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RADICALS OF CROSSED PRODUCTS
J. M. DIMITROVA

ABSTRACT. Let KJG be a crossed product of the group G and the ring K with
respect to the factor set p and the map o. In this paper, using simple techniques,
we prove that if G is an SN-group and K is a central simple F-algebra over an
algebraically closed field F of characteristic zero, then the Jacobson radical J(K ;G)
is trivial, i.e. J(KJG) = 0. Moreover, if H is a normal subgroup of G and G/H is
a locally finite group, then J(KJ H) is contained in J(K;G) for every ring K.

Let G be an arbitrary group and K be a ring with an additive group K(+)
without G-torsions. If K is a commutative ring with no nilpotent elements, then
the upper nilradical U(K,G) is trivial for each twisted group ring K,G. If K is a
simple ring or a commutative integral domain, then U(K 5G) = 0. Thereofore, if
K is a semisimple ring and the order of any torsion element g € G is invertible in
K, then U(K,G) = 0.

Let G be a multiplicative group and K be an associative ring with an identity.
Suppose that we are given a map 0 : g — go from G to the group of automorphisms
Aut K of K and a map p: (g,h) — p(g,h) from G x G to the group of units K* of
K. The family

p={p(g,h) € K" | g,h € G}

is called a factor set of G into K under the map o if the equalities

p(9,hf)p(h, ) = p(gh, f)p(g, )",
aga.ho a p(g, h)"a("‘)"p(g, h.)

hold for all g,h, f € G and a € K, where a?” denotes the image of @ under the action
of go € Aut K.

The ring K +G = K7 G is a crossed product [1] of the the group G over the ring
K with respect to the factor set p and the map o if K « GG is a free K-module with a
basis G = { € K +G | g € G}, where

gh = ghp(g,h), ag = ga*
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for all g,h € G and a € K. Thus every element z € K *G is uniquely written as a
finite sum of the form

(1) z=g,01+ 502+ -+ Jpan (@i € K).

If o maps G onto the identity automorphism of K, the crossed product Kx*xG
is called a twisted group ring, which we denote by K,G.
We shall denote by tr z the coefficient of the basis element 1 in the expression
(1) ofz. If
z= zia, (ag € K),

9€G
then the set
Supp z = {9 € G | ag # 0}

is said to be the support of z. The support subgroup of z is < Supp z >, i.e. the
subgroup of G generated by the elements of Supp z.

The Jacobson radical of the ring R will be denoted by J(R); the upper nilradical,
by U(R); the prime radical, by P(R) and the Brown-McCoy radical, by B(R). If
J(R) = 0, then the ring R is called semiprimitive and if B(R) = 0, then R is said to
be semisimple.

Let Gyer be the set of all elements of G mapped by o into the subgroup of inner
automorphisms of K. Then Gy is a normal subgroup of G. Moreover, it is known
(1) that if H is a subgroup of G, then Kj H is a subring of K + G where p and o are
restricted upon H x H and H, respectively.

Let I be a totally ordered set. A set (A;,V;; 1 € I) of pairs of subgroups of G
is called a series of G if

1. V; is a normal subgroup of A; for all i € I.

2. A is a subgroup of V; whenever ¢ < j.

3. G\1=J(A\Vi).

€l
The series is said to be Abelian if all the factors A;/V; are Abelian. A group with an
Abelian series is called SN-group [8].

It was shown in [8] that every group algebra FG of an SN-group G over a field F
of characteristic zero is semiprimitive. Similarly, it can be proved that the latter result
can be generalized for crossed products as well. In addition, we prove the following
result.

Theorem 1. If G is an SN-group and K is a central simple F-algebra where
F is an algebraically closed field of characteristic zero, then K *+ G is semiprimitive.

Proof. Suppose that J(K + G) # 0. It follows from [2] that

J(K+G)NK #Grer # 0
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and we have J(K * Gi.r) # 0 since
J(K#G)nKtGmg J(KtGh,).

Therefore, in order to establish that J(K * G) = 0, it is sufficient to show that J(K #
Gyer) = 0.

Since the automorphism go is inner for all g € Gier, we have a?? = cc,cu:t;1 for
each a € K and some a, € K*. We set § = ga,. Thus, ag = ja yields

KSGrer = K3 Gxer = K;Gxer-

So, in order to prove the theorem, it suffices to establish that J(K,G) = 0, where G is
an SN-group and K is a central simple F-algebra.
Let the element

y=gm+dm+-+0um

from J(K,G) be of minimal length ||y|| = n. According to [2], we may choose y so that

n=1L _
Let a # 0 be an arbitrary element of K. Consider the element

ay - ya = Y_Fi(avi - via).

