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EIGENVALUE DISTRIBUTION OF INVARIANT LINEAR
ELLIPTIC DIFFERENTIAL OPERATORS OF ARBITRARY
ORDER WITH CONSTANT COEFFICIENTS

M.BELGER

ABSTRACT. For a @-invariant linear elliptic differential operator P with constant
coefficients the well-known distribution function N(A) := #{u € specg(P)u < A7}
of the @-automorphic eiger+alue spectrum spec g( P) has the asymptotic estimation
N(X) = coA™ 4 ;A" 4 O(A"~2+2/(n+1)) where ¢o, ¢, are geometric invariants, ¢
— the order of P, & a properiy discontinuous group of affine transformations.

Problem and main result. Notations:

U n-dimensional real affine space (or its corresponding vector space); basU={0;by, ...,
b,} affine base in U with the origin 0 and r=z'b; €;

P* its dual; basT* = {0;b',...,b"} - the dual base, v=v,b" €0";

& properly discontinuous group of affine transformations (o,s) acting on U and having
a compact fundamental domain (&) €T;

L2(®) the Hilbert space over C of locally square-integrable  — automorphic functions

(s.[7], §2);

(1) P(D):= Y D% a=(ay,...,a,)
lal=q
B-invariant g-th order elliptic differential operator with constant coefficients ¢,
and the property that its corresponding “gauge domain”

(2) D := {0 € V*| - P(v) < (1/2r)%)}

is a strong convex domain in U* i.e. the principal curvatures of dD are positive;
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(1) P(v) := z Cat”, v =of .. v2n
lal=q
the characteristic polynomial of P(D).

Consider the &-automorphic eigenvalue problem
(3) P(D)[¥]+uv =0, ¢ € Ly(8).

With respect to the &-automorphic eigenvalue spectrum specg(P(D)) of P( D) we are
interested in the asymptotic behavior of the distribution function

(4) N(A) := #{u € specg(P(D)) | u < A7}

(eigenvalues counted with regard to their multiplicity).
The paper is divided into 3 sections. Next follows a brief description of each

one of them

1. We solve the eigenvalue problem (3) for the so-called f-corresponding functions
thus defining specg(P(D)) (Proposition 1);
we interpret N(A) as the number of equivalence classes of the so-called “principal
lattice vectors” in the homothetic expansion A -D C U* of D (Proposition 2);

2. We prove that for N(A) the following asymtotic estimation is valid:

Theorem:

1
(5) N(A):%vol,.(D),\"+; T volay (DN D (0))8, A" + O(AR-243/(n41)).
0€Lp—

(see also[7]);

P*(0) := ker(eT — id) C V" and oT : 0" — V* - the adjoined mapping: eTo =voao
to the “fixed point part” ¢ : U — T of the affine transformation (o,s) with the

“translation part” s;

£ := {0 | 3(o,s € @)} the point group for &; r =ordL is finite,

£, := {0 €£| dimT*(¢) = m} for m = 1,2,...,n, where £, = {e} (e is the identity
of £);

8, = 1 or := 0 as for the §-symbol of E. Landau but here it is used in the following

sense:
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I' :=orbg(D) shall be the orbit to the origin O€T under the action of the invariant
subgroup TC & of all translations (e,t) € @, i.e. T is the lattice of all vectors t
fastening to O in V. Then §, = 1 if there is a lattice vector to € T’ which produces
a fixed point element (0,5+t9) € B, otherwise §, = 0 (see also [1], 4.4);

vol,—1(G) = fG duz(o) = fG do/f_r(rn(a)) do,
volD) = fpdu(v) = fpdo/[rr. do,

where G = DN Y*(0) C V* and V*(0) is equipped with a Lebesgue-measure ug,
normed by u*(F(I'*(e))) = 1 for the fundamental domain F(-) of the lattice;

(6)

(o) :=T*uT*(0);

I'* C V" is the dual lattice to I' C 0. Note that for 0 = e V*(e) = V", I'*(e) =T,
W=

Remark 1. The affine volume [,dv in (6) (also for G = D) is a relative
invariant of the weight —1 and therefore the quotients (6) are absolute invariants. So
Theorem (5) is a result in the affine spectral geometry as well.

