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RESONANCES OF TWO-DIMENSIONAL SCHRÖDINGER
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Abstract. The purpose of this paper is to study the Schrödinger operator
P (B,ω) = (Dx−By)2+D2

y
+ω2x2 +V (x, y), (x, y) ∈ R2, with the magnetic

field B large enough and the constant ω 6= 0 is fixed and proportional to the
strength of the electric field. Under certain assumptions on the potential
V , we prove the existence of resonances near Landau levels as B → ∞.
Moreover, we show that the width of resonances is of size O (B−∞).

1. Introduction. The model of Schrödinger operator studied in this
article is the following

(1.1) P (B,ω) = P0(B,ω) + V (x, y) = (Dx −By)2 +D2
y + ω2x2 + V (x, y),
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defined on L2(R2), where Dν = 1
i ∂ν , B is the strong magnetic field, ω 6= 0 is a

fixed constant and the potential V is a real smooth function decreasing at infinity.
It is well-known that the operator P (B,ω) is essentially self-adjoint on

C∞
0 (R2), (see [12, 23]). For V ≡ 0, ω = 0, it was shown that the spectrum of the

unperturbed Hamiltonian P0(B, 0) := (Dx − By)2 + D2
y consists of eigenvalues

λn = (2n + 1)B, n ∈ N with infinite multiplicities called Landau levels (see
[1, 7, 24, 25]). However, in the case ω 6= 0, the essential spectrum of P0(B,ω) is
absolutely continuous and equal to the semi-axis [

√
B2 + ω2,+∞), (see [23]). On

the other hand, whenever the potential V vanishes at the infinity, one can show as
in [1] that V (P0(B,ω)+i)−1 is a compact operator. By applying the Weyl theorem
(see [15]) the essential spectrum of P (B,ω) is equal to that of P0(B,ω). Further,
the absolutely continuous spectrum of P (B,ω) was investigated in [12]. Recently,
the counting function of discrete eigenvalues of P (B,ω) in (−∞,

√
B2 + ω2) has

been studied in [10].
Until now, there has been little discussion about the spectral problem of

P (B,ω) which can be also regarded as the quantum hall system Hamiltonian
with the unbounded edge potential (see [5, 19] and also [3]). In this work, we
propose to study the existence of resonances of P (B,ω) near Landau levels when
the strength of magnetic field tends to infinity. Roughly speaking, the resonances
of P (B,ω) are defined by eigenvalues of some dilated operator (see below).

The past thirty years have seen increasingly rapid advances in the study
of resonances of Schrödinger operators with magnetic fields (see [2, 8, 18, 27, 28]
and references therein). For the two-dimensional Stark Hamiltonian with strong
magnetic field, X. P. Wang proved that there exist resonances near Landau levels,
(see [28]). Moreover, M. Dimassi and V. Petkov showed that there does not
exist resonances in the upper-half complex plane, (see [8]). However, we notice
here that the definitions of resonances in these articles are a little bit different.
The resonances are defined by the complex dilation in [28] and by the complex
transition in the x−variable in [8]. For three-dimensional Schrödinger operators
without Stark effect, one of the results of J.F.Bony et al. showed that there exist
infinitely many resonances in a vicinity of each Landau level (see [2]).

By using the arguments in [9, Chapter 7], we obtain that P (B,ω) is
unitarily equivalent to

P1(B,ω) :=
√

B2 + ω2(D2
y + y2) + ω2x2

+V w

(

(B2 + ω2)−
1
4Dy +

(

1 +
ω2

B2

)− 1
2

x, (B2 + ω2)−
1
2Dx +B− 1

2

(

1 +
ω2

B2

)− 3
4

y

)

.
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Here we use the Weyl quantization (see [13, 16]).
Let θ be real. Consider the unitary operator Uθ : L2(R2) → L2(R2),

u(x, y) 7→ u(eθx, e−θy). One has

P1,θ(B,ω) := UθP1(B,ω)U−1
θ =

√

B2 + ω2(e2θD2
y + e−2θy2) + e2θω2x2

+ V w

(

eθ

(

(B2 + ω2)−
1
4Dy +

(

1 +
ω2

B2

)− 1
2

x

)

,

e−θ

(

(B2 + ω2)−
1
2Dx +B− 1

2

(

1 +
ω2

B2

)− 3
4

y

))

.