=2

It belongs to J(K,G) and its length ||ay — yal| is smaller than n. Thus, ay — ya =0,
i.e. ay = ya which yields avy; = vy;a for all a € K. Hence, ; are elements of the center
F. On the other hand, o = 1 yields p(g,h)a = ap(g,h) for all g,h € G and a € K, i.e.
F contains the factor set p. So, the twisted group ring F,G exists and y belongs to it.
Therefore, according to [6], in order to prove that J(K,G) = 0, it is sufficient to show
that J(F,G) = 0.

Suppose that J(F,G) # 0 and z € J(F,G) is a nonzero element. Now we can
apply the approach from [8). Let z be represented in the form

z=g11+902+ 4+ Fnn.

As J(F,G) is an ideal of F,G, we can assume that g; = 1. Let H =< Supp z > be the
support subgroup of z. Then z belongs to J(F,H). Furthermore, H is an SN-group
and there exists a series (A;, V;; 1 € I) of H with cyclic A;/V; of prime order for each
i € I. Since H is finitely generated, there exists j € I so that A; = H. Weset v, = W.
Then H =< W,t > where t?P € W for a prime integer p. Thus, each element u of F,H

can be written as .
p-

u=Y 08 (Bi€F,W).

=0
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Let u be a primitive p-root of unity of F. We define the map

p-1 _ -1 _ )
p: Et‘ﬂ.’ - zt'ﬂi#'-
=0 1=0

It is clear that ¢ is an automorphism of F,Ii .
Let g; = t™w; where w; € W and 0 < m; < p— 1. Then g; = 1 implies
t™w, = 1 which yields m; = 0 and w; = 1. Since

H =< 91,92+ --y9n >=< Wyt >,

there exists m; # 0. Otherwise, all g; € W and W contains H which is impossible. Let
ma # 0.
The radical J(F,H) is invariant under the automorphisms of F, H. Hence,

p(z) =Y Frwau™ =Y Fyu™ € J(F,H),

i=1 i=1

where v; = W;p(t™, w;)"'a;. Since J(F,H) is an ideal of F,H, the product

n
zp™ =y ™

=1
also belongs to J(F,H). Thus,
z=p(z)—zp™ € J(F,H)

and ||z]| < [|=]|.

Going on, we come to the conclusion that there exists an SN-group, say M,
with an element of length 1 in J(F,M). Then it follows, that J(F,M) = F,M which
is impossible since F,M is not a radical ring. The contradiction proves the theorem. O

The approach used for Lemma 4.2 from [11] can be similarly applied to prove
the following result.

Lemma. Let F be a field and z be an element of F,G. In the case of char F =
p > 0, we suppose that Supp z contains no p-element. Then tr z = 0 if z is nilpotent.

We should recall that the additive group K(+) of the ring K has no G-torsions
if na = 0 yields a = 0 for any a € K and any integer n which is the order of any
torsion element of G.

It was proved in [11] that the group ring KG has no nonzero nil ideals if K(+)
has no G-torsions and U(K) = 0. Using a similar approach we shall expand this result
for crossed products.
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Theorem 2. Let G be an arbitrary group and K be a ring with K(+) having
no G-torsions. Then

1. If K is a commutative ring without nonzero nilpotent elements, then
U(K,G) = 0 for any twisted group ring K,G.

2. If K is a simple ring or a commutative integral domain, then U(K;G) = 0
for any crossed product K;G.

Proof. 1. Let K be a commutative ring and U(K) = 0. Suppose that
U(K,G) # 0 and let the element

z =Y giai € U(K,G)

=1

be nonzero. As U(K,G) is an ideal of K,G, we can assume that g, = 1. If Supp z
contains elements of prime power order, let m be the product of all prime g such that
Supp z contains g-element. Otherwise, we set m = 1. So, K(+) has no m-torsion as
K(+) has no G-torsions. Thus, may # 0.

The ring K is commutative and therefore P(K) = U(K) = 0. Thus, mey ¢
P(K) and hence, there exists a prime ideal P of K with ma; ¢ P. According to (3],
K,G/(K,G)P = (K/P);G where K/P is a commutative integral domain. Let F be
the quotent field of K/P. Then (K/P);G C F;G and

=) Glai+P)
=1

is a nilpotent element of F;G. Suppose that char F = p > 0. If m = 1, then Supp z
contains no p-element. If m > 1, then m and p are relatively prime since m(a;+ P) # 0.
So, Supp z contains no p-element again. The Lemma, applied to the nilpotent element
7, results in a;+ P = 0. The latter is a contradiction and we conclude that U(K,G) = 0.

