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ON PROCESSES ASSOCIATED WITH A SUPER - CRITICAL
MARKOV BRANCHING PROCESS

V.G.GADAG, M.B.RAJARSHI

ABSTRACT. We study a super-critical Markov branching process (MBP) condi-
tioned on the event of non-extinction. Such a process is a non-branching Markov
process. We discuss limiting behaviour of such a process. Further, we construct an
associated bivariate process which is based on the finite and infinite lines of descent
of particles of the M BP. We show that this process is a bivariate super-critical
M BP. The bivariate process retains the branching property when conditioned on
events of extinction and non-extinction. Asymptotic results for the bivariate pro-
cess are established. This approach also gives easier proofs of some of the known
results.

Introduction. We consider an one-dimensional, super-critical Markov branch-
ing process (M BP) {X(t);t 2> 0} defined over a Harris-tree probability space (w, F,P).
Let A = {X(t) # 0, for all t > 0} and B = A° be the events of non-extinction and
extinction, respectively. Let X(t,A) and X(t, B) be the restrictions of X(t) to the sets
A and B, respectively. Let (A, F4,P.) and (B, Fg,Pg) be the conditional probability
spaces over which {X(t,A);t > 0} and {X(t, B);t > 0} are defined respectively.

Following the arguments in Athreya and Ney ([3], p.52), it can be shown that
the process {X(t,B);t > 0} is a sub-critical M BP. The process {X(t,A);t > 0} is,
however, a non-branching Markov process; see Section 2. Further in Section 2, we study
the process {X(t,A);t > 0} in some detail and establish some asymptotic properties.
However, it is more easy to establish central limit theorems for { X (t,A);t > 0} via the
process {Z(t);t > 0} which is introduced below.

In Section 3, we study the bivariate process {Z(t);t > 0} where Z(t) = (Z()(t),
ZO)(t)) for all t > 0 and Z(™)(t) and Z®)(t) denote the number of particles among X (t)
with infinite and finite lines of descent, respectively. We show that {Z(t);t > 0} is a
bivariate, super-critical MBP. An earlier result in this direction is the branching
property of {Z()(t);t > 0); see Athreya and Karlin ([2]) and Yakymiv ([9]). Let
Z(t,A)and Z(t, B) be the restrictions of Z(t) to the sets A and B, respectively. It
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turns out that each of the processes {Z(t,A);t > 0} and {Z(t,B);t > 0} is a MBP.
The study of these associated processes allows us to obtain a number of results for
{X(t,A);t > 0} which are analogs of the results for a one-dimensional Galton-Watson
branching process (GW BP). We refer to Gadag and Rajarshi ([5]) for an earlier work
in this direction. Our results improve the understanding of the branching process. We
also refer to Yakymiv ([9]) for the study of the associated processes obtained using a
retrospective study of the pedigree from a reference time.

In Section 4, we establish a central limit theorem for the process { X (¢, A);t > 0}
via corresponding result on the process {Z(t,A);t > 0}.

2. Properties of the process {X(t,A);t > O}. Let {X(t);t > 0} be a
M BP as described in Section 1. Let the expected life length of a particle in the process
be b=!,0 < b < 0o. By f(8) = Y reo pf:, we denote the offspring probability generating
function (p.g.f.). We assume that Pop > 0 and po + p1 < 1. Let u(s) = b[f(s) — s],
A = /(1) and m(t) = E[X(¢)|X(0) = 1]. The transition probability function of the
above Markov process would be denoted by p;;(t), whereas the p.g.f. of X(t) given
that X (0) = 1 is denoted by F(s,t). Let ¢ be the smallest non-negative solution of the
equation u(s) = 0.

Following Muthsam ([7]), we observe that the process {X(t, A);t > 0} is a
Markov ' process whose transition probability function is given by pﬁ(3,8+ t) =
[(1=¢)/(1 = ¢")]pij(t). If Pa[X(0,A)=k] =1 and if u'(1) < oo, we have

k{m(t) — ¢*m(t, B)]
1 — ¢k ’

(1) EA[X(t,A)] = m(t, A) =

where m(t, B) = e~#* with 8 = —v/(q). It now follows that the process {X(t,A);t >0}
is non-branching Markov process.

