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TWO-SIDED METHODS FOR COMPUTING THE ROOTS OF
MATRICES

J.A.ZARNAN, M.G.PETKOV

ABSTRACT. The present paper deals with four two-sided methods for calculating
the roots of matrices, namely: Chords-Newton, Secants-Newton, Parallel Chords-
Newton and Method of successive approximations.

1. Introduction. One of the essential problems of linear algebra is the problem
of computing the roots of matrices, i.e. finding VA, where A is a given n X n matrix,
and m > 2 is a given natural number. Let us point out that usually the problem is
treated for m = 2 and for A being a real symmetric positive definite matrix. Our paper
ends with some references on the problem of computing the roots of matrices.

The problems of computing the roots of matrices are connected with iteration
methods for solving systems of equations, for treating the problem of stability, etc.

In the present paper, the two-sided methods for calculating the roots of the
symmetric positive definite matrices are described. These methods except for their
greater capacities for parallelizing have the advantage of allowing the application of
easier criteria of stopping and estimating the error of successive approximations.

2. First method (Chords-Newton). Let A be an n X n real symmetric
positive definite matrix and let m > 2 be a natural number. As known there exists a
unique symmetric positive definite matrix X = WA such that

X™m=A
Let us calculate X by the following two-sided iteration process (Chords-Newton):

(1) Bisr = B — (B + BP2Co+ ...+ BCg~2 + €3 ™) (BY - A)

Ciyr=(p-1)Ci + Ac;™!
P

(2)
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where p > m, k =0,1,2,...and By = Bg >0 and Cy = CE,r > 0, are chosen so as to
commutate with each other and A. Moreover BJ* < A and C§* > A (the inequality
P > 0 denotes that P is symmetric and positive definite, and P > Q is P — Q > 0).
Thus with the assumptions made, we have

(3) X<C<Ci=X (k=0,1,2,..)
(4) X>Bi>Bi= X (k=0,1,2,..))

We are going to prove only (4) since in [8] the convergence of the iteration process (2)
is proved.

Let us prove (4) by induction.

Let ByA = ABy, BxCo = CoBy, By = Bf >0, Bl < A, i.e. By < X. Hence
we obtain that By < By = B;r“. For Bi41 — X we have

m-—1
Biy1 — X =Bi— X - () BiCy™'7*)N(By - A)
=0
m-—1 .
= Be— X = () BCy™ ™) (BR - X7
s=0
m-—1 m-—1
= Bi— X + (X - Bo)(Y_BiCy='=)' Yy Bixg
=0 s=0
m-—1 m-1
<Be— X +(X - B)(Y_BiCp ') Y BiCyT T =0
s=0 s=0

ie. Bryr < X or B, < A. Thus we obtain that By is an increasing sequence
of symmetric and positive definite matrices which is bounded above by the positive
definite matrix X. Therefore By is convergent and we obtain X as its limit.

The following inequality may be used as a criterion for stopping

“Ck - Bk” <E¢

where € > 0 is an arbitrary small number chosen in advance.
The method described has been experimented with n X n matrices of type

(5) A= (I-aww’)™

where w = (1/n'/2,1/n'/2 ... 1/n"/?*)T and @ € (0,1), with the following initial ap-
proximations By = (I + A™')"™', Cp = I + A. Experiments are made with different
m,n and «a (see item 6).
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Note 1. Let us point out that (5) is a symmetric positive definite matrix
whose Todd’s condition number is

1
p(A) = =

Note 2. It is preferable to use the following best approximations as initial
ones:

A™? A
Bo=(1+—)_l, Co=1+—.
m m

3.Second method (Secants-Newton). Now the same problem will be solved
by the formulas:

m-—1
(6) Biy1 = B — () BICP™')7N(BE - A), k=1,23,...

s=0

_(p=1)Cr+ ACT™!
p ’
with the same assumptions made for the initial approximations.
Again (3) and (4) hold for (6) and (7). We are not going to prove (6). Its proof
does not differ essentially from that of the iteration process described in 2.
This method has also been algorithmisized, programmed and experimented with
a number of matrices of type (5) with the same initial approximations (see item 6).

(7) Ci1 k=1,2,3,...