2. Let K be a simple ring and suppose that U(K + G) # 0. According to [2],
we have U(K * G)N K * Gyer # 0 and therefore U(K * Gyer) # 0. Just as in the latter
theorem KJGyer = K;Gier and we can choose a nonzero element

z= ZEO.‘ € K;Gyer
=1

of minimal length for which g; = 1 and a; = 1. Following the proof of the same
theorem, we obtain that there exists the twisted group ring F;Gyer where F is a field
and z € F;Gyer-

If char F = p > 0, Supp z has no p-element, since K(+) has no G-torsions.
Thus, according to the Lemma, tr z = 0 in contradiction with trz = ay = 1. Hence,
U(K +G) = 0 for each simple ring K.
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Let K be a commutative integral domain. Suppose that U(K * G) # 0. It
follows from [6] that U(K,Gyxer) # 0 and it is a contradiction to the first part of the
theorem, since U(K) = 0. Thus, U(K * G) = 0 for each commutative integral domain
K. This completes the proof of the theorem. O

Corollary 1. Let K be a ring with char K = m > 0 and G be a group con-
taining no p-element for every prime divisor p of the integer m. If K is a commutative
ring without nonzero nilpotent elements, then U(K,G) = 0. If K is a simple ring or a
commutative integral domain, then U(K * G) = 0.

Indeed, in order to apply Theorem 2, it is sufficient to show that K'(+) has no
G-torsions. Let n be the order of an element of G. Then m and n are relatively prime
and there exists integers k and r with kn + rm = 1. If na = 0 for some a € K, then
kna + rma = a yields @ = 0. Hence, K(+) has no G-torsions.

Corollary 2. Let K be a semisimple ring and the order of each torsion element
of G be invertible in K. If K,G is an arbitrary twisted group ring, then U(K,G) = 0.

Indeed, if P is any maximal ideal of K, then K = K /P is a simple ring with a
unit and the order of each torsion element of G is invertible in K. Since K,G/(K,G)P =
K ;G [3], we obtain U(K;G) = 0, according to Theorem 2. Thus, U(K,G) C (K,G)P
for any maximal ideal P of K. Then

U(K,G) € (K,G)(NP) = (K,G).B(K) =0,

since the Brown-McCoy radical B(K) of K is trivial.

We notice that the latter corollary is also valid for crossed products in which
each maximal ideal P of K is G-invariant, i.e. gPg~! C P for all g € G.

The following theorem was proved by Villamayor in the case of a group ring
(see [9]) and it was generalized for crossed products over a field by Kolikov [5]. We
shall show that it holds for an arbitrary crossed product. For this purpose we have
used Ovsjannikov’s approach [7] who proved that if K is a radical ring and G is a finite
semigroup, then the semigroup ring KG is also radical, i.e. J(KG) = KG. Certainly,
the theorem can be proved following Passman’s arguments for group rings from [9] or
[10]. But the approach we use is more elementary.

Theorem 3. Let K + G be an arbitrary crossed product of the group G and the
ring K and H be a normal subgroup of G of finite indez. Then

JIK+H)K+G=K+GJK+H)CJ(K+G).

Proof. The equality

JIK+H)K+«G=Kx+G.J(K+H)
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is obvious since J(K * H) is an invariant ideal of K + H under the automorphisms of

K + H generated by the elements § (g € G).
Let II(G/H) = {91,92,---,9n} be a complete set of coset representatives for H
in G. Then each element a € K * G can be written in the form

n

a=zij,< (v.-GK-H).

=1
In order to prove that

K+G.J(K+H)C J(K+G),

it suffices to establish that
J(K+«H)CJ(K *G).

For the latter we need to show that the element 1 — az is invertible in K * G for each
a€ K+Gand z€ J(K + H),ie. for the element y = az there exists such an element
z € K + G that the equality

(2) y+z+yz=0
holds. It means that y has to be quasi-invertible in K + G [4] We seek z in the form
z2=70,% +Jauz+ - Tnlin,

where u; € K + H are unknown.
Ifa=0o0rz=0,then z=0. Let a and z be nonzero. Then equality (2) gives

n n n n
(3) E?ﬁvﬂ + E?ﬁ“ﬁ + 257.'”-‘2 251'“1 =0

=1 =1 i=1 j=1
We set w; = v;z € J(K + H) (i=1,2,...,n) and write down equality (3) as

(Frwr + Fawa + -+ Fown) + (Frn -+ Tauza + -+ - Jptin)

(4) +(@wr + - Fawa)Fyn + - (Frwr + - T Wn)Tn -

Let gigj = gi(ij)hi for all gi,g; € I(G/H), where h;; € H (1,7 =1,2,...,n).
In particular, k(¢,1) = k(1,1) = 1.

Since J,, 9, - - -, Jn are linearly independent over K + H, for the terms in (4)
containing J,, we obtain

B+ Him +hedin+ Y Fwdiu =0.

