; is a homeographic embedding, then h|X; is a homeo-
graphic embedding for every h € C(X,S(r)V, {Xi,n;:i € N}, F).

Corollary 3.5. Let Y, X;:i € N be a sequence of closed subspaces of a metric space
X, w(X) <1, dimY =n and dimX; = n; for everyi € N. Then the sets E,(X,S(r)V) =
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{f € C(X,S(r)N): f is a homeographic embedding and cl f(Y) C K.(7)} and E(X,S(r)V,
{Xi,ni:i € N}) = n{E,,(X,S(r)N, X;):i € N} are residual in C(X,S(r)V).

4. Almost finite-dimensional spaces. A space X is called almost n-dimensional if
there exists a compact subset F of X such that dim(X\U) < n for every open subset U in X
containing F.

Lemma 4.1. Let ® be a compact subset of X and dim® > n.Then the set

BCu(X,S(r)N, @) = {f € C(X,S(r)"): dim(Bf(®)) > n}

is residual in C(X, S(1)V).

Proof. If dim® < n then there exists a finite sequence of pairs {(A;, Bi):i =
1,2,...,n} of disjoint closed subsets of ® such that for all closed partitions C; in ® between
A; and B; we have N{Ci:i = 1,2,...,n} #. In BX there exists a family {V;, W;,U;, H;:1 =
1,2,...n} of open subsets such that A; C V; C clgxV; C U;, Bi C W; C clgxW; C H; and
clgxUiNclgx H; = @ forevery i < n. By Lemma 2.2 theset L = C(X,S(r)N, {Vi, W;, Ui, H;:i <
n} = {f € C(X,S(r)): p(f(Vi N X), f(X\Ui)) > 0, p(f(Wi N X), f(X\Hi)) >0 foralli<n
is open and dense in C(X,S(7)V). Let f € L. By construction 3f(A;) N Bf(B;i) = O for every
i < n. If C; is a partition in Bf(®) between Bf(A;) and Bf(B;), then 8f~(C;) is a partition
in ® between A; and B;. Hence dim(3f(®) > n and L C BCn (X, S(7)V).

Corollary 4.2. Let ® be a compact subset of X and dim® = oo.Then the set
BCoo (X, S(T)N,®) = {f € C(X,S(r)V):dim(Bf(®)) = 00} = N{BCn(X,S(7)V,®):n € N} is
residual in C(X, S(T)V).

Corollary 4.3. Let ® be a strongly infinite-dimensional compact subset of BX. Then
the set BCy;a(X,S(T)N,®) = {f € C(X,S(r)N): Bf(®) strongly infinite-dimensional } is resid-
ual in C(X, S(T)V).

Proof. Fix in ® a sequence {(A;, B;):i € N} of pairs of disjoint closed subset that
N{Ci:i € N} # O, where C; is a partition between A; and B; in ®. There exists a family of open
subsets {V;, W;,U;, H;:1 € N} of BX such that A; C V; CelgxV; C Ui, Bi CW; CclgxW; C
H; and claxU; Nclgx H; = O for every i € N. Then N{N{C(X,S(r)N,{Vi,W;,U;, H;:i <
n}:n € N} is a residual subset of C(X, S(7)"V) and BC,;a(X, S(7)V, ®).

Theorem 4.4. Let X be an almost n-dimensional space of countable type. Then the

BCA(X,S(r)V) = {f € C(X,S(r)V):dim(Bf(BX\X)) < n}
KCu(X,S(r)Y) = {f € C(X,S(r)V): el ((el S(X)\Ka(r)) C £(X)}
are residual in C(X,S(7)V) and KC,(X,S(r)N) C BCa (X, S(T)V).
Proof. There exist a compact subset ® C X and a sequence {U,:n € N} of open
subsets in X such that for every open in X subset U D ® there exists m € N such that U,, C U;

