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FINITE HINKEL-CLIFFORD TRANSFORMATIONS OF THE
FIRST KIND OF ARBITRARY ORDER

J.A.DORTA DIAZ, J.M.R.MENDEZ PEREZ

ABSTRACT. In this paper, two series expansions of Fourier-Bessel type involving

the functions C,(z) = z=*/2J,(2y/z) and C;(z) = (=1)*z*C,(z), J.(z) being the
Bessel function of the first kind of order v, are exhaustively investigated. This
suggests the introduction of the finite Hankel-Clifford transformation of the first
kind and arbitrary real order v throughout

Hy{f(2)} = fiu(n) = /0 '€, (Anz)f(z)dz, a>0

where C(2), it
i >0
C.(2) = { v ]horova

W)= ), i v<o
and A, denote the n-tn positive root of the equation €,(Aa) = 0. The operational
calculs generated is used in solving some partial differential equations with contain
the Kerpinski operator A, = zD? + (1 + v)D, for any real value of the paramer-
er v, removing the classical restriction » > —1/2 imposed to the finite Hankel
transforms.

1.Introduction. The Bessel-Clifford function C,(z) of the first kind of order
v [5,7,8,8,18] verifies the differential equation

(1) zy"+(1+v)y +y=0
and is closely related to the Bessel one by
(2) C,(z)=2"""J,(2Vz)
This function possesses the following series expansion
= (-1

3) CAD) = AF e D)

r=0
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It is to be observed that when v = n is an integer, we have
(4) C-n(z) = (-1)"2"Ca(z)
A second solution of (1) is given by

Cy(z)cosvr —z7YC_,(z)
sin v

(5) D,(z) = ,
for any v not an integer. Because of (4), if v is zero or an integer we define

D,(z) = ‘!J_I’I,l‘ D,(z).

Thus, in any case, C,(z) and D,(z) consistute a fundamental system of (1).
On the other hand, the functions

(6) Ci(z) = (-1)"2"C.(2), Di(z) = (-1)"z"D,(z)
are linearly independent solutions of this other equation
(7) "+ (1-v)y'+y=0.

In view of (1), (6) and (7), note that the mutiplication by z“ implies only the
change of sign in the parameter v.
We shall frequently need the formulas [9, p.69]

(8) D'Cy(z) = (-1)Cuyr(z), r= 0,1,2,...

9) D (247 Cupr(2)] = 2°Cufz), r=0,1,2,...

and the asymptotic expansions [9, p.144]

(10) Cu(2) =0(1), ag.z—0
and
-v/2-1/4 )
(11) CV(Z) - z—{el(z\/;—vf/2—ﬂ’/4) + e—l(2\/;—v1r/2—1r/4)} + o(z—u/2—3/4)’

as |z| = oo, |argz| < .
Consider now the Sturm-Liouville problem [17,p.446)

{ (Avz + N)p(z) =0

(12) (1) = 0
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where
d

(13) Avz=A,=2zD*+(1+v)D=2""Dz**'D, D= =

For A > 0 it follows from (3) that C,(—A) > 0 and C,(0) = I"!(v + 1). Hence,
the equation
(14) C.(A)=0, v>0,
has not any nonpositive real zero. Let us arrange the positive roots of (14) in ascending
order of magnitude: 0 < A; < A2 <...< An <...([9, p.152]). Thus, {C,(AnZ)},eN is
the fammily of eigenfunctions of problem (12), A, standing for the n-th pec:itive zero
of (14).

The orthogonality condition [9, p.161]

if m#n
+1(An); if m=n

1
v _J 0
(15) /0 2°Cy(Amz)Cy(Anz)dz = { AC?

suggests to express an arbitrary function f(z) defined in 0 < z < 1 as a series expansion

oo

(16) f(2)= Y amCi(Amz)
m=1
whose coefficients are given by
1 1
17 ay = _-——/ t“C,(Amt) f(t)dt.