Remark 2. In general the strong convexity of D in (2) (which we need so
as to prove formula (5)) follows from the ellipticity of P(D) in (1) only for the case
g = 2. For instance P(D) = 0f + 180}02 + 93, &; = 0/0z" is an elliptic operator
but the corresponding gauge domain D := —P(vy,vz) = v} + 18vfv} + v} < (1/27)*
in U* is not convex. Elliptic operators with non-convex (resp. strong convex) gauge
domains D C V" are given e.g. by Cassinean curves (resp. e.g. by the powers A¥ of the
Laplacian). It is easier to prove Theorem (5) for ¢ = 2 than for ¢ > 4 because it can
be reduced to E. Landau’s estimation of the lattice remainder relative to the number
of lattice points in the ellipse (resp. ellipsoid) D (see [1]).

3. We prove the Theorem for an example.

1. f-corresponding functions ¢y € L,(®) as G-automorphic eigenfunc-
tions of P(D), specy(P(D)), and N(A) as the number of principal classes in
A-D

1.1. The translation lattice I' CU and its dual I'* CU* for the group &.

As in (7], §1 we consider the affine transformations 83 § : U — U in form of
S = (o,8) with 3 = Sy=03+s; 3,3 €U. o is called a fixed point part, s is a translation
part of 5. The successive application of two elements R = (p,x), S €& follows the
composition Ko S = (po,ps+t). Then §~' = (07", 07 's) is the inverse of §, with
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respect to the identity £ = (e,0) with e = id and O is a null vector. Now we consider
the invariant subgroup TC® of all translations (e,t) in &.

T:={(e,t) € 8},
and also the point group
£:={o|3s € V:(0,5) € B}

for ®. The factor group &/ has a finite order r = ord(®/T). Then because of the
isomorphy &/T=L we have
r = ordL.

Now we introduce the lattice
[:={t=tbx | t* €Z} C D,

where by,..., b, forms a base bas® of V. (e, b;),...,(e,b,) are n generators of T with
n linear independent translation parts bi. I' is £-invariant. In the dual space T~ let

I*:={u=ub" |u, €2} c D

be the dual lattice to I' with (b*,b,) = &; for r € T (v,z) is the value of the linear
functional b € U. Further on we shall use the dual base bas®* = {b’,...,b"} as a base
of U~.

In this case o € £ should be replaced by the adjoint mapping o, namely

ol :90* — U* with c’o=voo.

If (0,0) € B we also say that “a belongs to o € £7. In this case all the vectors
a+ I belong to 0. Then modulol’ exactly one vector a can be considered as belonging
to o, and further on we will denote it by a = s.

If (0,81),(02,52), then (0102,8) € 8. So sometimes it is advantageous to think
of the Frobenius-congruence

0152 + 87 = smodT.

1.2. Decomposition of the group & into cosets and decomposition of the dual
lattice I'* into equivalence classes.
In the coset of decomposition of U with respect to T,

®=X(Ux)+...+k(dl), X(U,):S,,O'I, Sv:(au'gv)

the elements of one and the same coset x(0,) have the same fixed point part o, but
distinct cosets have distinct fixed point parts.
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Further we need the decomposition of U* into equivalence classes
t(vy) = {0 =0"0, | Vo € £} = {0y,02,...,0.}.

For a fixed functional v; € U and variable 0 € £ the transform oTv, runs
maximally | < r = ordL lattice vectors v;,02,...,9;. So I'* is also decomposed into
equivalence classes 8(u;) = {uy,...,w} C I'", u; € I'". We denote the set of all such
classes by R.

1.3. The £-automorphic P-norm || - ||, in UV*, the class norm ||£]|.
Consider the Minkowski functional of the convex domain

(7) f(n;D)::ir:f{r>0|bET-D}.

Lemma 1. f has the properties

[i] v € O(f(v;D) -D) Yo € T*;

[¢1] f(0;D) <1 if v €D, otherwise > 1;

[iii] f(A-0;D) = A- f(0;D) YA >0, v € V™

[iv] F(v 4+ w;D) < f(v;D) + f(ro;D) Yo, € T*;

[v] f(eTro;D) = f(v;D) Vo € £ is true iff D is £-invariant.