® C Uy, and dim X\U,, < n for every m € N. Let X,, = X\U,, and n,, = n. From Lemma
2.2 and Theorem 3.1 the set

sels

L={f€C(X,S(r)"):el f(Xm) C Kn(r) and p(f(®), f(Xm)) > 0}.

is residual in C(X,S(7)V). Suppose that f € L and Y = ¢l f(X). By construction, ¥ C
® U Kn(7), dimY,, < n, where Y, = clgi)f(Xm), Bf(BX\X) C U{Ym:m € N} and
dim(Bf(BX\X)) < n. Therefore L C KCn(X,S(r)V). If f € KCn(X,S(r)V), then dimY,, <
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n and Bf(BX\X) C U{Ym:m € N}. The space SX\X is Lindelsf and the set Z, =
Ym N Bf(BX\X) is closed in BfBX\X). Hence dimZ, < n, dimBf(BX\X) < n and
f € BCn(X,S(7)N). The proof is complete.

Theorem 4.5. For a paracompact space X of countable type the following assertions
are equivalent:

1. X 1is almost n-dimensional.

2. The set BCn(X,S(T)N) is residual in C(X, S(r)V).

3. The set KCo(X,S(r)N) is residual in C(X,S(1)V).

{. The set BCn(X,S(1)N) is dense in C(X,S(1)V).

5. The set KCa(X,S(7)N) is dense in C(X,S(1)N).

Proof. Implications 1 — 3 — 2 and 1 — 5 — 4 follow from Theorem 4.4. Implications
2 — 4 and 3 — 5 are obvious.

Suppose that B3C, (X, S(7)V) is a dense subset. Fix some compact subset ® of 5\ X and
the pairs {(A;, Bi)}:i = 0,1,...,n of disjoint closed sets in ®. There exist the closed subsets
{Hi, Fi:i < n} of a space X such that A; C intH;, B; C intF; and H;NF; = O for every i < n.
Fix the continuous mapping f;: X — I, C S(7) for which: H;nX C f71(0)and F;NX C 1)
for every i < n and f;j(X) = 0 for every j > n. Consider the mapping f: X — S(r)N,
where f(X) = {fi(z):i € N}. By construction p(f(H; N X), f(F; N X)) > 27" for every
i < n. There exists a mapping g € 3Cn(X, S(7)N) such that p(f,g) < 27*". By construction,
p(9(Hi N X),g(Fi N X)) > 274" Hence Bg(H;) N Bg(F;) = O and Bg(Ai) N Bg(B;) = O for
every i < n. Since dim(8g(®)) < n, then there exist the closed subsets {Ci:i < n} such
that N{Ci:i < n} = O and C; is a partition between Sg(A;) and Bg(B;) in Bg(®). Therefore
P; = ® N Bg~'(C;) is a partition between A; and B; in ® and N{P;:i < n}. Hence dim® < n.
By Corollary 2.6 [3] the paracompact space X of countable type is almost n-dimensional if only
if dim® < n for every compact subset ® of 3X\X. This proves the implication 4 — 1. The
proof is complete.

Corollary 4.6. For a paracompact p-space X the following statements are equivalent:

1. X s almost n-dimensional and d(X) < 7.

2. The set BCn(X,S(T)N) is residual in C(X, S(r)N) and d(X) < 7.

3. The set BP,(X,S(r)N)={f € BCH(X,S(T)N): f: X — f(X) perfect} is residual in
C(X,S(m)N).

{. The set KP,(X,S(r)N) = {f € KCa(X,S()N): f: X — f(X) perfect} is residual
in C(X,S(m)N).