4. Third method (parallel Chords-Newton). This method is characterized
by the following two iteration processes:

Bis1 = Cx — (mA)™Y(CP - A)

- 1)Cx + AC;™H!

where it is assumed that |A|| < 1. Thus the other assumptions for the initial approxi-

= Ci - (pCPY)N(CT - A)

. m=1
mations are the same as above and we have mA < mA™= and
X > Biy1 > By = X;
X < Crp1 < Crx=> X.

This method has been experimented with matrices of type

(8) B=-A
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where A is a matrix of type (5).
Note. If ||A|| > 1, we use the method with respect to B = cA where constant

c is chosen so that ||B|| < 1.

5. Fourth method (successive approximations). This method is used for
calculating VA, (A = AT > 0) by the method of the successive approximations. It is
obtained as follows. We put X =Y — I in the following equation

X?-A=0
where ||A|| < 1. Thus we have
Y?2-2Y +1-A=0

Next we have to find the solution Y = I + VA. To find Y we construct the
following two sided iteration process:

(9) By = (21 — By)"Y(I - A)

(10) Crsr = (21 = C)™ (I = A)
where k = 0,1,2,..., Bo =0, Co = I. For (9) and (10) we show that

0<Bi<Bepy=>Y=1-VA

0<Cip1 <Ci =Y =1-VA.

These experiments have also been carried out with matrices of type (8) (see
item 6).

6. Experiments and comparisons. The experiments have been accomplished
with matrices of various n,m and condition numbers (see the following table).

We can see from the table that each of the four two-sided methods comprises
some estimates for the well conditioned matrices. For m = 2 the last method is the
slowest and for m > 2 (when the last method is excluded), the method of Secants-
Newton is the fastest and the method of Chords-Newton is the slowest.
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Table
(n,m,p) € I t (n,m,p) € 1 t
(10,2,4) | w.10-° | 12| 0.84" (30,5,32) | w.10° | 35 | 52.25"
0 7| 0.57” w.10~¢ 6 18.79”
0 10| 0.63" w.107¢ | 30 51.13"
w.10"7 | 16 | 0.84" - - —
(10,3,8) 0 30 1.95" (40,2,4) w1077 | 11 31.29”
w.107% | 10 1.06" w.1077 7 19.67"
w1077 | 25 | 1.48" w107 | 7| 17.21”
— B — w1077 [ 16 | 33.49"
(10,5,32) [ w.10"7 | 35 | 2.95" (40,38) | w.10" | 30 | 2'36.3"
w.10°% | 6| 0.98” w107 | 10 | 51.25"
w.10°7 | 30 | 2.45” w.10"7 | 25 | 1’50.30”
(20,2,4) |w.10"" [ 12| 4.67" (40,5,32) | w.1077 | 35 | 4"2.35"
w.1077 7| 2.48” w.10"7 6 44.00”
w.10°7 | 8| 2.82" w.10°7 | 30 | 3'1.99”
w.10°7 | 16 | 4.80" — - —
(20,38) | w.10-7 | 30 | 10.15” (50,24) |w.10-7 | 11| 58.52"
w.10°% | 10 [ 6.62" w1077 | 7| 38.11”
w.10"7 | 25 | 9.37" w107 | 7| 32.66"
— - — w.107% | 19 | 1'14.44"
(20,5,32) 0 35 | 16.10” (50,3,8) | w.10"® | 30 | 4'1.13"
w107 | 6| 5.89” w.1076 | 10 | 1'37.96"
w.10"7 | 30 | 15.48” w.107% | 25 | 3'45.77"
(30,2,4) [ w.107% | 11 | 13.49" (50,5,32) | w.107° | 35 | 7'13.66"
w.10°¢ | 7| 8.62" w1077 | 6| 1'25.88"
w107 | 5| 5.67" w.107% | 30 | 6'12.52”
w.107% | 16 | 14.80" — - -
(30,3,8) | w.107% | 30 | 31.77"
w.10"7 | 10 | 21.37"
w.107% | 25 | 30.99”
There:
— The first column comprises triples (n,m,p);
— The second column shows the accuracy ¢ for the elements of X = VA in

positions (1,1) and (1,2), w € (0,1);
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— Column / comprises the number of iterations needed for reaching the accuracy
&5

— The last fourth column comprises the time t needed for obtaining the respec-
tive result.
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