Proof. [i], [ii] follow immediately from (7); [iii], [iv] are well-known; [v]:

a) oD C D means by (7) f(¢To;D) < f(v;D) Vo € £. To prove the inverse we
rewrite [i] in the form of o7v € d(f(¢7v;D)-D) and obtain v = ev = (eT)"1(eTv) €
f(eTo;D)-D.

b) Let f(67o;D) = f(0;D), v € d(A-D). Then from [i] it follows A = f(v;D) =
f(cTo;D)ie. esToeA-D VYoe £ O

Further, because of (2) the homothetic expansion

(8) A-D:={oeT"| - P(v) <(A/27)?}, A>0

is also strong convex and by Lemma 1, [i] we can write
1
(9) P(v) = —(2—1rf(n;D))", Vo € U°.

Because of Lemma 1, [iii] and [iv] we can introduce in 0" (up to the factor
27)7 the P-norm ||v||, or for short ||v|| by
»

(10) lo]|? = —P(v), b€ T
Lemma 2. The following conditions are equivalent

(1) P(D) is B-invariant,
(i1) P(v) and so also ||v|| is £-automorphic,
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(#11) D and so all A -D (A > 0) are £-invariant.
( (i) ~ (ii) is clear, (ii) ~ (iii) follows from Lemma 1, [v] and (9) ).

From Lemma 2, (ii) it follows that ||v|| depends on v only by classes, i.e. || - ||
is a function on the set of equivalence of U*.

Definition. ||&(vy|| := ||v|| is called class norm of K(vy) if v € K(v,y).

Remark 3. Since the gauge domain D is £-invariant and therefore the same is
valid for all A -D, then

(11) either RCA-D or ANA-D=0.

1.4. f-corresponding functions as B-automorphic eigenfunctions of P(D) and

specg(P(D)).
For a fixed lattice functional u € I'* we consider the character x(u,-) of the
isotropy group R(u) := {0 € £ | oTu = u},

(12) x(u,0) := @u(s) Vo € R(u), (o,s) € &,

(13) wu(r) := exp{2ri{u, 1)}, r = z"b, € V.

If x(u,-) is the principal character of R(u) (i.e. x(u,0) =1 Vo € R(u) then u is said
to be a principal lattice vector and &(u) the principal class f because f = &(u) contains
only such principal vectors.

Remark 4. If u € I'* is non-principal the same is valid for all vectors from
t(u).

Let $ be the set of all principal classes f C I'*, u € f = {u;,...,w} and let
{o1,...,01} be a system of representatives of the left coset decomposition (£/%R(u))L.
For S, = (0,,8,) € 8 (v =1,...,1) we consider the “f-corresponding” functions

I
1
(14) Yvi=—7) @uoS,
\/iuzl

which - normed to 1 - form a complete orthonormal system {¢; | f € H} in L2(®) ([7]).

Proposition 1. For each principal class f € § there ezists in (3) only one
eigenvalue of P(D), namely

(15) py = (2m)7 - |IflI° with me(uy) = #{f € 5 | lIf || = |Ifil}

as multiplicity. 1y is the corresponding eigenfunction (to u;) and specgy(P(D)) =
{us | f € H} the complete &-automorphic eigenvalue spectrum of P(D).
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Proof. P(D) is B-invariant i.e. P(D)[¢oS]= P(D)[g]oS VS € &. By this
the application of P(D) to vy from (14) yields

]
(16) PD)W] = 2 3 P(D)lp] o S..

Simple differentiations 8/dz* of @, from (13) lead by (1') to
(17) P(D)[p.] = (27)7 - P(u) - u.
Thus (17), (16), (10) and |If|| = ||u]| if u € f give

(18) p(D)[Wy) = —(2x ) lIfll" - ¥y, uef.

So we have u; = (27)7-||f||? and all the principal classes f' € $ with the same norm as
f yield the same eigenvalue p = py.

1.5. N(A) as the number of principal classes f C A -D.

From Proposition 1 it follows: For each f € $ with ||f|| < A/(27) there is exactly
one uy < A9. Counting all these eigenvalues p; with regard to their multiplicity we find
out: N(A) = #{fe 5| ||fll < A/(2r)}. Because of Remark 3, b) we can read N(A) also
in the form of

Proposition 2.

(19) N(A)=#{feH|fCA-D}.

2. The asymptotic estimation of the eigenvalue number N(A). We use
the method of false position: N(A) will be included by N, (A —¢ec) < N(A) < N (A+¢ec)
and for both “c-neighbours” N,(A £ ec) we will prove one and the same asymptotic
estimation, the same as (5) in our Theorem.