We set

(1.2) P0,θ(B,ω) :=
√

B2 + ω2(e2θD2
y + e−2θy2) + e2θω2x2,

and

V w
θ (B,ω) = V w

(

eθ

(

(B2 + ω2)−
1
4Dy +

(

1 +
ω2

B2

)− 1
2

x

)

,

e−θ

(

(B2 + ω2)−
1
2Dx +B− 1

2

(

1 +
ω2

B2

)− 3
4

y

))

,

then we have

P1,θ(B,ω) = P0,θ(B,ω) + V w
θ (B,ω).

By using the analytic extension of the potential V (see (H1)), we can
extend the formula of P1,θ(B,ω) from the real axis to a small complex neighbour-
hood of 0 with respect to θ. In this paper we define the resonances of P (B,ω)
as the eigenvalues of the non-selfadjoint operator P1,θ(B,ω) for θ ∈ C, |θ| small
and Im θ < 0. Moreover the eigenvalues and their multiplicities are independent
of θ (see [4, 15]).

From now on, we fix θ ∈ C satisfying Im θ < 0 and |θ| small enough.
Note that the essential spectra of P0,θ(B,ω) and P1,θ(B,ω) are coincident and
given by

⋃

n∈N

{(2n + 1)
√
B2 + ω2 + e2θλ, λ ≥ 0} (see Lemma 3.1). Then the

resonances are distributed outside these semi-lines. As is mentioned above, we
are interested in localizing the resonances near Landau levels. To do this, we
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follow the strategy used by X. P. Wang in [27, 28] and the recent progress in
the analysis of two-dimensional Schrödinger operators with magnetic fields (see
[6, 7, 8]).

We fix n ∈ N. Then we set µn := (2n+ 1)
√
B2 + ω2 and h :=

1√
B2 + ω2

.

Let E ∈ R \ {0}. In Section 3 we prove that z is an eigenvalue of P1,θ(B,ω)−µn

near E if and only if 0 is an eigenvalue of an h-pseudodifferential operator (called
the effective Hamiltonian). Here the effective Hamiltonian is given by

(1.3) E−+(z) = z −Aθ(h) + h2Gθ(z;h),

where Gθ(z;h) is holomorphic for z in some large, bounded set Tn (see (3.14))
and Aθ(h) does not depend on z (see Theorem 3.5). Moreover Aθ(h) is also an h-
pseudodifferential operator with symbol a(eθx, e−θξ;h) which admits a complete
expansion in powers of h (see identity (3.25)):

a(x, ξ;h) − a0(x, ξ) ∼
∑

j≥1

hjaj(x, ξ),

where

(1.4) a0(x, ξ) = ω2x2 + V (x, ξ) and a1(x, ξ) =
(2n+ 1)

4
∆V (x, ξ).

For the h-pseudodifferential operators, we refer the readers to [9, 11].
Therefore, the localization of resonances of P (B,ω) can be deduced from

studying the spectrum of Aθ(h). In fact, the crucial steps to prove the existence
of resonances are the following:

• Prove the exponential decay of the eigenfunctions of Aθ(h) associated
to the eigenvalues near E (see Theorem 4.4).

• Establish a resolvent estimate in the non-selfadjoint case (see Proposi-
tion 4.6).
For these two points, we need a non-trapping condition (see (H3)).

For the width of resonances, as in [20] we use the WKB method to con-
struct an approximate solution of the problem E−+(z)u = O(h∞). Thus by study-
ing a suitable Grushin problem, we obtain the expansion of each resonance in
powers of h with real coefficients. This means that the width of resonances is at
least of size O(h∞).

The rest of paper is organized as follows. In Section 2 we give our assump-
tions and results. The essential spectrum of P1,θ(B,ω) is computed in Subsection
3.1. Next the Grushin problem is constructed in Subsection 3.2 to establish a
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reduction to the effective Hamiltonian. In Section 4, we study the spectral prop-
erty of the leading term of the effective Hamiltonian. The existence of resonances
of P1,θ(B,ω) is proved in Subsection 5.1 and the width of resonances is showed
in Subsection 5.2.

