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BEST ONESIDED APPROXIMATION AND APPROXIMATION
WITH TRIGONOMETRIC OPERATORS IN Lp, o< P <1

S.K.JASSIM

ABSTRACT. V.Hristov (1989) used the locally global norm ||f|ls, for bounded
functions and proved that the best onesided approximation of a 2w-periodic bound-
ed function with trigonometric polynomials of degree n in the norm Lp,1<p< @
is equivalent to the best approximation with trigonometric polynomials of degree
n in the norm || - ||&,P, 1 < p < co. L.Aleksandrov and D.Dryanov (1989), (1991)
proved the equivalent proposition for approximation with entire functions from
exponential type in the quasi-norm || - ||, 0 < p < o0.

In this paper we prove the equivalent proposition for the best approximation
with trigonometric polynomials in the locally global quasi-norm || - I 1, 0<p<l and
we express the relationship between the best onesided approximation of the functions
and their error with some discrete operators in locally global quasi-norm || - || 15, 0<
p< 1

1. Assertions. Let f be a 2r-periodic bounded measurable function defined
on Q= [-m,7|(f € Lwo)- .

We denote by ||f|l, the L,~ quasi-norm (0 < p < 1) of f € Ly. For f € Loo we
denote by || f||s,» the locally global quasi-norm of f which is given by (6 >0, 0 < p < 1):

x > 1/p
1) W fllss = ( [ ewiison: (Evanyy dx) ,
where
(2) U(6,2) = {y € [-ma]: |z -3l <6/2).

We denote by 7}, the set of all trigonometric polynomials of degree n. We denote
by ET(f), the best approximation of a given function f € Loo(f2) with trigonometric
polynomials from 7, in the metric of the space L, which is given by:
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EX(f)p:= inf{|lf = Tllp: T € Tn}.

The best onesided approximation of a function f € Lo (f2) with trigonometric
polynomials from T, in the metric of the space L, is given by:

EX(f)p:= inf {|IT* =T"||,: T* € Tn, T™(2) < f(z) < T*(z), z € Q}.

The best (onesided) approximation of a function f € Loo(R2) with polynomials
from T, in the metric (1) is given by:

EZ(f)&.p = inf{||f = Tllsp: T € Tn},

EX(f)sp = mf {IT* =T |lsp: T* € Tn, T™(2) < f(2) < T*(2), z € Q}.

Let
(3) Tgm = 27k/(m+1), k=0,1,...,m.

For f € Lo[0,27] we define the following discrete norms:

2T — e
(4) £z, :=< Elf(zk.m)v) :

m+1 —
where zj ,,, are defined in (3).

Lemma 1. The quasi-norm || - ||sp, § > 0, 0 < p < 1 has the following
properties:

(5) If + gllsp < 2727 (I fllsip + llgllsn) »
(6) flls < 1l fllsps 6 < &%

(M) 1 £llp < Nl fllsps

(8) IFC+2)llsp = UfCllsps = € R;
(9) 1 fllmsp < m*?||fllspy m natural;
(10) £ llzz, < IS llx/emar)5

where || f||Lz, is given in (4).
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Proof. The inequalities (5) — (7) follow from the definition of the quasi-
norm (1); (8) follows from the equality fs(- + h)(z) = fs(-)(z + h), where f5(z) =
sup{|f(t)[: t € U(s,z)}; (9) follows from (8) and the inequality

m-1

fms(2) < Y folz + (2k = (m - 1))8/2).

k=0

(10) follows from the inequality fs(t + zx,m) > |f(zk,m)| for t € [-6/2,6/2).
We shall use the properly normalized Jackson kernel:

@, q(t) := [sin %] u [[sin nt]/[sin %]] i ,

where r and n are naturals and ®, ,, is a trigonometric polynomial of degree r(2n — 1).

Lemma 2. The polynomials ®, ,(t) have the following properties:

(11) ®,n(t) 2 1, [t| < 7/(2n);

(12) ®,n(t) < C(r);

(13) sup{®,.(t): t € [mr/n,(m+1)7/n]} < C(r)m™ %, m=1,2,---,n—1;

(14) sup {®,.(t): t€ [(m - 1)x/n,mnr/n]} < C(r)lml'z', m=-n+1,---,-1;

1\ /7 1
(15) 1#aly €0 (3) L 0<pSt P> o

Proof. To prove (11) it is clear that &, ,(7/(2n)) = 1, ®,, is an even poly-
nomial and ®, ,(t) is decreasing in [0, 7/(2n)]. Therefore &, ,(t) > 1, |t| < ©/(2n).