The series (16) will be called the Fourier-Bessel-Clifford series of function f(z),
due to its analogy with Fourier-Bessel expansion concerning the eigenfunction system
{Ju(jmz)}meN ([19, p.576]).

The main objective of this paper is to establish rigorously the validity of the
convergence of two series of type (16), as well as to study the finite integral transfor-
mations associated with these expansions, their properties and applications.

2. The Fourier-Bessel-Clifford series expansions. Although the conver-
gence proof of the series (16) runs parallely to that of the Fourier-Bessel expansion [19,
Ch.XVIII], some original aspects are worthwhile to be analised.

Considering now the partial sum

(18) Sn(z) = z": am Cy(Amz).

m-1

If T, (t,z) denotes the finite sum

0 i § St

m=1
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by substituting in (18) the coefficients an by (17), we get

1
(20) Sn(z) =/ t'Tn(z,t)f(t)dt.
0
In order to investigate the convergence of (16), we need some results in advance.
Lemma 1. ]
(21) lin;o t“To(t,z)dt=1, 0<z<1,
n— 0
T
(22) lim t'Ta(t,z)dt =1/2, 0<z<1,
n—0oo 0
1
(23) lim [ Ta(t,2)dt=1/2, 0<z<]1,

T

Fig. 1

Proof. Let Y be any fixed positive real number and choose A, such that

2 . )
A, >0and A\, < :“an < Au41, An denoting the n-th positive zero of equation (14). The
integral countour I' = Ty, U T2y of the figure Ivis suggested by J. Betancort in [1],
where I'; , and Iz y are, respectively, the finite parabolic arcs:

Tin={W=u+iveC:Re2yw=A,)} =

‘ A2 - \?
{w=utiveCiu=—" ,v=A;'\,z\e[—Y,Y]},

rz'y={w=u+ivEC:Im2\/E=Y}=
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LR & A
{fw=u+iveC:u= —4—Y,v= 2,2—,/\6 [-An, Anl}.
Next we study the function

C,(wz)
" wCy(w)’

(24)

The residue at the pole w = A, which is the m-th root of the equation C,(w) = 0, is

C,(Amz)
AmCu-{—l('\m).

Moreover, (24) has another pole at the origin, whose residue is —1.
We make use of Cauchy theorem of residues to obtain

1 -C, (w:c) _Cu(Amz)
ami b wC,(w) 0= "1 Z *mCorOm)’
that is to say
! o 1 C,(wz)
(25) /0 Ta(t,z)dt =1 — 2mf wC,,(w)d

by taking into account (19) and (9).
On the other hand, we infer immediately from (11)

lim l C,(w) |= 1
lw|—o0 w—u/2—1/4{ei(2\/$—wr/2—1r/4) + e—i.(Z\/G—wr/Q—ﬂ-/Q} 2\/1_r'

Consequently, there exist positive constants ¢; and ¢z so that

|Cu(w)] € er|w| /2714 . exp [Im(2/w)|
(26) ’
|Cu(w)] > ca|w]| /2714 exp |Im(2/w)]|

for |w| adequately large.
First of all, note that the use of (26) justifies the following result on I'zy:

An o o= (=VEY]
delg/ ae TV N2 4 iY/2d) <

wC,(w) o @A

2y

4c e~ (1-VEY

= cgzv/Z-l/l n 0,
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as Y — oo, independently of the value of n. Therefore. taking limits as Y — oo in
(25), we obtain

v 1 Cu(wz) .
(27) /0 t'To(t,z)dt =1 - 3 .. wC, (w)

where now I',, denotes the infinite parabola

I, ={weC:Re2y/w=A,}=

(28)

2 _\2
{w=u+iv€C:u=ﬁﬂf—,v:%ﬁ,—oo</\<oo}

Finaly, with the same sort of arguments we come to

C,(wz)

