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ON THE RATE OF APPROXIMATION OF RANDOM
FUNCTIONS

Z.G.IGNATOV, T.M.MILLS, I. . TZANKOVA

ABSTRACT. An essential problem of the theory of approximation of random func-

tions is the problem of determining the classes of approximation functions. An
early result due to Ky Fan [6] asserts that a random function can be approximated
by random splines of order one. Later D.Dugue [4] improves his result generalizing
the Weierstrass’ theorem. Thus the class of random polynomials turns to be a
class of special interest. O.Onicescu and V.Istratescu [9] consider random Bern-
stein polynomials as a main tool of approximation of real-valued random functions
continuous in probability on [0,1]. The paper deals with the estimation of the
rate of approximation by Bernstein polynomials for random functions continuous
in probability or in mean-square on the compact interval [0,1]. Various types
of moduli of continuity determined with respect to various types of limits based
on probability are introduced and explored for quantitative measuring the errors.
The estimates of the errors are obtained in terms of the corresponding moduli. The
results are generalizations of Popoviciu’s [8] and Kamolov's [5] theorems.

1. Introduction. The theory of approximation of random functions (r.f.’s) is a
natural extension of the classical approximation theory. Further on we shall call them
“random theory” and “deterministic theory” respectively. It is interesting to trace the
development of the “random theory”. The scope of results there obtained is extremely
wide. Some recent results due to Andrus & Brown (1] and Brown & Schreiber (3] go so
far that generalize some results in the “deterministic theory” from an abstract point
of view, with the help of generalized random functions. Another approach helps us to
handle real problems as one of determining the classes of approximation functions. An
early result in this direction is the theorem of Ky Fan [6] (which is in fact a general-
ization of E.Borel’s approach within the “deterministic theory”). This theorem asserts
(see also [4]) that a random function (r.f.) can be approximated by random splines of
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order one. Later D.Dugue [4] improves the result which actually is a generalizion of
Weierstrass’ theorem. Thus the class of random polynomials becomes a class of special
interest. The text of Bharucha-Reid & Sambandham [2] is concerned mainly from the
algebraic point of view but the approximation problem is also mentioned (p.16,17). A
paper of essential importance by O.Onicescu & V. Istratescu [9] gives references to a
number of problems related to the topic. They consider random Bernstein polynomials
as a main tool of approximation of real-valued r.f.’s which are continuous in probability.
The use of Bernstein polynomials is natural on [0, 1]. What is left to be determined is
the rate of approximation. Two types of continuous r.f.’s are treated in the paper, i.e.
continuous in probability (in pr.) and continuous in mean-square (in msqr.). One is
supposed to generalize the resuts from the “deterministic theory” in this respect once
some appropriate tools are introduced and developed. Such a tool appears to be the
various types of moduli of continuity determined with respect to (w.r.t.) various types
of limits based on probability. This tool enables us to obtain quantitative results for
the measuring errors. Part 2 of the present paper deals with the introduction of some
concepts, definitions and properties. We introduce a random modulus of continuity for
r.f.’s continuous in pr. A mean-square modulus of continuity is used, the latter being
introduced by Kamolov [5]. Some properties of the two types of moduli are summarized
as well. For r.f.’s continuous in pr. or in msqr. on [0, 1] the rate of approximation by
random Bernstein polynomials is estimated in terms of the corresponding modulus of
continuity.

The theorems obtained in Part 3 of the paper deal with the problems thus men-
tioned. Theorem 2 and Theorem 3 are generalizations of the theorem of Popoviciu [8]
from the “deterministic theory” and Kamolov’s theorem [5] from the “random theory”.

2. Definitions, concepts and properties. Let (2,4, P) be a probability
space and T be a topological space.

Definition 1. By a random function X7 in T we mean any function defined
on T with values in the space R of all random variables defined on (Q,U, P) with phase
space (X,9), that is a measurable space of the Borel pr. space on the line.