Corollary 4.7. For a metrizable space X the following statements are equivalent:

1. X 1s almost n-dimensional and w(.\X') < 7.

2. The set BE,(X,S(r)V) = {f € BC.(X,S(r)N): f homeomorphic embedding} is
residual in C(X,S(1)V).

9. The set KE.(X,S(r)V) = {f € KCa(X,S(7)Y): f homeomorphic embedding)} is
residual in C(X, S()V).

4. KEL(X,S(r)N) # 0.

Proof. Implications 1 — 2 — 3 — 1 follow from Corollaries 3.5 and 4.5. Implications
2 — 4 is obvious. Let f € K E,(X,S(7)"). Then ® = ¢l (f(X)\Kn(7)) is a compact subset of
f(X). Therefore dim(f(\)\®) < n and X = f(X) is almost n-dimensional. The implication
4 — 1 is proved.

Theorem 4.8. For a complete metric space X the following assertions are equivalent:
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1. X is almost n-dimensional space of weight < 7.

2. The set cBE,(X,S(r)N) = {f € BE.(X,S(T)V): f(X) closed subspace of S(r)NV}
is residual in C(X, S()V).

3. The set cKE(X,S(r)N) = {f € KEA(X,S(r)N): f(X) closed subspace of S(t)N}
is residual in C(X, S(1)V).

§. BEL(X,S(r)N)UCcKE.(X,S(r)V) # 0.

Proof. Let X be an almost n—-dimensional complete metric space of weight < 7.
H. Toruriczuk [11] has proved that the set cE(X,S(r)V) = {f € C(X,S(t)N): f is a closed
embedding} is residual in C(.X, S(7)V). Hence in virtue of Corollary 4.7, the implications 1 — 2
and 1 — 3 are proved. The implications 2 — 4 and 3 — 4 are obvious. Let f € cBE.(X, S(1)V).
Then Bf: 3X — E(r) is an embedding and dim(3X\X) = dimBf(8X\X) < n. By Corollary
2.6 [3] the space X is almost n-dimensional. This proves the implication 4 — 1.

5. Almost weakly infinite-dimensional spaces. A space X is almost weakly in-
finite-dimensional (a.w.i.-d.) if there exists a compact subset ® of X such that the subspace
X\U is finite dimensional for every open set U in X containing &.

Theorem 5.1. Let X be an a.w.i.-d. space of countable type. Then the sets
BCira(X,S(r)N) = {f € S(X,S(r)V): Bf(BX\X) locally finite dimensional} and H(f) =
eln((el FONKL(7) € F(X)): H(f) = el ((elf(X)) \ Ko(r)) C (X)) are residual in
C(X,S(r)N) and KCiya(X,S(r)N) C BCiya(X, S(T)V).

Proof. Let f € KCiya(X,S(r)Y). Then H = H(f) is a compact subset of f(X) and
HNBf(BX\X) # Q. There exists a sequence of open sets {U;:n € N} in E(r) such that V, =
{z€S(r)N:p(z,H) < 27"} C Un41 C clUpyy C Uy for every n € N. Let Y, = Bf(BX)\Un
and Z, =Y, NS(r)VN. If n € N, zn € K;n(7)\Zn, then clgry{zm:m € N}\f(X) # Q. Hence
Zn C Km(7) for some m € N. We consider that Z, C Kn(r) for every n € N. By construction
Y, = BZ,, dimY, < n, W, = E(r)\clU, C Y, and 3f(BX\X) C U{Wn:n € N}. Therefore
Bf(BX\X is locally infinite-dimensional. The inclusion KCiya(X,S(r)V) C BCiya(X,S(T)N)
is proved.

Let X be an a.w.i.-d. space. There exists a nonempty compact subset ® of X and a
sequence {Un:n € N} of open subsets in X such that: ® = N{Un:n € N}; dim(X\U;) = n;
and clUiyy C U; for every i € N; for every open in X subset U D & there exists m € N
such that U, C U. We put X; = X\U;. Then the set L = {f € C(X,S(r)¥,{Xi,ni:i €
N}:el f(Xm) C Kn,.(7), p(f(®), f(X\Un) > 0forallm € N} is residual. Fix f € L. Denote
Yn = clg(r)f(Xa). Then g = Bf: 3X — E(r) is a perfect mapping and Y, N f(®) = 0 for every
n € N. By construction Y, N S(r)N¥ C K, _(7) and ¢(8X) = (U{Ya:n € N})U f(®). Hence
H(f) C f(®) C f(X) and the set KC,(X,S(r)") is residual. The theorem is proved.

