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SELECTIONS OF GRAPHVALUED MAPS

P.V.SEMENOV

ABSTRACT. In this article we shall investigate question about importance of
convexity at one of the most known theorems of E.Michael about existence of
singlevalued continuous selections for manyvalued, see [1].

Introduction.

Theorem M. For Ty-space X the nezt conditions are equivalent:

a) X is paracompact,

b) Any lower semicontinuous (I.s.c.) map from X to Banach space with closed
convez values has a singlevalued continuous selection.

One of the possible versions of refuse a convexity in this theorem was proposed
by E. Michael in [2], where he introduced the notion of paraconvexity (for definition
see sect.1, below). In this article we in fact investigate question about paraconvexity
of graphs of continuous functions of one variable.

Let T be a class of all such subsets P of Euclidean plane which is a closed
connected graph of some continuous function in some orthogonal coordinate system
(which depends from P). Let TMon and T'Lip(k) be a subclasses of I' which consist of
a graphs of monotone and, accordingly, graphs of Lipshitz (with constant k) functions.

One of the main results of this article is the following theorem.

Theorem 5. Letk > 0. Then any l.s.c. map from any paracompact into a
Euclidean plane with values in TMonUT Lip(k) has a singlevalued continuous selection.

In section 1 besides the main technical notion of a—paraconvexity we introduce
a notion of boundly continuous map which is stronger than lower semicontinuity and
weaker than continuity of manyvalued map. Boundly continuity of map F guaranteed
an existence of selections in the cases when the index of paraconvexity of F(z),z € X,
depends on z. In Michael’s result the index of paraconvexity is constant, [2].
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In section 2 in fact we show that any element P from 'Mon U I'Lip(k) is a
a—paraconvex subset of plane with

2a = max{1 + V2/2;1 + sin(arctan k)}.

In section 3 results about existence of selections are received in the case of fixed

coordinate system.
We would remind that manyvalued map F: X — Y is lower semicontinuous iff
for any open U in Y the set

FYU)={z € X: F(z)NnU # 0}

is open in X and that map G: X — Y is a selection of map F iff G(z) C F(z), for any
zeX.

1. Let B be a Banach space and z;,z3,...,z, € B. Denote an infimum of
set of radius of all balls, which contains all points z,,z,,...,z, by R(zy,z2,...,2,).
For a Euclidean plane R(z,y,z) is a radius of a circumscribed circle if triangle Azyz
is acuteangle and is a half of its maximal side in opposite case.

Definition 1. Let0 < a < 1. Non-empty, closed subset P of Banach space is
called a-paraconvez iff for any n and for any points z,,z,,...,z, from Pand for any
point q from convez hall conv{z,,z,,...,2,} of these points the nexzt inequality 1s true

p(q;P) S QR(l'hIz, . ..,ln),

where p(g; P) = inf{||g — p||: p € P}.
The set P C B is called paraconvex iff P is a-paraconvex for some 0 < a < 1.

Minimum of a for which the set P is a—paraconvex is called an index of paraconvexity
of P.

Theorem M1 [2]. Let0 < a < 1. Then any l.s.c. map from any paracompact
X into Banach space with a-paraconvez values has a singlevalued continuous selection.

The uniform restriction of the index of paraconvexity of values is essential. But
this restriction may be omitted if we strengthen The lower semicontinuity of a map.

Definition 2.  Manyvalued map F from X into Banach space B is called
boundly continuous (b.c.) iff for any ball D with F~'(D) # 0 the map z — F(z)N D)
is continuous on F~1(D).

Lower semicontinuity is a consequence of boundly continuity, which is a conse-
quence of continuity of map. The inverse implications are false.

Theorem 1. Any b.c. map F from any paracompact X into Banach space B
with paraconver values has a singlevalued continuous selection.
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Proof. Denote the index of paraconvexity of set F(z), z € X, by a(z). It
suffice to show that function from X to [0,1) defined by

z — a(z)
is lower semicontinuous. In fact, if it’s true, then
X=UZ,Xn; X1CX2CX3C ...

where X,, = {z € X: a(z) < 1-(2)} - are the closed subsets of X, nonempty beginning
from some n.

The application of theorem M1 to pair’s X,, C X,+; gives a way to construct a
selection f: X — B by extensions f from X, to X,4;.

Let z¢9 € X, a(zg) = @ and a < a. We need to find the neighbourhood V(z¢)
in which a < a(z), z € V(z¢).

If a < 0, then V(zg) = X. For a > 0 choose a < b < a. By definition of the
index of paraconvexity, the set F(z() isn’t b-paraconvex, i.e. for some zy,...,2, €
F(zo) and for some ¢ € conv{z,,...,z,} we have

p(q; F(zo)) > bR, where R = R(zy,...,Zyn).

