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THREE FAMILIES OF CHROMATICALLY UNIQUE GRAPHS

YEE-HOCK PENG

ABSTRACT. Let P(G) denote the chromatic polinomial of a graph G. A graph G
is said to be chromatically unique if P(G) = P(H) implies that H is isomorphic
to G. In this paper, we prove that a graph (resp., a bipartite graph) obtained
from K3 4 U P, (s > 3) (resp., K33U P, (s > 7)) by identifying the end vertices
of the part P, with any two vertices of the complete bipartite graph K3 4 (resp.,
K3 3) is chromatically unique. We also show that a bipartite graph obtained from
(K33 —e€)UP, (s >5) where e is an edge of K33, by identifying the end vertices
of the path P, with two nonadjacent vertices of K33 — e is chromatically unique.

1. Introduction. The graphs which we consider here are finite, undirected,
simple and loopless. For a graph G, let V(G) denote its vertex set, E(G) denote its
edge set and P(G; \), or simply P(G) if there is no likelihood of confusion, denote its
chromatic polynomial. Two graphs X and Y are said to be chromatically equivalent if
P(X) = P(Y). A graph G is said to be chromatically unique if P(G) = P(H) implies
that H is isomorphic to G, denoted by H = G.

The search for infinite families of chromatically unique graphs is quite challeng-
ing and it is one of the topics on chromatic polinomials that has comme to the fore in
recent years. For an expository paper giving a survey on most of the works done on
chromatically unique graphs, the reader is refer to Koh and Teo [4].

The complete bipartite graph in which the partite sets consist of the m and n
vertices will be denoted by K, ,. We denote by K, (s) (resp K2 ,(s) and K3 ,(s)),
the graph obtained from K, , U P, by identifying the end vertices of the path P, on s
vertices with two vertices of K, , which are adjacent (resp., nonadjacent with degree
n and nonadjacent with degree m). Note that K?2 ,(s) = K3, ,(s) if and only if m = n.

In [2] the author proved the following results. '

Theorem 1. The graphs Kg'a(s), (i = 1,2,3) where s > 3 are chromatically
unique.
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As a natural extension of Theorem 1, we will show that the graph K;A(s) is
also chromatically unique for 1 < ¢ < 3 and s > 3. Furthermore, in this paper, we will
prove that the graphs KJ(2s) and K3 3(2s — 1) are chromatically unique for s > 4.
We also show that a bipartite graph obtained from (K33 — €)U Py (s > 5) where e is
an edge of K33, by identifying the end vertices of the path P, with two nonadjacent
vertices of K33 — e is chromatically unique.

For terms used but not defined here the reader is refer to [1].

2. Preliminaries. This section contains known results which will be used to
prove our main theorems in the next section. We need the following notations to state
the first known result.

Let H be a nonempty graph with two nonadjacent vertices u and v. The graph
denoted by H* is obtained from H by identifying the vertices u and v. Let G, (resp., G2)
be the graph obtained from H U P, by identifying the end vertices of the path P, with
the vertices u and v (resp., any two adjacent vertices) of H. Then by applying Theorem
1 and 3 in [6], and by using the well known fact that P(Cs;A) = (A-1)*+(-1)*(A-1),
we have

Theorem A (Read [7] and Chia [2]). Let G1,G2 and H* be the graphs defined
as above. Then
P(Gy) = P(G2) + (=1)*"'P(H").

Let K . be the graph obtained by deleting one egde from the complete bipartite
graph K,, .. Also let C,, be the cycle with n vertices. Ng(L) will denote the number
of subgraphs of G isomorphic to L, and Ig(L) will denote the number of induced
subgraphs of G isomorphic to L (so that Ng(L) = Ig(L) if L is complete, or if G is
bipartite and L is complete bipartite).

The following necessary conditions for two graphs to be chromatically equivalent
can be deduced and are well known (see, for example [3] and [9]).

Theorem B. Let G and H be two chromatically equivalent graphs. Then

(1) V(G)|=I|V(H)I;

(1)  |E(G)| = |E(H)I;

(11)  Ng(C3) = Nu(Cs);

(1v)  Ig(C4) = 2NG(K4) = IH(Cy) — 2Nu(Ky);

(V) (2= 3)I6(Ca) + Na(Kas) - I6(Cs) = (q - 3)Iu(Ca) + Na(Ka3) - In(Cs)
is G has at most one triangle;

(vi)  X(G) = x(H), where x(G) denotes the chromatic number of G;

(vit) G 1s connected if and only if H is connected,;

(viri) G 1is 2-connected if and only if H is 2-connected.
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For bipartite graphs, we have another necessary condition for them to be chro-
matically equivalent.