461
<
b wCo(w) ™

— 0,
S A1 = R T

as n — oo, since A, ~ (n+v/2+ 1/4)7r ([9, p.156] and [19, p.584]). Letting n — oo in
(27) we deduce the desired result.
To establish (22), by invoking (9) and (19) we can write

. "L 2t C (Amz)Crt1(Ama)
(29) /0 t“T,(t, z)dt = Z 3Csy Oon) .

m=1

Note that the general term of the sum on the right-hand side of (29) turns out to be
the residue of the function
rw’z*t{C,(w)D,(zw) — C,(zw)D,(w)}C\y41(zw)
Cu(w)

at the simple pole w = A,,, which is the m-th zero of equation (14). By applying again
the Cauchy theorem it is easy to see that

{C.(w)D,(zw) - C,(zw)D,(w)} "“((;;D)dw.

In order to evaluate last integral as ¥ — oo and n — oo independently, letz
be arbitrary fixed in 0 < z < 1. Then, |w| and ®|w| take larger values as |w| — oo.
Therefore, the asymptotic expression (11) can be used to replace the right-hand side

in (30) b
";1( > 1 dw cos(4\/17-—2\/ﬁ—u7r/2-—1r/4d
(31) m{f—_f wcos(2y/w —vr /2 — 7 /4) w}.

fd_w = 271,
w

(30) /0 Tt ) dt =

It is evident that
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while the second integral in (31) contributes O(1/n) over the arc I'y, and O(1/Y)
over I';)y. Then, (22) is quikly inferred by taking in mind the above considerations,
provided that n — oo and ¥ — oo.

Making use of the aforementioned integral contour I' = T'y , U T2y, the same
procedure allows us to find the following integral representations of Hankel-Schlifli type
(19, p.582] for T, (z,t), along the infinite parabola T, given by (28):

_ 1 tC,(zw)Cypa(tw) — zC, (tw)Cp i1 (zw)
(32) Ta(2:1) = 303 /r O ) R

0<z<1l,0<t<l,z#¢

()  Ten=s / w"{cu(w)Du(zw)Euf;()zwwu(w)}cu(tw)dw,

0<t<z<l1;and

w’{C,(w)D,(tw) — C,(tw)D,(w)}C,(zw)
o) dw,

1

(34) To(z,t) = Z/F“
0<z<t< 1.

We can exploit these formulas to get some interesting boundness for Ty(z,t):

Lemma 2. For certain positive constants K1, K2 and K3 we have
Ky(zt)-v/2-1/4
-z|(2- vz - V1)
Ko(zt)—v/2-1/4

Wz - Vil

‘v K3 t 241/
/0 t'Th(z,t)(t — z)dt| < RO \/‘_\/Z)(;) +1/4

ITn(z,t)ls" O<z,t<l, z#t

|Tn(z, t) <

Through a reasoning similar to the one given in [19, p.589] with respect to the
Fourier-Bessel series and with the help of Lemma 2, we can assert.

Lemmma 3. Let v > 0 and assume that 0 < a < b < 1. If f(t) is a function
defined in the interval (0,1) such that

1
/ /214 f(¢)|dt < oo,
0

then one has

b
lim / t“Tp(z,t)f(t)dt =0
4. Cepanxa, ku.1-2 ¢
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for all z ¢ [a,b].

Next, we enunciate the most meaningful result of this section.

Theorem 1. Let v > 0. Assume that f(t) is a function defined and absolutely
integrable on (0, 1) such that

1
/ /2714 £(¢)|dt < oo.
0

Then, the Fourier-Bessel-Clifford series ezpansion

oo

z 4, Cy(An)

m-1

whose coefficients are given by
1 1
Ay = —2—/ t“C,(Amt) f(t)dt, m=1,2,3,...,
A v+1 m) 0
converges and its sum is }[f(z + 0) + f(z — 0)] in a neiborhood of every point t = z

where f(t) is of bounded variation.