2.1. No(A—€c) < N(A) < N(X+¢€c).
As L-invariant domain, A -D has the £-automorphic characteristic function x,.
Therefore x is a class function and it is well-defined by x.(8) := xa(u)ifu€ ti.e.

(20) xa(8)=1ifeCA-D, xa(t)=0ifeg A-D.

With the help of x, Proposition 2 can be read as
Corollary 1.

(21) N =Y.

f€H
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Now instead of N () we investigate its e-neighbour
(22) Ne(A) =)0+ pe)(H),
f€n

where the convolution product (xx * p)(f) is defined as follows: Consider the measure
u* on U* which was introduced under (6). £ is of finite order and so x* is a £
invariant measure. Let p : U° — R* be a £-automorphic function from S(U*) with
suppp C D and fm' p(v)du*(v) = 1. Then p.(v) := ™™ - p(¢~! - v) is also a smooth and
£-automorphic function and suppp, = ¢ - suppp C ¢ -D. For a fixed u € I'* we use the
function p,.,(0) := p.(u —v),

(23) supppe;u(v) = {u — supppe} C {u — ¢ -D}.

Lemma 3. f(270):= (xa * pc)(v) is £-automorphic and so

(24) f278) = (o *+ pe)(8) = f(27u) if uet

is a well-defined class function on & and naturally also on $H C K.

Proof. In the convolution definition -

fex) = [ x(o-wp)di), ve
we transform 3 = aTr); the invariance of u* then leads to
= [ o= @) @) o)

Herein the £-automorphy of y\ and p. produces those of f. o

Lemma 4.
(25) f(2r®) = xa(t) Ve Z Us(e),
where Uy(¢) := (A+¢)-D\int(A —¢)-D is a £-invariant “c-neighbourhood” of 3(A-D).

Proof. Let u g Ux(¢). If u§A-D then supppmgz\ -D respectively. This result
is geometrically grounded and will ge needed further on: Forue ¢

fart) = /‘\,\(n)pz(u—v)du‘(v)

. / 1 pesu(0)du*(0).
A Dusuppee;u
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Let be ¢ ¢ Uy(¢). a) If ¢ ¢ A-D, then A -DnNsuppp,,. = 0 and f(27r!) =0.b)
If ¢ C A-D then suppp,u C A-D and

jory = [ b)) = /{ D)p(%(u-o))dn‘(o)
SUpppe;u u—e-

= [ poyauro) = 1.

Proposition 3. For ¢ > 2 we have

(26) Ne(A—ec) < N(A) < N(A+¢ec), €>0.

Proof. We restrict the proof so as to show the left hand side of (26). From
(22), (24) it follows that N.(A) = Y f(27f) where the summation over all f € § can be
distributed into two parts by (25):

NN =Y fem+ Y .

-931cUx(e) 531¢Ux(e)

Obviously for all ¢ € & we have xa—c.(8) < xa(8) and (xa-ce*(Pe)(R) < (Xa * pe)(2).
Therefore

(27) N(A-e)< Y femh+ Y xa.

$31CUs_ce(e) 9531¢Ur_ce(e)

Because of ¢ > 2 it follows Uy_ce(¢) N Ux(e) = 0. Thus from f C Ux_c(€) we have
f ¢ Ux(¢) and then f(27f) = xa(f) from (25). Therefore the right hand side of (27) is,
according to (21), equal to N(A). O

2.2. Reformation of N,(A) by Giinther’s Poisson formula. Although used later,
we introduce here the vector spaces resp.— modules and the difference module ([7])

(o) := ker(o — id), T*(0):= ker(oT - id),

Pt (0) := im(o - id), V**(0):=im(o7 - id);
(28) I(¢) :=T'NDV(a), I'*(c):=T"NDV*(0),

I't(o):=InY(e), I'*4(0):=TI*"NT*4(0);

I't(o) = T't(o) for It (o) := (0 — id)(T) C I'*(0)

according to the decomposition U = V(o) @ V*(0), V* = T*(0) & TV**(0).
Let m = n(o) = dim (o) (= dimV*(0),(¢),I'*(¢)) and n — n(o) be the
dimension of the belonging complements, e(a) :=card(I'* (o) — '} (a)). Now pu, us, put
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denote the Lebesgue measures on U, U*(a), B+ (o), normed to 1 with respect to the
belonging fundamental domains F(T'), F(I'*(o)), F(I'*(e)).