In other words the r.f. is a family X7 = (Xt € T) of random variables
defined on the given probability space. We shall use the following notations: X(t) or
X, for a random variable at t; X (t,w) the value of X(t) at w, w € Q or the so called
sample function, trajectory or path. X(t,w) € X; where X; is a replica of the range
space X .(Thus the r.f. maps @ to X7 = [T.er X¢). Further T is a compact interval
T = [a,b), a < bin the Euclidean line (whenever convenient it is replaced by [0, 1] with
no restriction of generality).

Definition 2.
A. A r.f. X1 1s called continuous in pr. at to, to € T if for anye > 0,7 > 0,
there ezists 8(e,n) > 0 such that P{w: |X(t,w)— X (to,w)| > €} < n for [t—to| < &(¢,n).

8 Cepamka 3-4
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B. The r.f. X1 is continuous in pr. on T, if it is continuous in pr. at any t,
teT.

C. The r.f. X7 is uniformly continuous in pr. on T if, for anye > 0, n > 0,
there ezists 8(c,n) > 0 such that P{w:|X(t),w) — X(t2,w)| > €} < n for any 1,1,
arbitrary chosen from T with the property |t; — ta| < é(¢,n).

(Remark. Without loss of generality one may set n = ¢).

A well known result in the theory of stochastic processes guarantees the ex-
istence of a r.f. Xr defined on the same pr.space, which is eqiuvalent to X7, i.e.
X(t,w) = X (t,w) (almost surely, for all ¢ € T') and which is separable and measurable
(see [7]). Below we shall consider this separable measurable version and we shall denote
it by Xr.

A theorem due to Slutsky [4] fits in Part B with Part C of Defition 2, i.e.

A r.f. X7 continuous in pr. on a compact interval T is uniformly continuous
onT.

Our interest in r.f.’s continuous in pr. is due to the fact that we want to dis-
regard fixed points of discontinuity. The appearance of moving points of discontinuity
typical of any trajectory is prevented provided X(t,w) is almost surely (a.s.) sample
continuous. Sample continuity of X7 means that the process has neither fixed nor (out-
side a null event) moving discontinuity points. Obviously the a.s. sample continuity of
Xt implies a.s. continuity of X7 and therefore continuity in pr., but the converse is
not necessarily true. In mathematical analysis, and in particular, in the approximation
theory, moduli of functions are used to characterize some properties of the functions.

Next we are going to introduce analogues of the classical modulus of continuity
for a random function continuous in a certain sense. Various types of limits based on
probability lead to various types of continuity and therefore various types of moduli of
continuity.

Definition 3. The random modulus of continuity of a.s. finite r.f. X(t,w),
t € T = [a,b] is a random function on J = [0,b—a], 6 € J, given by

(1) Wx(b,w) = sup{| X (t1,w) — X(t2,w)|:|ts —t2| <4, t1,12 € T}.

Theorem 1. The random function Xt a.s. finite is uniformly continuous in
pr. on T = [a,b] iff its random modulus of continuity is continuous in pr. at 0, i.e. it
satisfies Wx (6,w) Loass—o. (Here £, stands for limit in probability.)

Proof. Suppose X (t,w) is uniformly continuous in pr. on 7' = [a,b], then for
any € > 0, n > 0, there exists § = §(¢,7) > 0 and for any t; € T, i = 1,2 such that
|ty — t2] < & P{w:|X(t;,w) — X(t3,w)| > €} < n holds. Hence for § thus chosen we
obtain that

P{w: WX(va) 2 8} = P{w:'uplx(thw) - x(‘%“’)' 2 & |tl - t?' < 6v t,1 € T}
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< sup P{w: |X(t1,w) - X(tg,w)l > € ltl - tgl < 6, t1,t2 € T} < n

or pm = P{w: Wx(8,w) > ¢} < n, where m = [1/6] ([-] denotes an integer part).
Then as § — 0, p,, — 0 and there exists a subsequence m’ = [1/§] such that }_ p/,, — 0.
It follows by Borel-Cantelli lemma that there exists a finite integer-valued r.v. v, such
that Wx(é',-) < € holds outside a fixed null event for all m’ > v, or §' < (b—a)/v..
Therefore as § — 0, Wx (é,w) Fo.
Suppose that the random modulus of continuity of the r.f. X7 is uniformly
continuous in pr. at 0, i.e. as § — 0, Wx(6,w) LA 0 uniformly. Then for any € > 0,
n >0 P{w:Wx(é,¢) > €} < for é close to 0. This means that