Proof. In view of (18) and (20) we can set

Su(z) = f(z - 0)/0r t*To(z, t)dt — f(z + 0)/1 t*Tp(z, t)dt =

(35)
T 1
/ t“Ta(z, t)[f(t) — f(z — 0)]dt + / t"Tn(z, t)[f(t) - f(z + 0))dt
0 E
Now taking limits as n — oo, we conclude that the left-hand side of (35) tends
to

lim S,(z) = -(f(1:+0)+ f(z - 0)],

by virtue of (22) and (23), whereas the right-hand side vanishes by invoking Lemma 3
and another analytical considerations.
Remark 1. Expression (25) justifies rigorously the following Fourier-Bessel-

Clifford expansion
i (An)
n=1 ’\ v+1(’\ )

obtained formally by N.Hayek [9, p.167]. -
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Remark 2. In the sequel L2(0,1) denote the linear space of all functions f(t)
square integrable on (0, 1) in relation with the weight function ¢, which is such that

/l t¥|f(t)|%dt < oo.
0

Proceeding as in [20,10,2] we can establish
Theorem 2. Letv > 0. If f(t) € L2(0,1), then

lim /1 t|f(t) — Sn(t)|?dt = 0.
n—oo 0

In other words, the collection of eigenfunctions {C,(AnZ)}, N is @ complete orthogonal
system in L2(0,1).
Remark 3. Now we pose the Sturm-Liouville problem

(A7 + A)e(z) =0, v 20,
36 >
(36) P
where
(37) A, =zD*+(1-v)D = Dz**'Dz™".

Because of (6) the general solution of (36) is expressed by
¢(z) = A(N)CJ(Az) + B(A)D}(Az),

for arbitrary constants A(A) and B()). If we choose the roots of C;(A) and impose the
boundary condition (1) = 0, it is inferred that B(A) = 0. Observe, in this point, that
C;()) possesses the same positive roots A,, as the function C,(A), since the additional
zero A = 0 occuring when v > 0 supplies no eigenfunction.

The family {C;(Amz)},cN also defines an orthogonal system of eigenfunction
on the interval (0,1) with respect to the weight function z~¥, verifying

1 :
—v e . _J o if m#n,
[ = ermai iz = { Sz . it mon

Last orthogonality condition permits to express, at least formally, an arbitrary
function g(z) by means of the expansion

o0

(38) 9(z) = Y a5Ci(Ana),

m=1

the coefficients being evaluated through

(39) m “YCI(Amt)g(t)dt.

1 1
= t
ARHIC2, 1 (Am) /o
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We refer to (38)-(39) as the complementary Fourier-Bessel-Clifford expansion
by its analogy with series (16)-(17), as we shall see later on.
Using argument we can prove a result analogous to Theorem 1.

Theorem 3. Letv > 0. If g(t) is a function absolutely integrable in the interval
(0,1) such that

1
/ t=v/31/41g(¢)|dt < oo,
0

then the Fourier-Bessel-Clifford series (38), the coefficients A%, being computed through
(39), converges and its sum is [g(z + 0) + g(z — 0)] in a neighborhood of every point
t =2z € (0,1) where g(t) is of bounded variation.

Remark 4. It is worth emphasizing here that the expansions (16)-(17) and
(38)-(39) coincide only when v is an integer. It is obvious for » = 0. Assume that
v = r denote a positive integer, the same reasoning being appropriate for any negative
integer. In view of (4) and the first formula in (6), the expansion (16) of negative
integer order v = —r becomes

(40) f(@) =Y amCr(Amz) = Y amCr(Am2),
m=1 m=1
since C_,(z) = C>(z), r=0,1,2,..., where

(41) Ay = N.C?

_llam_) /01 177 C_p(Amt) f(t)dt.
On the other hand, (1) and (8) provide the recurrence relation
(42) 2Cyy2(z) — (v + 1)Cosa(z) + Cu(2) = 0.
If we put v = r — 1 and invoke (4) and (14), we led to
C2 1 (Am) = (1) TN Crea (M) = AECE (M)

K

By this reason, (41) adopts definitively the form

1 1
= “TCr(Amt) f(t)dt
(43) a A?:+lCS+I(Am)-/O t Cr(’\ t).f( )

which implies that a,, = a},.