Giinter’s Poisson formula for space groups ([7], Theorem, parts (3.13), (3.14))
says: For a Schwartz function f € S(U) and its Fourier transform f, for a T-conjugate
class 7 of ® and for the translation part b of § = (o,b) € 7 it is valid

oL \
(29) L) = g5 [ 10+ 0 o)
(30) = (1/@xy (@) [ exp{ito. B )z o)
T*(0)

I,(f) depends only on 7, i.e. it is independent of the choice of § € 7 and

(31) Y s Y =1 Y Y L),
u€f

ca
f€H OeN 7€

The summation relative to ©, 7 is to be understood from the decomposition of & into
the set Q resp. 7 of the B-conjugate resp. T-conjugate classes © resp. 7 of & and
the additional decomposition of each © into a finite number of 7. Of course we can
decompose also 8 = S, 0T + ...+ S, o T into its cosets »(0,) = S, 0%, §, = (0,,8,)
and furthermore »(o,) in classes 7. Then we can perform the summation over all
7 € T on the right of (31) also by running through 7 € »(o,) Vv =1,...,r, ie.
7 € #(0) Yo € £. From (22) and (24) on the left of (31) after the summation is N.(A)
and therefore finally we obtain:

Corollary 2.
(32) N=1Y T L)

7€L +C (o)

2.3. Decomposition of N.()) according to the fixed point behaviour of (o,s) €
®. Each S € x(0)is of the form § = (o,8+t) with one and the same o € £, wheres € T
is well-defined modulo I and t € I'. So the summation over 7 C x(¢) in (32) means
with regard to (29) only a summation relative to b, namely: The decomposition of the
coset x(o) = U,e7,7, into T-conjugate classes 7, with representatives S, = (o,b,) € 7,
(J,: appropriate index set) results into

S 0 Y oy Lo, F0+ 0IEG)

fg)t‘(d) € Jo
(33)
L f(n + a + t)dut(n)

\erep(F—T4(e)) e(7) Joi(o)
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where (33) may be explained by the easy-to-prove

Lemma 5. (0,a+ t),(0,a+ t”) are T-conjugate iff t —t" € T'} (o).
Now in (33) S, = (o,b,), where b, = a + t, runs through a complete system of rep-
resentatives of the decomposition of (o), so t, runs through the complete system of
representatives rep(I' — '} (o)) and vice versa.

Next (33) can be written as

(34) Suw- x| o, o+ a0 )

TCx(0) terep(I'-T'} (o))

We know that I'X(¢) C I'*(0) C T for these three Z-modules. I'}(0) is an invariant
subgroup in T as well as ['*(o). So by the second isomorphism theorem I' — (o) =
[[ — T4(0)] = [[*(0) — T}(0)] and by the fundamental theorem for abelian groups
I - T'i(o) = [[ - I't(0)] = [[+(0) — T4(0)]. The difference module I'* (o) — I} (o)
contains e(c) elements.

Now we separate from the sum (34) the “fixed point part” by means of

Lemma 6. |i| (0,a+ t) € @ has a fized point ry € T iff a + t € V(o).

lii| Ift; € rep(T =T+ (0)) witha+t; € V(o) (i =1,2), thent; € (4 +T4(0))
is representative of the same coset of T’ relative to T+ (s), and analogously for t,.

liii| For (0,a) € @ there ezists at most one to € rep(I' — ['*(0)) giving rise to
fized points of (o,a+ to) € x(0).
(Ji| is the Lemma 4 from [1], |ii| is clear almost by itself and |iii| follows from |ii]).

With respect to Lemma 6 let

(35) £:= {0 € £| 3o € rep(I = T(0)) with a+to € T*(0)}.

Because of |ii1] for each o GE there is exactly one such to. So for o € £ we can
exempt rep(I' = I'*(c)) in (34) from the vector to — if there is any which produces fixed
points r, € U according to |i|:

rep(T - T4(0)\ {to} o €L
(36) R(o):= if

rep(T — I (0)) o€\ L

Now we insert (34) in (32) and sum up a) first over all o GE then b) over

o € £\ E Furthermore the inward sum of a) will be decomposed into that part with
t € R(o) and that with t = to.
Then Corollary 2 can be read as
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Corollary 3.