P{w:sup | X (t;,w) — X(t2,w)| 2 €|ty —t2| <4, t1,t2€ T} <.
If we choose § from the above , i.e. § corresponds to £,n or § = §(¢,7), then
P{w:|X(t1,w) — X(tz,w)| 2 e:]t1 — 12| <6, t1,t2 € T}

< P{w:suplx(tlvw) - x(t27w)| 2 & ltl - t2| < 67 t,t € T} < n.

Hence X(t,w) is uniformly continuous in pr. on T'.
In this paper we do not treat the second order properties of a r.f. but with the
help of the mean-square type of limit one can define mean-square type of continuity.
Further E stands for the expectation operator.

Definition 4.

A. A r.f. X7 is called continuous in mean-square (msqr.) at to, to € T, if, for
any e > 0, there ezists §(¢) > 0 such that E{[X (t,w)-- X (to,w]?} < ¢, for |[t—to| < 8(¢).

B. The r.f. Xt is continuous in msqr. on T, if it is continuous in msqr. at
anyt, teT.

Definition 5. A mean-square modulus of continuity of a r.f. real-valued and
continuous in msqr. on T = [0,1] is defined as follows

(2) Wx(8) = sup{EV*{[X (tr,w) = X (t2,w)’}: |t = ta| < 6, t1,1; € T}

for & € [0,1].

Next we are going to consider the problem of approximation of r.f.’s X7 on a
compact set T. Henceforth without loss of generality, we set T' = [0, 1].

A theorem of Dugue [4] states that there exists a sequence of random poly-
nomials {P,}n>1 Which converges uniformly in probability to X7. This result is an
analogue or generalization of Weierstrass’ theorem and plays the same key role for the
approximation theory of r.f.’s. The “deterministic theory” gives preference to the class
of polynomials called Bernstein polynomials.



244 Z.G.Ignatov, T. M. Mills, 1. P. Tzankova

Definition 6. The random Bernstein polynomial of order n of a r.f. X(t,w)
is a r.f. defined as follows

= k
B,’}' t,w) = By(t,w) = X(=,w)b(n,t; k),
(t,w) = Ba ).g (= w)b(n, t;k)

where b(n,t; k) = (7)t¥(1 — t)"~* is the binomial mass function for 0 < k < n.

0. Onicescu and V.Istratescu [9] proved the following result:

If X(t,w)is a r.f. continuous in pr. on [0,1] and almost surely bounded, then
the sequence of the corresponding Bernstein polynomials converges uniformly in pr. to
X(t,w).

A theorem due to Kamolov [5] asserts that

If X(t,w) is a r.f. continuous in msqr. on [0,1], then

( t(l—t))

EVH{(X(1,0) - BX(Lm)P} < (14 2)Wx (5

e
for § € (0,1) provided Wx(8) # 0 and the inequality is the best possible one. This
means that the approximatios of X7 by Bernstein polynomials is of a rate neither
larger nor smaller than the above.

3.Examination of the rate of approximation of a random function
on [0,1] by Bernstein polynomials. Two theorems are obtained for r.f.’s contin-
uous in pr. or continuous in msqr. respectively. These results should be treated as
complementary ones.

Theorem 2. Suppose X (t,w) is a r.f. a.s. finite continuous in pr. onT = [0,1]
and w € Q, {Bn(t,w)}n>1 are the corresponding Bernstein polynomials and Wx (§,w)
is the random modulus of continuity determined by (1).