By comparing now (40)-(43) with (38)-(39) we can conclude that the Fourier-
Bessel-Clifford series (16)-(17) of negative integer order agrees with its complementary
expansion of positive integer order. In other words, the series expansion (38)-(39)
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of positive integer order can be employed to replace the coresponding Fourier-Bessel-
Clifford expansion of negative integer index.

3. The finite Hankel-Clifford integral transformation of first kind. The
theory developed in the preceding section enable us to introduce immediately the finite
Hankel-Clifford integral transformation of the first kind order » > 0 of a function
defined in 0 < z < a through

(44) b {f(2)} = fin(n) = /: zYC,(Anz) f(z)dz.
The corresponding inversion formula
_ = _ _ 1 > Fl_,,(n)
(45) br W fuln)} = f2) = —5 ; 3T ) O )

is suggested by the associated series espansion of Fourier-Bessel-Clifford type. Here A,
denote the n=th root of the equation C,(Aa) = 0.

Theorem 4. Inversion theorem. Let v > 0. If f(t) is a function absolutely
integrable in (0,a) such that

/ t*/3=1/3 f(¢)|dt < oo,
0
then the series ezpansion (45) converges and its sum 1s
“1(F 1
bl {fiu(n)} = 5Uf(z +0) + f(z - 0))
in a neighborhood of every point t = z € (0,a) where f(t) is of bounded variation.

Proof. Note that the integral which defines the finite transformation (44)
exists always. Indeed, by the virtue of (10) and (11) we have

/a zYCy(Anz)f(z)dz
0

<K / "2V f(2)|d,
0

for certain constant K > 0. The remaining of the assertion follows immediately from
Theorem 1 concerning the ordinary convergence of the Fourier-Bessel-Clifford series.
Taking into account (8), (9) and (14) and integrating by parts twice, we get

bi{Af(2)} = /0“ C.(Anz)Dz**' Df(z)dz =

M @], + dn [ 2 Con () 2z =
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M54 () @) = [ 2 Culdn) )
Under the assumptions v > 0 and f(z) € C?([0,a]), we find
b1u{Avf(2)} = =Anb1{f(2)} + Ana* ! Cuyr(Ana) f(a)-
Moreover, when f(a) = 0 it follows

(46) b {ALf(2)} = —Aabru{f(2)}-

The complementary finite Hankel-Clifford integral transformation of first kind
and order v > 0 of a function g(z) defined in 0 < z < a is given by means of

(47) b, {0(2)} = §.(n) = / T 23 (Anz)g(2) da,

whose inversion formula is expressed through

* —1f_= . _ 1 > gl,u(n) Ct A
(48) bl,u {gl,u(n)} - g(.’t) - a”+2 1; /\12|u+103+1(Ana) u( ﬂz)’

Starting from Theorem 3, an assertation similar to Theorem 4 is proved in
relation with the finite transformation (47).

Theorem 5 (Inversion theorem). Let v > 0. If g(t) is a function absolutely
integrable in the interval (0,a) such that

/ t=v/2=1/4g(t)| dt < o0,
0
then the series expansion (48) converges towards the sum
“1f.m 1
b7, {81, (n)} = Zlo(z +0) + g(z - 0)]

-
in a neighborhood of every point t = z € (0,a) where g(t) is of bounded variation.

If we assume that v > 0, g(t) € C?*([0,a]) and g(0) = g(a) = 0, we get the most
interesting operational rule of the transformation b] , namely

(49) ;,V{A:g(x)} = —’\nb;,u{g(z)}'

When the finite transformations by, and b7, and their respective inversion
formulas are studied in detail, it is easily seen that most of the porperties of both
transforms differ only with respect to the sign of parameter v. In fact:
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(i) Note that the differential operators A, and A} of order v > 0 fulfil the
relation A} = A_,, by virtue of (13) and (37).