(Jo) N =X [, Jo+etwdo
el

(J) > / f(o+a+t)du:(n)}.

o€L €R(0)

2.4. Estimation of the integral Jo from (Jp). The transformation 3=p+a+to

of Jy for o EZ‘, and next the substitution ®(3 + b) := f(3) with b from (o,b) € T € T
leads by (29) to Jo = e(0)I,(®). If we take for I;(®) its alternative expression (30) and
use (after a substitution) the Fourier transform &(v) = exp{—i(v,b)} f(v) we obtain

do= /2y [ fee) = [ (e p)os (o)

using the transformation b = 27v’ and Lemma 3. Writing out the product x, * pe,
using p.(v) = e "p(e~! - v) and the transformation o = ew’ of V" we obtain

(37) o= [ [ e = e )ptw e (w1 o)

If we divide into two parts the integrand x(v—ew)p(10) = xa(v)p(r0) +(xr(v -
emw) — xa(v))p(re) and pay attention to the definition of x, p and n(o) = dim (o),
then the integration in (37) yields

Jo = Vol () (T*(a) ND) - A™?)  (see(6))

() # [ 00t e = xa(opmdn () o)
Estimation of the integral J; from (J):
Lemma 7.

(38) xa(b —em) — xa(v) =0 Vo g Uy(¢), Vo €D.

Proof. This difference is zero only in two cases: a) xa(v—em)— xa(v) =0-0
ifo—cogA-Dandmwg\-D, b)=1-1iffo-em e A-Dandv € A-D. Nowa
simple geometric consideration yields the assertion.
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(38) and the definition of p make it possible to estimate J;:

ne [ [ 1 ptd” () (o)
2°*(0)nUa(e)

-/ 44 (9) = Volo(o)(T*(9) N Us(e))
3*(o)nUs(e)

(39) = (A + &)™ = (A= )™?) - vol,,(,)(T*(0) ND),

the latter by (25). Now choose ¢ = A='+2/("+1)_ Then in (39) the factor before vol,(,)
is of order O(A"~2+2/("+1)) because n(c) < n Vo € £ (see the notation in (28)). Thus

(40) Jo = voly(0)(T*(e)ND) - A 4 O(/\n—2+2/(n+l)).
2.5. Estimation of the integral J in (J). Let t € rep(I' — (o)) with a + t ¢

Pt (o), i.e. (0,a+t) € (o) has no fixed points (Lemma 6, |i|). In J set 3 =p+a+t
and instead of f(3) consider its Fourier transform:

s=o [ exwlito. ) f(o)iu )i (o)

Now we set b = 270/, use f(270’) = (xa * p.)(v') (Lemma 3) and write x\ * p,
from the definition of +. The so obtained 3-fold integral can be transferred to

(41) O RZCEATEL

where “A” means the inverse Fourier transformation. If we use ya(r) = A™-x(A-r) and
pe(x) = p(¢ - ) we obtain from (41)

(42) s= i [ ere 93N i o)

For v € V", ¢ € v let ||v]| be the norm (10) in T*, ||| the belonging infimum
norm in U which is equivalent to the euclidean norm [g|: ;|| < |[z|| < c2]f|. Since
p € 8(V*) also mS(V) is a Schwartz function,

(43) 1p(x)) < M(p)(1 + |IEP)™? < M(p)(1 4 €[3]11)%, p=0,1,...

where § = 27¢ -3 5o as in (42) and 3 = n + a + t. To estimate x(27A - 3) in (42) we can
write because 3 # o0

(44) Ix(27 A - 3)] = Ix(2x | A -3l - (A= 3) /1A - 3IDI-
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If 3 # o runs through U, then o := 27(X-3)/||A - 3|| varies in the compact
K ={meD||w|=2r}.

Lemma 8. For every compact K CC v\ {0} and t — oo one has

|X(t - w)| < Mx - [t|"**V/2 uniformly for v € K.