A. For a fizedt,t €T

| X(t,w) = Ba(t,w)| < [1+2(1 - 1)Wx(n'/?,w)

takes place;
B. There ezists an absolute constant ng such that for alln > ng and anyt,t € T
the inequality holds

| X (t,w) — Ba(t,w)| < 2Wx ( t(l—n_t)-,w);

C. There erists an upper bound not depending on the choice of t such that

| X (t,w) = Bu(t,w)| < Z-Wx(n'ln,u).
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(Remark. Part C turns to be an analogue of the classical result due to Popoviciu (see

[8]) in the “deterministic theory”.)
Proof. Suppose t; and t, are two arbitrarily chosen points in T’ and §, § €
(0,1). We set n to n = n(ty,t3;6) = |t — t2|/6]. Then we have

|X(thw) - X(tsz)l

n-1

< Z |X (t 4 kb,w) = X (t1 + (k+1)8,w)| +| X (ts +né,00) = X (t2,w)| < (n+1)Wx(6,w)
k=0

and further we obtain that

X(40) - Ba(t, )] € 3 1X(60) = X(5,0)lb(n, )
k=0

< Wx(b,w) Y [14n(t, %; 8)]b(n, t;k) < Wx(8,)[Y_b(n, t:k)+)_ n(t, g; 8)b(n, t; k)]
k=0 k=0 k=1

< Wx(§w)[1+67! i |t - §|b(n,t; k)] < Wx(8,w)[1+672 zn:(z - ;)zb(n,t; k)]
k=1 k=1

< Wx(6,w)[1 46721 - t)/n].

One can easily realize that
= k.o z
3 (2= =)*(n, t;k) = Var{=)
k=1 " v

( Var{-} stands for a random variable variance), where X is the binomial random
variable with parameters n and t, i.e. X € Bi(n,t). Therefore E{X/n} =1t

nt(l-t) t(1-1t)
n? T oon

Var{i:;} = %Var{X} =

(The expression ¢(1 — t) is maximized for t = 1/2 and finally Var{X/n} < 1/4n.)

The three parts of the theorem are obtained in accordance with the choice of 4,
ie. 6§ =n-1/2 § = /t(1-1)/n and § = n~'/? taking into account the final estimate
fort=1/2.

Theorem 3. Suppose X(t,w) is a r.f. a.s. finite continuous in msqr. on
T = [0,1] forw € 9, {Bn(t,w)}n>1 are the corresponding Bernstein polynomials and
Wx (8) is the mean-square modulus of continuity determined by (2).

A. For a fized t, t € T the inequality

E'2{[X(t,w) - Ba(t,w)]*} < [1 4 2t(1 - t)/e]Wx(n~"/?)
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holds;
B. There erists an absolute constant ng such that for all n > ng and any t,
t € T the inequality holds

EV3{[X(t,w) - Ba(t,w)?} < (14 g)Wx( t(1-t)

);

C. There exists an upper bound not depending on the choice of t such that

n

EI/2{[X(t,u) - Bn(t,w)]z} < (l + i)wx (n-1/2).

(Remark. Part B is the theorem of Kamolov [5]. We include it here in order to
accomplish the statement.)

Proof. Carring out the very same calculations from Theorem 2 and making
use of the proof of Part B by Kamolov [5], we obtain that

E'*{[X(t,w) - Ba(t,w)]'} < Wx(8)[1 + 25-2@].
Then for § = n~'/2 we obtain Part A and Part C, the last being valid for any ¢ from the
unit interval where the inequality ¢(1 — t) < 1/4 holds. Certainly if § = \/t(1 - t)/n,
then the result of Kamolov is obtained.

The continuity in msqr. implies continuity in pr. and both the results are
concurrent ones. Parts C of both theorems draw a comparison between the upper
bound constants 5/4 = 1.25 and 1+ 1/2e = 1.184. Their values are similar but in fact
they scale different moduli of continuity which is of great importance.

4. Final remarks. So far we have not taken into account the fact that the
version X7 we work with is a representative of a class of equivalent r.f.’s from R w.r.t.
a certain type of limit based on probability (which determines the type of continuity).
It is well known fact that the space of such classes of equivalence (identified as R) is a
complete metric space with a corresponding distance. Concerning limits in probability
the semidistance d(X,Y) = E{|X = Y|/(1 4 |X - Y|)} is used, while regarding limits

in r-th mean the distance is defined as

C[EX-YP, dfrel,
d(x’y"{ EVIX =Y, ifr>1,

where X, Y stand for random variables for the two cases.
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