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LINEAR VECTOR OPTIMIZATION. PROPERTIES OF THE
EFFICIENT SETS

M.I. TODOROV

ABSTRACT.It is proved that the majority (in the sense of Baire category) of the
set of linear vector semi-infinite optimization problems are well-posed. The set of
problems for which the set of p-efficient points coincides with the set of weakly
p-efficient points is also discussed.

0. Introduction. This paper is motivated by some generic results in the scalar
optimization concerning such notions as uniqueness of the solutions, well- posedness of
optimization problems etc., given by Kenderov, Lucchetti and many other authors.
Next we will use a similar approach so as to extend these results over the linear vector
semi-infinite optimization.

First we shall set the definitions of the linear vector semi-infinite optimization:

Let T be a compact Hausdorff space and K" be the usual N-dimensional Eu-
clidean space. Let B : T — RN, b : T — R be continuous mappings and let
P1,P2,- -, Pt be elements in RV.

Define P:RY — R as

P(z) = ({p1,2), (P2, 2),...,{p1,2)), T € RV.

For each triplet

o €0 =(B,bP)eC(T)N x C(T) x RN
we consider (as in [1,2]) the closed subset Z(c) of RN described by side-conditions as
follows:

= {z € RN : (B(t),z) < b(t) for every t € T}.

The following linear vector optimization problems can be defined:

a) LVM(o) - determine p-efficient points subjected to side conditions;

b) LVW(o) - determine weakly p-efficient points subjected to side conditions.

In the finite dimensional space R' we consider the partial ordermg generated by
the usual positive cone R',. This means that, for z',2? € R, z' < 2% if this inequality
holds for the corresponding coordinates of 2! and z’.
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Definition 0.1. A point zo € Z(0) is called p-efficient if for each z € Z(o)
such that P(z) < P(zo) holds P(z) = P(zo).

Definition 0.2. A point zo € Z(0) is called weakly p-efficient if for each
z € Z(o) such that P(z) < P(zo) holds (pj,z) = (p;, zo) for some j € {1,2,...,1}.

Obviously each p-efficient point is also weakly p-efficient but the converse state-
ment is not true in general.

In the set © we consider the norm: ||o|| = ||Bllco + [|b]lo + || Pllg~:, where || - ||
is the usual sup norm. This norm turns © into a Banach space.

The multivalued mapping F : © — R" maps every o € O to the set of weakly
p-efficient points,

F(o) = {z € Z(0) : z is a weakly p-efficient point}.

It has been proved that F(o) is a closed subset of RY [3].

Now, taking into account [4], we shall give a definition of well-posedness in the
linear vector semi-infinite optimization.

Definition 0.3. The problem LVW (o) is well-posed if the mapping F is
continuous at the point o, (i.e. F is upper semi-continuous and lower semi-continuous
at the point o).

A similar definition can be stated for the problem LVM(o).

These definitions do not contain a property similar to the uniqueness in the
scalar optimization. Later we shall find conditions for the-linear vector semi-infinite
optimization which is similar to the uniqueness in the scalar case. Also, we shall
investigate the set of well-posed problems.

1. Well-posedness of linear vector optimization problems. Let us define
sets

Ly = {0 € © : LVM(0) has a solution} and

Lw = {0 € © : LVW(0) has a solution}.

Let A be a subset of some topological space X. intA denotes the set of all
interior points of A.

Now let us remind the theorem given in [5] which clarifies the relation between
sets Ly and Lw.

Theorem 1.1. Let compact T contain at least N points. Then
O #intLy C Ly C Lw Cintly.

It is worth mentioning that sets Ly and Lw do not coincide.
We need some additional definitions and statements:

Definition 1.2. We say that Slater condition is fulfilled for o € © if there
ezists z € RV such that (B(t),z) < b(t) for everyt € T.
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Now we define the set:
L,={0c€®:Z(o)#0}.
It is not difficult to prove (see for instance [6]) that:

Proposition 1.3. The Slater condition is fulfilled (for 0 € ©) iff o € intL, .

The set intL, is an open subset of ©, which is dense in L.

Lemma 1.4. Let (X,q) be a complete metric space and let V be an open
subset of X. Then there ezists a metric r(z,y) for the set V according to which V is a
complete metric space.

Let us consider the following metric on the set intL,:

r(z,y) = |lz = yll +11/f(z) - 1/ f(y)|, where

f(z) = inf{||z — y|l,y € O\intL,}.

This is a metric which turns intL, into a complete metric space and generates
in it the same topology as the original norm in ©. Now we restrict our considerations
over the set intL, with the metric r(z,y).