3. The bivariate branching process {Z(t);t > O}. Let the particles on
the infinite lines of descent be known as type one particles and those on finite lines of
descent be known as type two particles. Since {X(t);t > 0} is a Markov process (M P),
we have the following representation for the process {Z(t);t > 0}:

Z(M(t) 2(1)
(2) Zs+t)= Y Zu(s, 1)+ Y Zi(s,2)
k=1 k=1

with Z(s,1) = (Z,(“)(a,i),ZP)(a, i), where Z‘(")(a, i) represents the number of type ;
descendants at the epoch s + t of the k-th member of the Z(i)(t) particles living at t¢.
In the expression (2), it is understood that the sum of the type Z? equals zero.

The following result which gives the branching property of the process {Z(t);t >
0} is the main result of this paper.
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Theorem 3.1. The process {Z(t);t > 0} is a two-type, super-critical M BP
which is nonsingular, non-positive regular and reducible.

Proof. The fact that the process Z(t);t > 0} is a two—type M BP follows from
the representation in (2). Now, arguing as in Theorem 2.1 of Gadag and Rajarshi ([5]),
we find that the p.g.f. of the process Z(t);t > 0} is given by

F(slv(l - q) + 32‘1,‘) il F("ﬁqat) F(’?q’t)}
1-g¢ g '

(3) Fa(s,t) = (FV(s,1), F®)(s,1)) = {

with s= (81, s2) and max{|s,|,|s2|} < 1. Here and throughout, the suffix ‘a’ indicates an

expression for the associated process. We observe that the classification of the particles
into two types is independent of the distribution of the life length and depends only on
the offspring probability distribution. Hence, the infinitesimal generating function of
the process {Z(t); t > 0} is given by

(4) ua(8) = (u)(s), ud(s)) = ("(81(1 - q) + 529) — u(s29) “(329)) '

l1-¢ g
‘The nonsingularity, non-positive regularity and the reducibility follow from (3).
Using (3), after making some computations, we find that the largest eigen-value of A,,
the generator of the mean matrix of {Z(t);t>0}is A. O
Remark 3.1. If u, and v, are the right and lgft eigen-vectors of A,, corre-
sponding to the eigen-value A such that the inner products <ug,v, >=<u4,1>=1

(where 1= (1,1)), then we have %, = (1,0) and v, = (1,¢/(1 - q)).

Corollary 3.1. The process {Z(V)(t, A);t > 0}, defined on (A, F4,P4), is a
super-critical Markov branching process with A as the criticality parameter.

Corollary 3.2. The process {Z(t,A);t > 0}, defined on (A,F4,Pa), is a
super—critical, two-type M BP. Further, this process is nonsingular, non-positive reg-
ular and reducible and its p.g.f. is given by (3).

Remark 3.2. Corollary 3.1. is the result on page 278 of Athreya and Karlin
[2]. It now follows from Pakes ([8]) that there exists a norming function C(t) such that
as t — 00,

(5) (ZM(t,A)/C(t)) = W.  as. (Pa),

where W, is scalar r.v. absolutely continuous on (0,00) and P4(W, > 0) = 1. Further,
E4(W,) < oo, if and only if

(6) Y jlogjps; < oo,

where {p#j;j > 0} is the offspring probability distribution of the process {Z(1)(t, A);t >
0}. Furthermore, the norming function C(t) is an increasing function of t, such that
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(i) for 7 > 0, [C(t + 7)/C(t)] = €™ as t — oo and :
(ii) KC(t)e™** — 1, as t — oo for some constant K, if and only if (6) holds.
Without loss of generality we can set K = 1.

Lemma 3.1. Ast — oo, {Z()(t,A)/X(t,A)) = 1-q a.s. (Pa).

Proof. Let {X(né, A);n > 0} and {Z(V)(ns, A);n > 0} be the discrete skele-
tons of {X(t,A);t > 0} and {Z(V)(t,A);t > 0}, respectively, where § > 0. From
Theorem 1.12.2 of Athreya and Ney [3] we have as n — oo,

(7) [ZM)(né, A)/ X (né,A)) = 1 —q as. (Pa).

Since (7) holds for all § > 0, the Lemma follows. O
Remark 3.3. From Lemma 3.1 and (5), it follows that as t — oo,

(8) (X(t,A)/C(t)) = [Wa/(1—¢q) as. (Pa).
Hence,
(9) [2)(t, A)/C(1)] = [Waq/(1-q)] as. (Pa).