(ii) Recall that C,(z) is a solution of (1), whereas C}(z) verifies (7). That is,
the multiplication of C,(z) by z“ has only repercussions on the sign of parameter v.

(iii) On the one hand, {C,(Amz)},eN forms an orthogonal system with re-
spect to the weight function z¥; on the other hand, {C;(Amz)},,eN constitues another
orthogonal system with regard to z7".

(iv) We notice that the hypotheses in the paramount results (Theorems 1,3,4
and 5) distinguish exclusively in the sign of parameter v.

(v) As an immediate consequence of Remark 4, it follows that the finite trans-
formations (44), (47) and their inverses coincide for every integer value of vq namely,

bi—r=b}, and b;', =0b;,7", r=0,1,2,...
All the above considerations lead us to introduce the notation

_f Cuss(2), if v2>0 _
q:l"§'-’(‘z) = { C:,,_,(Z), if v<0 (3 = 0,1)

and

h _ bl,y, if v Z 0
WE b, if v<0

In this fasion, the finite Hankel-Clifford integral transformation of the first kind
and arbitrary real order is defined according to

v

(50) h1,{f(z)} = fiu(n) = ‘/(; ¢, (Anz) f(z) dz.
Its appropriate inversion formula will be given by
-15F _ _ 1 - fl,u(n)
(51) b fn(m)} = f2) = =53 ; 3o, Oa) & )

Thus, Theorems 4 and 5 are summarized in the unique assertion

Theorem 6. Let v be an arbitrary real number. If f(t) is a function absolutely
integrable in (0,a) and satisfying the condition

/zm4Mﬂmm<w,
0

then the series (51) converges, its sun being

W) = 51/ +0) + 1(z - 0)],
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in a neighborhood of every point t = z € (0,a) where f(t) is of bounded variation.
The operational formulas (46) and (49) can be regrouped in the expression

(52) hl,u{Au.f(z)} = _/\nhl,V{f(z)}a

which holds for any real v, in accordance with the above convention.

To illustrate the applications of the finite Hankel-Clifford transformations, we
wish to solve the following problem involving the Kepinski-Myller-Lebedev partial dif-
ferential equation ([11], [19, p.99]), of course, now in a finite interval:

2
8_u+(1+u)@_”6_u___0’ 0<z<a, t>0
(53) 3:: 8t
u(a,t)=0, t>0 :

u(z,0) = f(z), 0<z<a,

where v stands for an arbitrary parameter and g > 0.
Set u(n,t) = hy,{u(z,t)}. By using the operational ryle (52), equation (53)
converts into P
—Ant(n,t) - paﬁ(n, t)y=10
whose solution is
u(n,t) = fiu(n) - exp(=Ant/p),

where f),(n) = hy,{f(z)} and A, represents the n-th positive zero of the equation
Cy,(Aa) = 0. The inversion formula (51) provides us with the required solution

fru(n)-exp(—A nt/k) o
(54) u(=,1) a"+2 Z A€ 41 (Ana) “(a).

That (54) is exactly the solution we need, can be shown through a procedure
analogous to the described in [4, p.191].

Remark 5. The Fourier-Bessel series expansion ([4, p.181], (7, p.91], [19,
p.576], [20], [21]) and the finite Hankel transformations ([16], [17, p.446]) and their
applications have to be restructed to the case » > —1/2. In this work, the simultaneous
research of the Fourier-Bessel-Clifford series expansions (6) and (38) and finite Hankel-
Clifford transformations (44) and (47) allows us to carry out a unified approach. This
culminates in the introduction of the finite transformation (50)-(51) of arbitrary order,
which can be used in solving a class of Kepinski partial differential equaiton no matter
what the real value of v may be.
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