The replacement of the vector optimization problem by a family of scalar opti-
mization problems is called scalarization. Various scalarization techniques are treated
in [2,7). Next follows a theorem, very useful for our purposes. It may be used as a basis
for many scalarization procedures.

Theorem 1.5. Leto € ©. Then z € F(o) iff there ezist a = (ay,..., ),
a;>0,i=1,2,...,l and 2::: a; = 1 such that z is a solution of the problem

LM(ao) : min{{a, P(z)) : z € Z(0)}.

Let us define

B; — the closed ball in the RV with the radius 1,
F;:© — B;, Fi(o)= F(o)N B;,
A;={o€intL,: Fi(o) #0}, i=1,2,....

Proposition 1.8. A, is a closed subset of the setintL, for everyi=1,2,....

Proof. Let us fix i and consider the convergent sequence {0,}3%;, limp oo On =
0o such that for every n holds o, € A,, i.e. there exists z, € Fi(op).

Having in mind Theorem 1.5 we obtain that for every n there exists a" =
(a},...,a}), a? 2 0,1 =1,...,l and Y!_,a = 1 such that z, is a solution of
Lu(a™o). Without loss of generality we can consider that lim, .. @™ = a® and
limp—~oo Zn = Zo. It is obvious that a® belongs to the unit sphere in Rf, and that
llzoll <3. O
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Now we shall prove that zo € Fj(0o). For this aim we need the following
theorem given in [1]:

Theorem 1.7. If the set Z(o) is compact then the mapping Z : © — RV is
u.s.c. at the point o. If Slater condition is fulfilled, then the mapping Z is l.s.c. at this
point.

To complete the proof of the proposition we take some z € Z(0o). intL; is a
complete metric space, therefore gg € intL,.

Using Theorem 1.7 especially the Ls.c. of the mapping Z we obtain the sequence
{¥n}n>1 such that y, € Z(op),n=1,2,...and limy_,o0 Yo = z. For every n = 1,2,...
we know that (a”, P"(z,)) < (a”, P"(y,)) from what follows that (a® P%(zo)) <
(a®, P°(z)). But z € Z(0o) was chosen arbitrarily and therefore zo is a solution of
LM(a%0). Now using Theorem 1.5 we obtain that zo € Fi(oo). The proposition is
proved. O

Proposition 1.8. The mapping F; : A; — B, has a closed graph for every
i=1,2,...

Proof. We have to prove that if lim, oo (0n, Zn) = (90, Zo), Where z,, € Fi(ox),
n=12...and 0, € A;, n =0,1,2,..., then zo € Fi(0p). The rest of the proof is the
same as in the previous proposition. O

We need the lemma:

Lemma 1.9. Let X and Y be topological spaces and let T : X — Y be a
multivalued mapping with a closed graph. Let there ezist an open neighbourhood V' of
the point z € X such that T(V) is relatively compact subset of Y. Then the mapping
T is u.s.c. at the point z.

Having in mind that F(o) is a closed subset of R" and the previous proposition
we come to:

Proposition 1.10. For every i = 1,2,... the multivalued mapping F; : A; —
B; is upper semi-continuous at every point o € A;.

Now by means of the famous theorem of Fort [8] we are in a position to formulate
the following:

Theorem 1.11. For every i = 1,2,... there erists a dense and G5 subset M;
of A; such that for every o € M; the mapping F; : A; — B, is u.s.c. and l.s.c. at the
point 0.

The assertion in this theorem, which plays an important role in our assumptions,
does not mean exactly well-posedness of the problems LVW(¢) but something very close
to it.

2. Properties of the efficient sets. Let us consider some notations which
motivate the forthcoming definition. When ! = 1, then problems LVM(o) and LVW(0)
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— and sets Lys and Ly coincide respectively. Thus we obtain the well known linear
semi-infinite optimization problem:

minimize (p,z)
LM(o): { subject to
(B(t),z) < b(t) forevery teT

Various results are proved for the problems LM(c) similar to that given in [9].

Theorem 2.1. Let the compact T contain at least N points. Then the set
of points o € © for which LM (o) is Hadamard well-posed contains an open and dense
subset of the set L = {oc € © : LM(c) has a solution}.

We cannot expect a similar result for the linear vector semi-infinite optimization
but the above considerations suggest that:

Definition 2.2.  We shall say that the point o € © is "nice” if the set of
p-efficient points coincides with the set of weakly p-efficient points.

Next we show that the definition given above is essential, i.e. we shall prove
that most points (in the sense of Baire category) are "nice” in the case when T is a
finite set.