2. Assumptions and results. In this section, we will present our
hypotheses and our main result. We recall the operator

P (B,ω) = (Dx −By)2 +D2
y + ω2x2 + V (x, y), (x, y) ∈ R

2,

where the potential V satisfies the following hypothesis:
(H1) There exist constants α1, α2, α3 > 0 and δ > 0 such that V admits

an analytic extension on the domain

A = {(z1, z2) ∈ C
2; |Im (z1, z2)| ≤ α1|Re (z1, z2)| + α2},

and for all (z1, z2) ∈ A

|V (z1, z2)| ≤ α3〈Re (z1, z2)〉−δ .

Here we denote 〈(t, s)〉 = (1 + t2 + s2)
1
2 , (t, s) ∈ R

2.

We recall that the total electric potential a0(x, y) = ω2x2 + V (x, y) (see
(1.4)). We introduce the following assumption:

(H2) Let E ∈ R \ {0}. Suppose that a0 has a local non-degenerate
maximum (or minimum) point E at (x0, y0), i.e., the definite Hessian a′′0(x0, y0) <
0 (or a′′0(x0, y0) > 0).

By the translation, we can always assume that (x0, y0) = (0, 0). Set

ΩE = {(x, y) ∈ R
2; a0(x, y) = E}.

(H3) (On the non-trapping condition) Assume that ΩE = {(0, 0)} ∪ Γ,
where Γ is a connected curve and (0, 0) is an isolated point, and that the classical
Hamiltonian a0(x, ξ) is non-trapping on Γ:

{a0(x, ξ), G0(x, ξ)} = ∂ξa0∂xG0 − ∂xa0∂ξG0(2.1)

= ξ∂ξa0(x, ξ) − x∂xa0(x, ξ) 6= 0, ∀(x, ξ) ∈ Γ,

where G0(x, ξ) = x.ξ, ∀(x, ξ) ∈ R2.

Our main result is the following:



544 Anh Tuan Duong

Theorem 2.1. Assume that the assumptions (H1), (H2) and (H3) hold.
For each n, we define

(2.2) Un =
{

z ∈ C; Re z ∈
]

(2n + 1)B + E − C0

B
, (2n + 1)B + E +

C0

B

[

,

Im z ∈
]

− 1

C0B
, 0
]}

,

where C0 > 1 can be arbitrarily large outside a discrete set in R. Then for B
large enough, the resonances of P (B,ω) in Un exist and are all given by complete
expansions in powers of B−1:

(2.3) En,j(B,ω) ∼ (2n+ 1)B + E

+
1

2

(

±(2j + 1)(λµ)
1
2 + (2n + 1)

λ+ µ

2

)

B−1 +
∑

k≥2

c
(k)
±;n,jB

−k,

where c
(k)
±;n,j ∈ R, λ and µ are eigenvalues of the Hessian a′′0(0, 0), and the sign

+(−) corresponds to a local minimum, maximum respectively.
Moreover, the resonances of P (B,ω) in Un are all algebraically simple

and the width of resonances is of order O(B−∞).

Remark 2.2. Notice that in the half-plane {z ∈ C; Re z <
√
B2 + ω2},

the poles of the meromorphic extension of the resolvent from {z ∈ C; Im z > 0} to
{z ∈ C; Im z < 0} are all given by the discrete eigenvalues of P (B,ω). Then the
resonances in this half-plane are identically equal to the set of discrete eigenvalues
of P (B,ω). Therefore, let E < 0, the width of E0,k(B,ω) is equal to 0.

We want to give an example to illustrate our main result.

Consider V (x, y) = − c1

x4 + 1
− c2

y2 + 1
, c1, c2 > 0. Then a0(x, y) = ω2x2−

c1

x4 + 1
− c2

y2 + 1
and one has

(2.4)

{

∂xa0(x, y) = 0

∂ya0(x, y) = 0
⇔



















2ω2x+
4c1x

3

(x4 + 1)2
= 0

2c2y

(y2 + 1)2
= 0.