Theorem 5.2. For a paracompact space X of countable type the following assertions
are equivalent:

1. X 1s almost weakly infinite-dimensional.

2. The set KCiya(X,S(r)V) is residual in C(X,S(r)V).

3. The set BCiya(X, S(7)V) is residual in C(X, S(1)V).

4. The set BCyuia(X,S(r)V) = {f € C(X,S(r)¥): Bf(BX\X) A-weakly infinite dimen-
sional} is residual in C(X, S()V).

Proof. Implications 1 — 2 — 3 follow from Theorem 5.1. Implications 3 — 4 is
obvious. Let ﬂC.,,.-d(X,S(r)N) be a residual. If X is not almost weakly infinite-dimensional,
then from Theorem 3.6 [3] there exists a strongly infinite-dimensional compact subset ® of
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BX\X. By Corollary 4.3 the set L = BC,;a(X,S(r)V,®) is residual. Hence the set M =
LN BCyia(X,S(T)N) is residual. Let f € M. Then 3f(®) is strongly infinite-dimensional,
Bf(BX\X) is weakly infinite-dimensional and 3f(®) C #f(8X\X). This construction complete
the proof.

Corollary 5.3. For a paracompact p-space X the following statements are equivalent:

1. X is almost weakly infinite-dimensional and d(X) < 7.

2. BPya(X,S(r)N) = {f € BCiya(X,S(r)¥): f: X — f(X) perfect} is residual in
C(X,S(r)V).

8. BPuia(X,S(r)V) = {f € BCuia(X,S(T)¥): f: X — f(X) perfect} is residual in
C(X,S(m)N).

4 KPya(X,S(r)¥) = {f € KCiya(X,S(r)¥): f: X — f(X) perfect} is residual in
C(X,S(r)).

Corollary 5.4. For a metric space X the following statements are equivalent:

1. X 1s almost weakly infinite-dimensional and w(X) < 7.

2. BEia(X,S(r)¥)={f € BCiya(X,S(r)N): f embedding)} is residual in C(X,S(7)V).

3. BELia(X,S(T)N)={f € BCuia(X,S(7)N): f embedding) is residual in C(X, S(1)V).

4. KEijja(X,S(r)¥)={f € KCiya(X,S(7)N): f embedding} is residual in C(X, S(7)V).

Theorem 5.5. For every complete metric space X the following statements are equi-
valent:

1. X 1s almost weakly infinite-dimensional and w(X) < 7.

2. cBEia(X,S(r)N) = {f € BEya(X,S(r)N): f closed embedding} is residual in
C(X,S(r)V).

3. ¢BEuia(X,S(T)N)
C(X,S(r)V).

4. cKEja(X,S(r)Y)
C(X,S(r)V).

Proof. From Torunczuk’s theorem [11] and Corollary 5.4 follows implication 1 — 4.
Implication 4 — 2 follows from Theorem 5.1. Implication 2 — 3 is obvious. Implication 3 — 1
follows from Corollary 5.4. The proof is complete.

Example 5.6. Fix a space X. Denote Sa(r) = {{zi:i € N} € S(r)V:z; = 0
for each i > n} and En(r) = clg(+)Sa(7). Then dimE,(r) = dimS,(r) = n. The set
Cu(X,S(r)N) = {f € C(X,S(r)¥): f(X) C En(r) for some n} is dense in C(X,S(7)V)
and Cy(X,S(r)¥) C KCiya(X,S(r)¥). If X = RN (or X is not almost weakly infinite-
dimensional), then the set 3C,;4(X, S(7)") is dense and not residual in C(X, S(r)V).