A(4)=1
>l
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This implies

(5) 1wy + Gt + Giwiur + E giwiu; =0,
k(3,5)=1
w>1

where

w) = p(g1,01)7; ' w1Gy, Wi = hijp(gi, ki)' p(9i, 95)7;  wiT;
are elements of J( K * H) as the radical is invariant under the automorphisms of K + H.
Thus, for the coefficient of g, in (5) we obtain

wy + up + wiuy + z wiu; =0
k(3.9)=1
>

and hence,

(14 w))uy = —wy — Z: wiu;j.

k(i.5)=1
>

The element 1+ w] is invertible in K + H since wj € J(K + H). So, u; can be represented
in the form

(6) up =y +72%2+ ...+ Yintn (i € K+ H).

We determine the coefficient of g, in (4) by the equality

Tawz + otz + GywnTatz + Jawayta + 3 Fiwidju; =0,
k(3,5)=2
J>2
after substituting u; by its representation (6). So, we have

wy + uz + wyuz + wH(y11 + Mav2 + ...+ Natin) + 2 wiu; =0,
k(1,y)=2
“>2
where the elements w} = p(gn,gz)!?;'wlﬁz wy = p(92, 0 )§1_1W2?h
w) = hi;p(92, his) 7 p(9:,9;)35 ' wiT;

belong to J(K « H) again. The latter equality can be written for suitable §; € K + H
as

uz + wyug + wimauz = By + Baus + ... + Batin.

As the elements w}, wj belong to J(K + H), the element 1 4+ w} + wjy; is
invertible in K * H. So, we can express u; in the form

Uz = Y21 + Yaaus + ... + Yantn,

5 Cepanxa 3-4
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where vo; € K * H.
Proceeding further, we obtain the system

uy =711 + T12u2 + ... + Yinln,
U2 =921+ 723Uz + ...+ Y2nln,
Upn—1 = Yn-1,1 + Tn-1,n¥n,

Un = Tn,1y

where 7;; € K+ H (i,j =1,2,...,n) are known. Now we can determine consecutively
Up, Un_1, ..., U1. Hence, there exists the element

n
z= Zgiu; €eKx*xG
1=1

for which
y+z2+4+yz=0

and therefore y = az is quasi-invertible in K + G for any a € K +G and z € J(K + H),
i.e.

K+G.J(K+H)C J(K *G).
The theorem is proved.

Corollary. If H is a normal subgroup of G and G/ H is a locally finite group,
then
K+«G.JK+H)CJ(K*G).

We shall show again that the element 1 — az is invertible in K % G for each
acK+Gandze J(K+H).

Indeed, if Go =< H,Supp a > is the subgroup of G generated by H and
Supp a, then |Go/H| < 0o and therefore z € J(K * Go). The latter implies that 1 — az
is invertible in K * Go. So, 1 — az is invertible in K *x G.

REFERENCES

(1) Bopm1,A.A. Cxpemennsle Npou3BeileHns NONyrpynmbl ¥ Kosibua. Cubupcxui
Mmamemamuvecxull acypnaas, 4 (1963) 481-499.

(2] Bosmu, A.A. Ckpemennble NpOU3BEeJeHUs MOJNYTPYNILI W MPOCTOrO KOJbIA.
Cubupexutl mamemamuvecxutl acypnaa, 5 (1964) 465-467.



Radicals of crossed products 195
(3] Bobm, A.A., C.B.Muxoscku. MaeMnoTeEThl CKpelleHHbIX npou3Bene M.
Hseecmus mamemamusecxozo uncmumyma, BAH, 13 (1971) 247-263.
[4] Mkexko6con, H. Ctpoenne konen. Mocksa, 1961.

[5] Konukos, K.X. ®ymnaMenTalbHBIA MIeal M palvKal Il>xekobcoHa CKpe-
LeHHBIX NpoM3Benenui (to appear).

[6] Muxoscku, C.B. Ckpellenasle npou3BeIeENs TPYNI U NPOCTHIX KoJen (to ap-
pear).

[7] OBcanrnkos, A.fI. O pamMkaabHBIX HOJYTPYNNOBBRIX KOJBNAX. Mamemamu-
vecxue samemxu, 37 (1985) 452-455.

[8] GREEN, J.A., S. E. STONEHEWER. The radical of some group rings. J. Algebra,
13 (1969) 137-142.

[9] PassmaN, D.S. The Algebraic Structure of Group Rings. New York, 1977.
[10] PassMAN, D.S. Infinite Group Rings. New York, 1971.
[11] ScuNEIDER, H., J. WEISSGLASS. Group rings, semigroup rings and their radicals.

J. Algebra, 5 (1967) 1-15.

Bourgas University of Chemical Technology

“A. Zlatarov”

8010 Bourgas

BULGARIA Received 29.07.1991