Theorem C (Peng [5]). Let G and H be two chromatically equivalent bipartite
graphs. Then

IG(C6)+NG(I\"2,4)—-IG(K:,_’:,)—4NG(]\"3,3) = IH(CG)+NH(K2,4)—IH(K’:;,s)‘4NH(K3‘3).

3. Main Results. We shall show the following key result (see also [2]). First
the definition:

Definition. A subgraph F of a graph G is called a chromatically invariance of
G iof for any graph H with P(H) = P(G), H contains F as a subgraph.

Theorem 2. Let G be a 2-connected graph obtained from F U P, by identifying
the end vertices of the path P; with two distinct vertices of a graph F. Suppose that
F is chromatic invariance of G. If H is chromatically equivalent to G, then H 1is also
a graph obtained from F U P by identifying the end vertices of P, with two distinct
vertices of F.

Proof. It is trivial if s = 2. Assume that § > 3. Since F is chromatic invari-
ance of G, H contains two subgraphs F' and Y = H — F with some edges connecting
them. Thus by Theorem B (ii),

(1) |E(Y)| +e(F,Y)<s-1,

where e(F,Y') denotes the number of edges joining vertices of F' to vertices of Y. Now
let ¢ be the number of componets of Y. Then

(2) |[E(Y)|>s—-2—c¢,

since |[V(Y)| = s—2. Also e(F,Y) > 2c because H is 2-connected by Theorem B (viii).
Hence from (1) we have
(3) |[E(Y) <s-1 —!>2c.

Therefore (2) and (3) imply that ¢ = 1, i.e., Y is connected. Consequently,
|[E(Y) = s—3 and e(F,Y) = 2. Since H is 2-connected, Y must be the path P,_,
whose end vertices are join to two distinct vertices of F. O

Corollary 1. Let G be a 2-connected graph obtained from F'U Py by identifying
the end vertices of the path P, with two adjacent vertices of F. Suppose that F is
chromatic invariance of G. If F is edge-transitive, then G is chromatically unique.

Proof. Let H be a graph with P(H) = P(G). Then by Theorem 2, H is
a graph obtained from F U P, by identifying the end vertices of P, with two distinct
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vertices z and y of F. By Theorem A, z is adjacent to y. Since F is edge-transitive,
we have H 2 G. O

Corollary 2. If the complete bipartite graph K, . (m,n > 2) is chromatic
invariance of K, (s) where s > 2, then K}, .(s) is chromatically unigue for 1 < i < 3.

Proof. For i = 1, the result follows from Corollary 1 because K., » is edge-
transitive. If H is chromatically equivalent to K2 , (s) or K3, (s), then by Theorem 2,
H is also a K}, ,(s) (i = 2,3). If m = n, we are done. Otherwise, by Theorem A,
P(K2 .(s)) # P(K3, .(s)) since Ky, is not chromaticallyequivalent to K, ,_; (see
Teo and Koh [8]). Hence K},  (s)is chromatically unique for i = 2,3. O

We shall now give three infinite families of chromatically unique graphs. The
first one is stated in the following theorem.

Theorem 3. The graph K{;A(s) 1s chromatically unique for s > 3 and
1<i<3.

Proof. Let Gy = K,(3), G, = K343), Gs = K3 4(4), G4 = K3,4(4), Gs =
K3 4(4) and Gs = K} 4(5). By Corollary 2 to Theorem 2, we need only to show that
K3 4 is chromatic invariance of I\";A(s) for 1 <1< 3 and s > 3. We consider two cases:

Figure 1. Ig(K3,) = 2 and Ig(Cy) = 7

Case(a). Kj,(s)(1 < i < 3) % G;(1 <j <6). Let H be a graph with
P(H) = P(K} 4(s)) for 1 <i < 3and s > 3. We show that K5 4 is chromatic invariance
of K3 ,(s), i.e., Ny(K24) # 0. By Theorem B, we have I(C4) = 6 and Nu(Kap3) >
4. Suppose that Iy(Kj3,;) = 1. Note that Il\";,s(c“) = 5 and NK;’S(Kg,:;) =2 If

Nu(K23) > 3 and Iy(K33) = 1, then we must have Iy (Cy) > 7. Also if Ig(K3;) > 2,
then it is easy to see that Iy(Cy) > 7 (see Fugure 1 for the minimal example). Since
Np(K,3 > 4, the suppossition that In(K33) > 1leads to contradiction and hence we
have Iy(K3,) = 0.

We now assume that Ny(K;4) = 0 and we shall get a contradiction. Note that
if Niy(K2,3) = 2, then these two K7 3’s have at most one edge in common, for otherwise,
H contains K34 or K3, as an induced subgraph. So if Ny(K;3) > 3, we must have
[4(C4) > 7, a contradiction. Therefore Ny(K24) # 0 because Ny(K,3) > 4.
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Case(b). G; (1 < j < 6). The graph G; = K5 is chromatically unique (see
[8]). Let H be a graph with P(H) = P(G2) or P(G3). Then by Theorem B, H is a
bipartite graph satisfying 10 < |E(H)| < 11, 7 < [V(H)| < 8 and 7 < In(Cy4) < 8.
Thus Ng(K33) = 0 and Ig(Cs) = 0, for otherwise, Ig(Cy) > 9 or Iy (Cy4) < 5 which
is a contradiction. So by Theorem C, we have Ny(K24) — In(K33) = 1 which implies
Nu(Kz4) # 0.