{f € BEwia(X,S(7)N): f closed embedding} is residual in

{f € KEija(X,S(7)¥): f closed embedding} is residual in

6.0n the extensions of metric spaces. Consider the space X and the extensions
€1X and e2X. The symbol e; X > e2.X means that there exists a continuous mapping x: ¢; X —
e2 X such that x(z) = z for every z € X.

Let £ = {]eX:a € M} be a family of extensions of a space X and M be a direct
set. The family is directed if: 3X = sup{e,X:u € M} and for every a,u € M, where a > u,
we have e, X > e,X. The family £ is complete if £ is directed, every sequence of bounded
continuous functions {f,: X — R:n € N} is continuously extendable over some eX € £ and
for every countable subset A of M there exists an element y € M such that y > a for every
a € A (see [3]).
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Let X be a metric space of weight 7 and f € E(X,S(r)V) = {f € C(X,S(r)¥): f is
an embedding} . Then b; X = clg(,)f(.X) is a compactification of X, m;X = S(HVNNbsX is
a complete metric extension of X.

Proposition 6.1. Let f € E(X,S(r)V).

1. If f € BCa(X,S(7)N), then dim(m;X\X) < n and dim(b; X\X < n.

L If f € KCo(X,S(r)V), then my X 1s almost n-dimensional.

. If f € BCiya(X,S(7)N), then my X\X and by X\ X are locally finite-dimensional.
CIf f € KCiya(X,S(T)N), then my X is a.w.i.-d.

CIf f € BCuia(X,S(T)N), then my X\ X and by X\ X are A-weakly infinite-dimensio-

G o b

nal.

6. b!X =pBmy X.

7. If f 1s a closed embedding, then by X = BX.

Proof is obvious.

Proposition 6.2. Let X be a subspace of a metric space Y, ® be a compact subset of
X. Fir a sequence {U,:n € N} of open sets in'Y such that ® = N{Un:n € N} and for every
open in Y subset U D ® there ezists n € N such that U, C U. There erists a Gs—set Z in Y
such that:

1. X C Z and dim(X\U,) = dim(Z\U,,) for everyn € N.

2. If X 1s almost n-dimensional, then Z 1s almost n-dimensional too.

3. If X 1s almost weakly infinite-dimensional, then Z 1s almost weakly infinite-dimen-
sional too.

Proof. We consider that X is a dense in Y. In virtue of the enlargement theorem
([5], Theorem 4.1.19), for every n € N there exists an Fo—subset H, in Y,y = Y'\Up, such that
X, = X\U, € G = Y,\H, C Y, and dimX,, = dimG,. Let Z = Y\ U {H,:n € N} and
Zpn = Z\U,. Then Z C Z and X,, C Z, C G,. The proof is complete.

Theorem 6.3. Let X be an almost n-dimensional space of weight < 7. Then
the families of extensions Mn(X) = {m;X:f € KE,(X,S(r)¥)} and Bn(X) = {b;X:f €
BE.(X,S(T)N)} are complete.

Proof. Let {m; X:i € N} be a sequence of complete metric extensions of X. Consider
that X = {{z,z,...,z,...};z € X} CY = &{m;X:i € N}. From Proposition 6.2 there
exists an almost n-dimensional Gs-subset Z in Y such that X C Z. By the theorem 4.8
cKCn(Z,S(r)N) # O. Let g € cKE,(Z,S(r)¥) and f = g|X. Then f € KE.(X,S(r)V),
myX = Z, myX > m;X and b; X > fm;X for every i € N. The proof is complete. By
Theorem 5.4 in the same way is proved the following fact.

Theorem 6.4. Let X be an almost weakly infinite-dimensional metric space of weight
< 1. Then the sets of extensions Mi4(X) = {myX:f € KEja(X,S(r)V)}, Buia(X) =
{b)X: f € BEuia(X,S(r)N)} and Biya(X) = {byX: f € BEi;a(X,S(r)V)} are complete.
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