The system (2.4) has only one solution (x, y) = (0, 0) and a0(0, 0) = −c1 − c2. It
is easy to compute the Hessian at (0, 0) of a0:

a′′0(0, 0) =

(

2ω2 0
0 2c2

)

> 0.
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It shows that a0 has a local minimum point at (0, 0). On the other hand,
a−1

0 (−c1 − c2) = {(0, 0)}. Therefore we do not need to verify the non-trapping
condition as in this case Γ = ∅. Our main result shows that there exist resonances
of P (B,ω) near (2n+ 1)B − c1 − c2 for B large enough and for all n ∈ N.

3. Reduction to the semiclassical effective Hamiltonian. In
this section, we reduce the study of resonances of P (B,ω) to the spectral study
of an h-pseudodifferential operator.

3.1. Spectral properties of P1,θ(B, ω). In this subsection, we com-
pute the essential spectrum of P1,θ(B,ω) and we give some resolvent estimates.

Lemma 3.1. Let θ be in a small complex neighbourhood of 0. Then,

(3.1) σess(P1,θ(B,ω)) = σess(P0,θ(B,ω)) =
⋃

n∈N

{µn + e2θλ, λ ≥ 0},

where µn = (2n+ 1)
√
B2 + ω2 and P0,θ(B,ω) given by (1.2).

P r o o f. Recall that P0,θ(B,ω) =
√
B2 + ω2(e2θD2

y + e−2θy2) + e2θω2x2.

Then when ω = 0, one has P0,θ(B, 0) =
√
B2 + ω2(e2θD2

y +e−2θy2). We are going
to determine the spectrum of P0,θ(B, 0) : L2(R2) → L2(R2).

Denote by P0,θ(B, 0)
∣

∣

∣

L2(Ry)
the restriction of P0,θ(B, 0) on L2(Ry). Let

us consider

A = {ψn(y); ψn(y) = Hn(y)e−
y2

2

where Hn(·) is the n-th Hermite polynomial, n ∈ N}

the set of normalized eigenfunctions of one-dimensional harmonic operator, i.e.,

(D2
y + y2)(ψn(y)) = (2n + 1)ψn(y).

For θ ∈ C near 0, we set ψn,θ(y) = e−
θ
2ψn(e−θy), n ∈ N. We put Aθ = {ψn,θ; n ∈

N}. Then one has Aθ ⊂ L2(R) and P0,θ(B, 0)
∣

∣

∣

L2(Ry)
(ψn,θ(y)) = µnψn,θ(y), n ∈

N. It shows that
⋃

n∈N

{µn} ⊂ σ
(

P0,θ(B, 0)
∣

∣

∣

L2(Ry)

)

. On the other hand, since

P0,θ(B, 0)
∣

∣

∣

L2(Ry)
is elliptic for |θ| small, then its spectrum is discrete. In addition,

Aθ is a dense set in L2(R) (see [15, Chapter 16]). Then if λ 6∈ ⋃

n∈N

{µn} is an
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eigenvalue of P0,θ(B, 0)
∣

∣

∣

L2(Ry)
and the corresponding eigenfunction f , one has

f ∈ A
⊥
θ = {0}. Therefore,

(3.2) σ
(

P0,θ(B, 0)
∣

∣

∣

L2(Ry)

)

=
⋃

n∈N

{µn}.

In fact, we can write P0,θ(B, 0) = IdL2(Rx) ⊗ P0,θ(B, 0)
∣

∣

∣

L2(Ry)
and the

multiplication operator e2θω2x2 = e2θω2x2
∣

∣

∣

L2(Rx)
⊗ IdL2(Ry). Here e2θω2x2

∣

∣

∣

L2(Rx)

is the natural restriction of the multiplication operator e2θω2x2 on L2(Rx). Then

it is easy to verify that the operator P0,θ(B, 0)
∣

∣

∣

L2(Ry)
and the multiplication

operator e2θω2x2
∣

∣

∣

L2(Rx)
satisfy [26, Theorem XIII.35]. It enables us to obtain:

(3.3) σ(P0,θ(B,ω)) = σ
(

P0,θ(B, 0)
∣

∣

∣

L2(Ry)

)

+ σ
(

e2θω2x2
∣

∣

∣

L2(Rx)

)

.