We now consider G; (4 < j < 6). Let H be a graph chromatically equivalent
to G; for any 4 < j < 6. Then by Theorem B, H contains 6 indused subgraphs Cy4 but
has no triangles, and H is not a bipartite graph.

We first consider Gs. By Theorem B(v), we have Ny(K23) — Iu(Cs) = 3,
i.e., Ny(Ko3) > 3. By using the arguments similar to Case(a), we can show that
Nr(Ka) # 0.

We next consider Gs. Theorem B (v) gives us Ny(K33) — Ig(Cs) = 2. We
claim that Ig(Cs) > 1, for otherwise, Ig(C7) = 1 because |V(H)| = 8 and H is not
a bypartite graph; but then there is no graph H of order 8 and size 11 such that
Ny(C3) = Ig(Cs) = 0 and Ig(C7) = 1. Thus Nu(K23) > 3. By applying the
arguments used in Case(a), we can again show that Ny(K24) # 0.

We now consider the last graph G4. For this graph, we have Ny (K;3) = Ig(Cs)
by Theorem B. As in the case of G5 above, Ig(Cs) # 0. If In(Cs) = Ny(K23) =1, then
H must contain a spanning subgraph which is obtained from K;3U Cs by identifying
an edge of Cs with an edge of K33 because |V(H)| = 8. Since H has no trianges, it
can easily be confirmed that |[E(H)| = 10, which is a contradiction. So we must have
Ig(Cs) = Ny(Ka3) > 2. Thus H contains J; or Jz of Figure 2 as a subgraph.

O

Figure 2.

Since |V(H)| = 8, |E(H)| = 11 and Ix(C4) = 6, it is not difficult to check that
Jy can not be a subgraph of H. So H contains two vertex disjoint subgraphs J; and L,
where L is a graph of order 2. Since |E(H)| = 11, and Ny(K23) 2 2, there are only
three possibilities for H. We show these three graphs in Figure 3. But H # H "or Gs
because I:(Cy4) = 5 and P(Gs) = P(G4). Thus G4 is chromatically unique.

The proof is now complete. O

Our second and third infinite families of chromatically unique graphs are stated
in the following theorems.
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Theorem 4. The graphs K} 5(2s) and K§,3(23 — 1) are chromatically unique
for s > 4.

Proof. Let H be a graph with P(H) = P(K33(2s)) or P(K33(2s — 1)) where
s > 4. Then by Theorem B, we have I(Cy4) = 9. Since K3 5(2s) and K3 5(2s — 1) are
bipartite graphs, and s > 4, we have Iy(Ce) + Nu(K2,4) — In(K3;3) —4Nu(K33) = —4
by Theorem C. If Ny(K33) = 0, then IH(K:,:s) > 4. Note that one K3"3 contains 5
induced subgraphs Cy, and if Iy (K3;) > 4, then it is not difficult to see that Iy (Cy4) >
11 (see Figure 4 for the minimal case). Therefore Ny(K33) # 0 and by Corollary 2 to
Theorem 2, the graphs KJ ;(2s) and K3 5(2s — 1) are chromatically unique for s > 4.
a

Remark. The graph K] (4) is also chromatically unique.

Figure 3.

Figure 4. Ng(K33) =0, Ig(K;3) = 4 and Ig(C4) = 11

Theorem 5. The bipartite graph obtained from K3 ;U Ps (s > 5) by identifying
the end vertices of Ps with two nonadjacent vertices of K3 5 is chromatically unique.

Proof. Let G be a bipartite graph defined as in the theorem and let H be a
graph with P(H) = P(G). Then by Theorems B and C, we have Iy(Cs) — Ig(K3,) =
—1 since Iy(Cyq) = Ig(C4) = 5. Thus Iy(K33) # 0, i.e., the graph K7, is chromatic
invariance of G. Therefore by Theorem 2, H must be a graph obtained from K3, UP;

by identifying the end vertices of P, with two distinct vertices of K3 3. By Theorem A,
it is not difficult to verify that H is isomorphic to G. O
In view of Theorem 3 and 4 it is tempting to state the following conjectures:
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Conjectures.

(1) The graph K}, (n) is chromatically unique for 1 <i < 3 and s,n > 3.

(2) The grapg K, ,.(2s) and K? (25 — 1) are chromatically unique for m > 2
and s > 4.
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