Let Vi be a disjoint é—neighbourhoods of points zx and yx € Vi, k =1,2,...,n.
Then for any ¢ > 0 the ball of radius R + ¢ + é contains all points yx and if ¢ — 0 then
we have
R = R(yls"'7yﬂ) < R+ 6.

Further, for any ¢ > 0 does exist the ball with radius R’ 4 ¢, containing all
points yx and the concentric ball with radius R’ + ¢ + é containing all points z, i.e.
R<R +¢+6é. If ¢ - 0, then we have |R — R'| < §.

Let D = D(q;2R) be a ball with centre ¢ and radius 2R. Then by condition of
boundly continuity the map z — F(z)N D is continuous and zg lies at the interior of
set F~1(D).

Therefore we may find such a neighbourhood V/(z) that for any z from V(zo):

1) Fz)N Ve #0,k=1,2,...,n;

2) F(z)Nn D C D\ D(q;bR).

For z € V(z¢) pick yx € F(zo) N Vi and let ¢’ € conv{y;,...,yn} and ¢’ have
the same coordinates like the coordinates of ¢ € conv{z,,...,z,} relatively zy,...,z,.
Then ||q — ¢'|| < 6. For any z € F(z) N D we have

lz=q'll > llz—qll = llg—¢ll > bR -6 > bR' - §(b + 1) > bR’ - 26.

To complete the proof we need to choose § in such a way, that bR’ — 26 > aR’
or § < R'(b—a)/2. Since R — § < R’ the last inequality is consequence of

d<(R-6)b—-a)/20orb6 < R(b—a)/(2+b—a).
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Finally, the ball with centre ¢’ € conv{y,..., ¥} and radius aR’ doesn’t inter-
sect the set F((z) N D and, consequently, doesn’t intersect the set F(z). Therefore the
set F(z) is not a—paraconvex, i.e. a(z) > a for all z € V(z¢).

For a = 0 the proof is analogous with the following difference. Pick a > b; >
b, > a = 0 and construct the ball with radius b, R’ which doesn’t intersect the set F(z).

3. We begin from a weak version of paraconvexity.

Definition 3. Closed nonempty subset P of Banach space is called a 1 — dim-
paraconvez iff for some 0 < a < 1 and for any z,y € P we have

p((z +v)/2; P) < aR(z;y).

If a set is paraconvex, then it is a 1 — dim—paraconvex. The inverse implication
is false. For example, the boundary of equilateral triangle is a 1 — dim-paraconvex set
with coefficient a = sin 60°, but it isn’t a paraconvex set (choose a inscribed circle).

But it was found that for closed connected graphs of functions, i.e. for P € T,
the notion of 1 — dim—paraconvexity coincides with the notion of paraconvexity.

Lemma 2. If P is a 1 — dim-paraconvez subset of Fuclidean plane with
coefficient « and P € T', then P is a paraconvez set with coefficient (1 + «)/2.

Proof. 1) Let z,y € P,z = (z+y)/2and q € [z,y], R = R(z;y) = ||z — y||/2.
If ||¢g — z|| £ R(1 — «)/2, then

p(g,; P) < p(2; P) + |lg — 2|l < R(1 + @)/2.
If ||p(g — 2|| > R(1 — a)/2, then
llg—=z|l < R(1+a)/2or ||g - yll < R(1+ )/2.

2) For P € T we fix an orthogonal coordinate system in which P is a graph of
some continuous function. Let z,y,z € P. We may assume that z lies into left-hand
from y, and y lies into left-hand from z. Through point ¢ lying in the triangle Azyz
draw a line /(g) parallel to line zz. Let g, ¢,%q. be the points of intersection of /(q)
with the vertical lines, passing through z,y and 2. From continuity we receive that

PN (gz,9y) # 0 and PN (gy¢.) # 0.

We may assume that ¢ lies in ”"between” points z and y. If there exists a point
z' € PN (gz,qy) for which ¢ € [2';¢y), then we may draw the line m(g) parallel to the
line zy. This line separates points z and z’ and points y and z’.

From continuity we may find the segment [z”;y"] with z”,y” € P and ¢ €

[III, yll] .
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3) Let z;,...z, € Pand g € conv{zy,...,Z,}. Then g lies in some triangle T
and from 2) we have

pg; P) < R(T)(1+ a)/2 < R(z1,...,2.)(1 + @)/2.

For higher dimensions the next generalization of lemma 2 may be proved.