Theorem 3.2. Let Z(0,A) = (1,0). Let C(t) and W, be as defined in Remark
3.2. Then,
(i) [Z2(t, A)/C(t)] »vaW, a.s. (P4) ast — oo.

(ii) Further, if u"(1) < oo, we have
(10) Vara[vaWa] = [ C | -gwane -l
“a"Wa ]_3? ﬁ'ﬂTﬁ

Proof. Part (i) follows from the expression in (5) and Remarks 3.1 and 3.3.
Part (ii) follows from Remark 3.2, because under the condition of part (ii), C(t) can
be taken to be e'. O

4. Central limit theorems. In this section, we establish a central limit the-
orem for the process {X(t,A);t > 0} via the central limit theorem for the process
{Z(t,A);t > 0}. Let W,(t,A) = e~ **Z(t, A) and ¢ = (1,0).

Theorem 4.1. Let Z(0,A) =¢,. Then,

(11) (i) [X(t, A)HZ(t, A) - (1 - ¢, )X (1,4)] = 2Z°,

(12) (i) (X(t, )" H[Z(t, A) - (- w v)] > 21,



Markov branching process 177

where 2 denotes convergence in distribution, Z* ~ N)(Q,Q), Zi ~ N2(Q,V), with

@ emwo-o [4 5] ve 5 [0

and each of the random variables (r.v.s.) Z* and Z] are independent of the r.v. Wj.

Proof. We first note that the conditional distribution of Z(t, A) given X (¢, A),
can be viewed as a truncated multinomial random vector with index X (¢, A) and prob-
ability vector (1 — g, q), since X (t, A) > 0 for every t > 0.

Let &; take the values €; or €; as the i-th of the X (¢, A) particles has an infinite

line of descent or a finite line of descent respectively. Let n; = & — (1 — ¢,¢) for
1=1,2,...,X(t, A).

By the classical central limit theorem, as n — oo, "—;[E?ﬂ 7) 2, Z*, where
Z* ~ N2(Q, Q) with Q as given in (13). This limit law is mixing in the sense of Renyi
(cf. Aldous and Eagleson [1] and references cited therein). If {a,; n > 0} is a sequence
of positive integer valued r.v.s. such that {an/f(n)} —-»Pa, where a is a.s. positive,
then, when f(,,) T oo, {a,T* 3% n;} is also mixing (Csorgo and Fishler [4]). Using the
continuous time version of this result, it follows that

X (t,A) p

(14) (X (6, )75 3 m] = 2" (mixing) ,

=1

since [X(t, A)e™ Y] L [Wa/(1 = q)] > 0 a.s. (P4) and e* T co. It also follows from
Aldous and Eagleson ([1]) that Z* and W, are independent r.v.s.
Part (i) of the theorem now follows on noting that the difference between

[(X(t,A))"3[2(t, A) — (1 — ¢,9)X(t,A)] and [X(t,A)]'%[Zx("A) 7:] converges to zero

=1
in probability as t — oco. Part (ii) of the theorem follows on choosing an appropriate
linear transformation in (11).

Theorem 4.2. Let Z(0,A) =€,. Let u"(1) < co. Then,

(15) (X (t, )" e (W (t, A)— v W] S X*,

where X* and W, are independent and X* ~ N3(Q, Q") with

o= (5 0] o 150 4]

4 Cepauka 3-4
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Proof. We note that under the condition of the theorem, C(t) can be replaced
by e**. Using the representation of type 2 for the {Z(t, A);t > 0} process, we observe

that, Z0(t.A)

(16) (Z(t, A) — e ™ uWa] = D 0l + Z(t, A)(I- % v),

i=1
where 7’s are independent and identically distributed random vectors, independent of
Z(W)(t, A), having mean 0 and covariance matrix given by (3.9). Since [e~*Z()(t, A)] —
W, > 0 a.s (P4) and e 1 oo, applying the central limit theorem as in the earlier

th we
eorem, have 20 (e.4)

(17) (2O, A3 Y 7f) = 23 (mixing) .
=1
The theorem now follows from expression (12), (16), (17) and Lemma 3.1, on
noting that given Z(t, A), the two terms on the right hand side of (4.6) are independent.
Remark 4.1. Using a linear transformation in (15), one can obtain a result
which is the analog of the theorem 2.9.2 of Jagers [6] for GW BP.
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