Let t € [m"l,L"%l-)l] Then

®, (1)

IA

[sin(x/(4n))]*" / [sin %] S e(r)/ [nb sin?" %]

e(r)/ [n¥ sin?"(mn /(2n)))

IA

e(r)ym=7,

IA
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which proves (13).
Relation (14) follows since @, ,(t) is an even polynomial and from (13). In order
to prove (15) take into account that ®, () is even and (12) and (13). We get

©/n
[|®rnll5 / , Q,_n(z)”dz-{—/)' e/ ®, .(z)" dz

x/n *
= 2/ &, . (z)Pdz + 2/ ®, .(z)Pdz
0 /n

n-1 (m41)x/n

< 2me(r)P/n+2 2 c(r)’/ 1dz [ (m?™P)
m=1 mn/n
< o(r)?/n+¢(r)rn? 2 mirp

m=1

< ¢(r,p)/n.
Lemma 3. Let n, m be natural, 0 < p< 1 and T € T, then

n\1/p
(16) ITle/mp < C@) (14 22) Il

Proof. For z € [-7, 7] let us denote by £; a point such that
Trm(z) = sup{|T(¥)| : |z —y| < 7/(2m)} = |T(&;)| and |z — &| < ©/(2m).

Using the inequality |a|? — |b|? < |a — b|® where a and b are real (0 < p < 1),
we get

Ty = 1T = [ Tem@)Pdz = [ ()P do

= [[werds- [ ir@pd

-

n L (:
s_Hﬂ&Wﬁﬂmrus[l/ T'(t) def? dz

n s n z4x/(2m)
s/l/ mmuwas/[ \T(t)| de]P dz

- - Jzr—x/(2m)
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i ©/(2m) P
= / / |T'(z + t)| dt| dz
- -n/(2m)
s us , P
= / [ / X(=x/(2m).x/@m))(DIT"(z + 1) dt] dz
where X(_r/(2m),x/(2m))(t) is the characteristic function of the interval [—z%, ;=]
We shall use (11), (15) and the following Nikolski inequality between different

metrics (see [7] theorem 4.9.2 or [4]).
fPeT, 0<p;<p <o0,then

1/p2

an [ ipor " < Cln pyntIim [ 1pwraf

We obtain (py = 1, p2 = p, P(t) = &, n(t)T'(z + ), » > 1/2p)
L g 4
/ [/ X[~=/(2m),x/(2m))(DIT'(z + t)| dt] dz

<[ [ smtira+ o] e

- -

<c@pen-n+a [* [ e, 0@ +opdds

-

<cnlrzm-1+al (1) [ irards,
Using Bernstein’s inequality (see [6] or [5], 0 < p < 1), we get

17117

n/m,p

IA

715+ CCrplrem = 1)+ n'~> () w27

IN

C(r,p)(1 + n/m)'~P(n[m)?||T||2
C(p)(1+ n/m)||T|l5.

IA

Corollary 1. If T € T,, and n/m < C, then

(18) ITllp < ITllx/mp < C@ITIlp, 0<p< 1.

Let f € Lo[—m, 7], r, n be natural, G € T),. Define
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n

(19) S*(f,2) := G(z) £ nr~? / &, .(z - t).sup{|(f - C)¥)|: v € U(%r,t} dt.

-

Lemma 4. (3] The polynomials S*(f,z) € Tax(mN)y N =1(2n—-1), r, n
are natural and

(20) 57(f,2) < f(z) < §*(f,2).

Let F,.(z):= [[sinnz/2]/[nsinz/2]]*", be the general Jackson kernel.
We have F; n(z) € Ty(n-1)-
Now let

Dp(z) := [[sin 2m2+ !

.z
z]/[2sin 5]]
be the Dirichlet kernel.

We have that
Imtl  ifk=0

D (zk2m) := { 0 if k=1,2,...,2m.

Let us define (N = r(n — 1))

P, n(z) := Don(z)Fra(z),

o 4N
Lan(f:2) = sy 31 > f(zkaN)Pren(z — zhaN).
k=0

Because of P,, € T3n, we have that Lyy € Tsn.
Clear that Lan(f,zk4nN) = f(Zkan), k=0,1,...,4N.

Lemma 5. LetT € Ty, N =r(n—1), then

(21) Lsn(T,z) = T(z).

Proof. Let us recall the interpolation polynomial

9 2m

Z f(zk.Zm)Dm(z - zk.Zm)-

In(f, =
(f2) am+1 &
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For every R € T,,, we have R(z) = I,(R, z).
Then in case R(t,z) = T(z)Frn(t —z), T € T}(n-1), we have (N = r(n—1), R € Ton)

4N

2
> T(2k) Frn(t = 2k) Darn-1)(z — 24), Tk = Zian-
k=0

R(t,2) = T(2)Frn(t-2) = ;37

For t = z, we get (F,,(0)=1)

2 4N
R(z, z) = T(I) = 4N + 1 ET(zk) [Fr,n(z - zk)Dzr("_l)(z —_ zk)]
k=0
2 4N
= i hEOT(zk)Pr,,.(z —z4) = Lan(T,z).