This assertion from [10], 1., (1.7) is clearly applicable to (44) because ro :=
A-3/||A-3|| varies on the unit sphere K around of 0 and ¢ := 2x||A-3||. Thus from (44)
it follows

(45) 1(27A - 3)| € My - A=(+1/2 5| = (n41)/2

Now (43), (45) make possible the following estimation of J from (42):
J <M. ,\("‘2)/’-/ (1 4+ 2)131%)77 - sl =+ 2dpz (v)
T+ (0)
(46) = M - \Nn=1)/2  o=(n=1)/2y
< [ 1y & Al + o+ O -l o+ O+ 2y ),
T+ (o

for r = £ - and the constant M depending on p. Now we pass on to (J):

(47) S T<M-(Me)F -

teER(o)
where 7, is the sum over t € R(o) of the t-belonging integrals in (46). J. can be
interpreted as the intermediate sum to the integral

7= / / (14 [lf + o]2)" - g + roll =+ 2dpit (5)dpu (vo);
v-24(0) Jo4(0)

Hjs, is the Lebesgue measure on the difference module —0*(0), normed by pij_ (F(T' -

I't(0))) = 1; the difference — Z-module I' — I'* (o) is to be understood as -a lattice in
the difference - R-module U — UV (0); n(o) = dim(V — V*(0)) = dim(I' - I'*(0)). For
simplification of 7 Lemma 3.1, (3.12) from [7] reads: If ¢ € L,(T), o := 1o +D4(0)is
a coset of U — T+ (o), so

1 Liey —
/m-qu(,) /gx(,) o(x + ro)du; (;)d“k(w) g L @(n)du().

10 Cepauka 3-4
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It follows that
J= /D (14 ol2)" - [loll =+ 2dp(v).

Because of lin}) J. = J, respectively by J. = J + o(¢), and according to the choice
£
£ = A~1+2/(n+1) (established in (39)) we obtain from (J), (47)

(48) Z f(0+a+t)dut(n) = 0(,\n—2+2/(n+1)).
€R(s) Y TH (@)

2.6. Estimation of N,()\) and N(A). If we consider the estimations (40), (48)
and Corollary 3, we obtain

(49) N.()) = ; 3 Vol ) (T7(0) ND)A™®) 4 O(AR242/ (),

°
og€EL

Finally let ¢ = A=1+2/(n+1) (50 as chosen for (48)). Because of (A + c)™(?) =

@) 4 O(An2)=242/(n+1)) and the fact that in (49) all o €£ with n(o) < n — 2 yield
summands belonging to O(...) we obtain from (26)

1
= = n(o) n—2+42/(n+1)
(50) NV = - Z Vol (0) (T () ND)A™) + O(A ).
o€l
n(e)2n-1
a) The main term in (5) comes from (50) for n(o) = n. Then o = ¢, V*(e) =
P* DD and §, = 1 (see (35) and Lemma 6 |1]).

b) The second term in (5) arises for n(0) =n-1,0 6;2.
Thus the proof of the theorem is finished. O
Remark 5. Theorem (5) is true also for operators P(D) from (1) with |a| < g.

Example. For the euclidean spaces 0, 0", for a properly discontinuous group
® of isometries acting on U we consider the operator P(D) = A% k € N, A: Lapla-
cian. AF is ®-invariant because A is isometry-invariant; ¢ = 2k. The characteristic
polynomial P(b) = —(v? 4 ...+ v2)¥ (v = v;b' € V*, {b'} orthonormal base) leads to
the norm ||o]| = (v + ... + v2)"/? and defines the gauge domain D : [|v|| < 1/(27),
which is the n-dimensional ball in U* with vol,(D) = 1/(27)" - vol.(K,), K, = 2r -D
is the n-dimensional unit ball. If Kk = n — 1 we obtian for the (n — 1)-dimensional
hyper-planes U*(o) C U* going throughout 0 € T* : vol,_;(V*(¢) ND) = 1/(2x)*"" -
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vol,_1(TV*(e) N K,) = 1/(27)"! - vol,—1(Ks—1). Denote by |F(T*)|, |F(I'*(c))| the
volumes of the fundamental domains of the lattices I'*, I'*(o). Then

= l( 1 — A"
T\ 2y F(T)IN(3 + 1)

N(})
(51)

1 ' é
+ (4 ) ’\n—l +0 I\n—2+2/(n+l) .
BT, o i * )+ O )

To understand how to calculate £,,_;, §, let & be a crystallographic group, e.g. & =
Ay, for n = 2 (see [1], 4., Example). Then we obtain N(A) = V3(487)"1 - A2 4
(47)~1- A 4+ O(A?/3).
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