Theorem 3. Let V be a convez subset of Euclidean space R", f:V — R be

a continuous function, ,...,Tn4+2 be any points of the graph T'y of function f and g
lies in conv{zy,...,Zn}. Then there ezits a simplez A such that:

-q€DL;

-dim A = n;

— all vertezes of A lies on T'y;
- R(D) € R{z1,...,Zn42}

We return to the case of subsets of plane.

Lemma 4. 1) If P € TLip(k), then P is a-paraconvez with
2a = 1 + sin(arctank).
2) If P € TMon, then P is a-paraconvez with

2a = 14+ v2/2.

Proof. 1) By lemma 2 it is suffice to see that set P is 1 — dim-paraconvex
with coefficient sin(arctan k). Through points z,y € P draw lines with slope k and
—k (relatively the coordinate system for which P is graph of some Liptshitz function).
"Between” z and y the set P lies in the parallelogram, which we obtained.

Through the point z = (z + y)/2 drop perpendiculars on sides of this parallel-
ogram with slope k (—k) if the point y lies above and to the right of point z (y lies to
the right and below of z). The lengths of this perpendiculars are equal to R(z;y)sin B,
where 0 < 3 < sin(arctan k) and the set P intersects one of these perpendiculars.

2) By lemma 2 it suffice to see that the set P is 1 — dim-paraconvex with
coefficient v/2/2.

But it’s practically obvious.

The length of one of the sides of a right-angled triangle with a hypotenuse
R = R(z;y) is less or equal than (v2/2)R and from continuity and monotony of a
function it’s easy to see that set P intersects both such sides.
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/

In fact it may be proved that the set P in this case is exactly (v/2/2)-paraconvex.
The example of the functions " shows that v/2/2 is an exact constant of paraconvexity.

From lemma 4 and the above mentioned theorem M1 we obtain the following
theorem.

Theorem 5. Let k > 0. Then any l.s.c. map from any paracompact to
Euclidean space with values in TMonNT Lip(k) has a singlevalued continuous selection.

Theorem 5 is false for graphs of all Lipchitz functions with all possible constants.
Indeed, even for a fixed coordinate system the set of that graph isn’t a equi-LC°. But
in this situation we may use a notion of b.c. map and theorem 1.

Theorem 6. Let F: X — R? be a boundly continuous map from paracompact
X and for anyz € X

F(X)eTMonUTLip, TLip=U;Z,I'Lip(n).
Then F has a singlevalued continuous selection.

4. For a fixed coordinate system the situation is easier. We may identify a
function with its graph and in this case the the paraconvexity may be omitted.

For Banach spaces B, E and constant k 3 0 we define I'Lip(B, E; k) - the class
of all graphs of all Lipchitz functions from B into E with constant k and with closed
convex domains of definition.

Theorem 7. Let k>0 and F: X — B® E be a l.s.c. map from paracompact
X into a Decart’s sum of Banach spaces B and E. Let F(X) € I'Lip(B, E; k) for all
z € X. Then F has a singlevalued continuous selection.

Proof. Let p: B® E — B be a projection on the first item and G = po F'. Then
GG: X — Bis a l.s.c. map with closed convex values which are domains of definition of
elements of I'Lip(B, E; k). By the well known theorem M of E. Michael the map G
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has a continuous selection g: X — B, g(z) € G(z). Define a singlevalued selection f
for map F:

f(z) = F(z)np~'(g(z)), z € X.
If we identify the set F(z) with the function whose graph is F(z), then we have

f(z) = (g(z); F(z)[g(2)))

Briefly, we lift an element g(z) € B. The continuity of f can be checked in a
standard manner.

Let Dy = D(g(z);e/4k) be an open ball with centre g(z) and radius £/4k,
D, = D(F(z)[g(z)]; €/2) and D = D, & D, be a neighbourhood of point f(z). Choose
a neighborhood U of point z: U = F~1(D)ng~}(Dy).

If y € U, then

(1) 1f(z) = F(»)Il = max{|lg(z) — g()II, || F(z)[g(=)] - F(y)[g()]II}

and ||g(z) — g(y)|| < €/4k. Let estimate the second part.
Choose an element b € B so that (b; F(y)[b]) € D. It’s possible — the set F(y)
intersects the ball D. Then the second part in (1) is less or equal than

IF(y)[e] - F(y)lgll + [ F(2)[g(z)] = F(y)[blIl < kllb - g(w)ll + % <e.

In the last inequalities we used that b and g(y) lie in ball D, and that F(z)[g(z)]
and F(y)[b] lies in ball D,.

The Lipshitz condition at this theorem isn’t a necessary condition. The theorem
remains true for equicontinuous set of functions {F(z)}, z € X. For dim B < oo and

dim F < oo and for perfectly normal X the domains of definition of functions may be
convex only.
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