Lemma 6. For f € Loo[~7,7], N =r(n—1), 0 < p <1, we have (r > 3)

(22) ILsn(DIE < Co.) fllez,,-

Proof. From the definition of Lan(f,z) and (a + b)? < aP + b? for every
a, b> 0, we get

o 4N .
(23) Iav(l < g7 R [ 1Peato de

Now we have

1r m/(4N+1) "
(24) / | Prn(2)|P dz = 2 / +/ |Prn(z)|Pdz = Ay + Ay .
- 0 L

/(AN +1)

>

/(4N +1)
A < 2/0 (4N + 1)z/2P/[2(2/7)(z/2) .[(nz/2)/[n(2/7)(2/2)])*" dz

(25) < C(rp)4N + 1)

sz /) P (@) ) ) da
n/(4N+1)

Let v = (4N + 1)z /x. Then
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(4N + 1)2pte /‘"ﬂ dv
A2 S C(r,p) (4N + l)nQrp 027p+p
26 < Cirp@N+1yp [ 2
(26) < CnpN+ 7 | o5
< C(r,p)4N + 177!
From (23), (24), (25) and (26), we obtain
o 4N
|Lsn (I} < C(r,p) [4—5,71‘ glf(u)l’] = C(r,p)|I flln-

Lemma 7. Let f € Lo,[—7,7], then
(27) I Lan(F)lliynp < C@, ) fllyN -

Proof. Using (18), (22) for T = Lan(f), Lan(f,zkan) = f(Zkan) and (10),
we get

| Lan()ll/np

IA

C(p,m)IILan ()l
C)IILan ()2,
C(p.)lfllez,,
C(, ) fll/Np-

INIA

IA

2.Main results. We shall prove the equivalence between the best onesided
approximation of a 27 -periodic bounded measurable function with the trigonometric
polynomials of order n in the quasi-norm L, and the best approximation of this function
with trigonometric polynomials of order n in the quasi-norm |[-[|1,, 0<p < 1.

We shall express the relationship between the best onesided approximation of
the functions and their error in the interpolation with operator Lan(f,z) in locally
global quasi-norm || - H%‘p, 0<p<l.

Theorem 1. Let f € Loo[—7,7]. Then (n naturaland0 < p<1)

(28) ET(f), < CO)ET(frjnp < EX(f)p-
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Proof. Let T~(z) < f(z) < T*(z), T* € T, such that ET(f), = ||T*=T~||,.
Using (18) with m = n, we get

Ez(f)l/n,p < EZ(f)l/n,p s "T+ T" ”l/n
< COITT =T ||,
< COEI(f)p

For the proof of the other inequality we shall use the polynomials $* which are given
in (19) with G € T, such that

E?\'(f)l/n.p = "f - G”l/ﬂ,p-
We will prove ||S+ - §5~||, < C(p)EZ‘(f)l/,._p, 0 < p < 1. From (12), (13) and (14), we

obtain

27" ) @ n(t)(f — G)on/n(z — t) dt

-

S+(j,z)—5"(f,z)

m n-1 (m41)w
= = + /
T [ﬂgl /:rur/n /;ﬂ’/n M‘—Zn-f-l ‘m—l!n]
By n(t)(f — G)aayulz — 1) dt
= L+1L+ s
-1 m+41)m
L < C(r) Em rn/ (f_G)zw/n(z_t)dt
m=1 mm/n
n-1 m+1)w o
< C(r)) m™n / " (f = G)axyalz — mn /n) dt
m=1 mn/n
n-1
< C(r) Y. m7¥(f = G)ansalz — mn/n) dt.

m=1
Analogously we can get
-1

IL<C(r) Y 1mI™(f = G)aasalz — ma/n).

m=-n+l
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/

Lo [ COf = Clanalz)dt < Cr)S = Glansn(2)-

-r/n

From the estimations of I;, I; and I3 we get

S+(faz) - S_(f’ .’l:) < z: m-2r[(f e G)h'/n(z - m”/n)

m=1

+ (f - G)hr/n(z + m”/n)] + (f - G)br/n(z)
From the last inequality and
n 4 n
[Eam] Szafn for a, 20, 0<p<1,
m=1 m=1

we obtain

15*(f,2) = S~(f,2)lP < C(p,7) Y (M +1)>P|(f = G)ansn(z — 2mx/n)[P.
m=0

If we integrate the last inequality and using (8) and (9), we get (r > 1/(2p)).

IS* =S~ II,

IA

C@,r)lf = Gllax/np
C(p7 r)”f - G"l/n.p < C(rvp)EZ(f)l/n,p-

IA

Therefore
EI(f)p < ISt = 57 llp < COVET(f)1/nsp-

Theorem 2. Let f € Loo[—7,7|. Then (0 < p < 1, n natural, N = r(n—1)
and r > 1/2p)

(29) EIN(f)p < COIIS = Lan(f)llynp < CO)EF(S)p-

Proof. From Theorem 1, we get (Lan(f) € Tsn)

(30) EIN(f)p < CO)EIN(F)iyNp < COIIS = Lan(f)lla/np

The inverse.
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Let T € Ty be such that ||f — T|ly/np = EX(f)1/np- Using (5), (21) and (27),
we obtain

If = Lan(F)llyne < 277 {IIf = Tlhynp + | Lan(f = T)llyn,p}
CR)EE(finp+C@INSf = Tlhynyp

C(P)EF(fin.p < C(P)ER(f)i/N p-

IN IA

IA
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