Some definitions follow:

Ty = {t € T (B(t),z) = b(1))
is the set of active restrictions at the point z € Z(0o).

D,(z) = {z € RV : there exists § > 0 such that z + éz € Z(0)}
is the cone of feasible directions.

We mention some theorems given in [9].

Theorem 2.3. Let o € ©. Then for every z € Z(co) D,(z) C {B(t) : t €
T(;)}*. If o € intL,, then D,(z) = {B(t) : t € T()}".

Theorem 2.4. Let o € © and ON+! be the origin of R¥*!'. Then o € intL,
if and only if intZ(o) # @ and ON+! ¢ {(B(t),b(t)): t € T}.
We define the cone:

1‘,(0) = co(cone{pl,pg, s »Pl})'
Using the definition of p-efficient (weakly p-efficient), points reported in [10],
and some trivial reasonings we reformulate the definition 0.1 (0.2) into:

Definition 2.5. Let 0 € © and the coneK*(c) be pointed (intK*(o) # 0).
The point z € Z(o) is p-efficient (weakly p-efficient) if (z — K*(0)) N Z(0) = {z}
((z—intK*(o))NZ(o)=10).

To the end of the paragraph we shall require that 7' = {t;,3,...,%}.

Lemma 2.6. Let o € © and yo € Z(o). There ezists € > 0 such that for
every y € 0,(yo) holds T(y) C T(VO)
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Proof. Let us assume the opposite, i.e. there exist sequences {€n}n>1, {¥n}n>1
and {tp}n>1 such that limp,_.co €n = 0, yn € O, (%) and t, € Ty \T(y)» = 1,2,....
Since T is a finite set there exists tg € T such that t; € T{Vﬂm)\T{W)’ whereby
(B(0), Ynm) = b(to). This means that (B(to),%) = b(to), i.e. to € Ty}, Which is
a contradiction. This completes the proof. O

Next we prove the main result of the article.

Theorem 2.7. Let the compact T be a finite set. Then the set of points o € ©
which are not "nice”, is of the first Baire category.

Proof. Let o € intL, be such that the sets of weakly p-efficient points and p-
efficient points do not coincide. This means that there exists yo € Z(o) which is weakly
p-efficient but not p-efficient, i.e. we can find zo # yo such that zo € (yo— K*(0))NZ(0)
and P(z0) # P(o).

We consider the number ¢ which was determined for the point yo € Z(o) in
Lemma 2.6. Therefore for every y € O.(yo) holds T, C T,,) and using Theorem 2.3
we obtain D,(yo) C Dy(y). By Theorem 2.4 we can construct the sequence {Zn}n>1
such that limp o0 Zn = Z¢ and z, € intZ(o), n =1,2,....

We consider the sequence {yn}n>1, Where yn =z, — yo, n = 1,2,...

It is obvious that for every n, y, € intD,(yo), i.e. for every y € O.(yo) and
n=12,...,yn € intD,(y).

Let (yo—zo,pi) > 0for i=1,2,...,j5 < land (yo—zo,pi) = Ofori = j+1,...,1.

Consider the sequence { Pn}m>1, Pm = (P1,---,Pj,Pj+1+ (%0 — Zo)/m,..., 1+
(yo — zo)/m). Since limyu oo Yn = Zo — Yo, then (yn,p;) > 0, i =1,2...,5 for enough
large n. We find the subsequence {yn,, }m>1 such that (y,,.,p:) < (||zo — wol* — v)/m,
for some small v >0and i =35+ 1,...,1L

Then for every i = 5+ 1,...,1,

(—!ln...,Pi + (yo - 30)/"‘) =

(=Ynms Pi) + (Unm» (Zo = ¥0)/m) (¥ = ||¥o = Zol|? + (¥nm,Zo — %0))/m > 0,

whenever m > mg for some large mg.

This entails immediately that int K*(o,,) # @ and y, € —intK*(om), where
om = (B,b,Py,,.), m 2> 1.

It is evident that for every m and for every yo € O.(yo) holds yn,, € intD, (yo) C
D,,.(y) and yp,, € D,,,(y) N —intK*(o,,) which shows that y is neither weakly nor p-
efficient point.

We put ¢ = max{||ly||,y € Oc(w)}, then o € A;,. We assume that o € M.
According to Theorem 1.11 it follows that the mapping F; : A; — B, is continuous
at the point . But lim,, . 0,n = o which contradicts the lower semi-continuity of
mapping F;.
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To complete the proof we have to apply the density results given in Theorem
1.1. The theorem is proved. O
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