Moreover, σ
(

e2θω2x2
∣

∣

∣

L2(Rx)

)

= {e2θλ; λ ≥ 0}. Combining this with (3.2) and

(3.3), one obtains

(3.4) σ(P0,θ(B,ω)) =
⋃

n∈N

{µn + e2θλ;λ ≥ 0},

and then the discrete spectrum of P0,θ(B,ω) is empty.
Now we prove that the essential spectrum of P1,θ(B,ω) is equal to that of

P0,θ(B,ω). Firstly we can show as in [1] that V (P0(B,ω)−z)−1 is a compact oper-
ator for z 6∈ σ(P0(B,ω)). By the unitary equivalence, T (θ) := V w

θ (B,ω)(P0,θ(B,ω)−
z)−1 is also a compact operator for θ real and z 6∈ σ(P0,θ(B,ω)). Further, since
T (θ) is an analytic bounded operator-valued function in θ near 0, it is compact
for all θ near 0 (see [26, page 126, Lemma 5]). From this we can apply [17, page
244, Theorem 5.35] and achieve

(3.5) σess(P1,θ(B,ω)) = σess(P0,θ(B,ω)) =
⋃

n∈N

{µn + e2θλ;λ ≥ 0},

where µn = (2n+ 1)
√
B2 + ω2. �

For each fixed n ∈ N, we denote by ψn the normalized eigenfunction
of the harmonic oscillator corresponding to the eigenvalue (2n + 1) (i.e., (D2

y +
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y2)ψn(y) = (2n+1)ψn(y) and ‖ψn‖L2(R) = 1). Put ψn,θ(y) = e−
θ
2ψn(e−θy). Since

ψn(y) is of the form Hn(y)e−y2/2, where Hn is the n-th Hermite polynomial, we
have ψn,θ = ψn,θ̄ and 〈ψn,θ, ψn,θ̄〉 = ‖ψn‖2 = 1. We next consider the following
operators

R− : L2(R) → L2(R2), R+ : L2(R2) → L2(R)

u(x) 7→ u(x)ψn,θ(y) u(x, y) 7→ 〈u, ψn,θ̄〉L2(Ry)

and

Πn : L2(R2) → L2(R2)

u(x, y) 7→ 〈u, ψn,θ̄〉L2(Ry)ψn,θ(y),

here the scalar product 〈·, ·〉L2(Ry) denotes the integration in the y variable. The

natural restriction of Πn on L2(Ry) we also denote by Πn. From the definition,
one has

R+R−u(x) = R+(u(x)ψn,θ(y)) = u(x)

R−R+v(x, y) = 〈u, ψn,θ̄〉L2(Ry)ψn,θ(y) = Πnv(x, y).

Lemma 3.2 Let θ be in a small complex neighbourhood of 0. Then we
have

(3.6) σ(ΠnP0,θ(B,ω)Πn) = {µn + e2θλ; λ ≥ 0},

and

(3.7) σ((1 − Πn)P0,θ(B,ω)(1 − Πn)) =
⋃

k∈N\{n}
{µk + e2θλ; λ ≥ 0}.

Here ΠnP0,θ(B,ω)Πn : ΠnL
2(R2) → ΠnL

2(R2) and (1 − Πn)P0,θ(B,ω)(1 − Πn) :
(1 − Πn)L2(R2) → (1 − Πn)L2(R2).

P r o o f. First we demonstrate (3.6).

We observe that the Hilbert space ΠnL
2(Ry) is generated by ψn,θ. Then

it can be readily verified that

(3.8) σ
(

ΠnP0,θ(B, 0)Πn

∣

∣

∣

ΠnL2(Ry)

)

= {µn}.
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We recall that σ
(

e2θω2x2
∣

∣

∣

L2(Rx)

)

= {e2θλ; λ ≥ 0}. Then as in (3.3), it follows

from [26, Theorem XIII.35] that:

σ(ΠnP0,θ(B,ω)Πn) = σ
(

ΠnP0,θ(B, 0)Πn

∣

∣

∣

ΠnL2(Ry)

)

+ σ
(

e2θω2x2
∣

∣

∣

L2(Rx)

)

(3.9)

= {µn + e2θλ; λ ≥ 0}.(3.10)

Secondly, we prove (3.7) in the same way as above.
By applying [15, Proposition 6.9], one has

(3.11) σ
(

(1 − Πn)P0,θ(B, 0)(1 − Πn)
∣

∣

∣

L2(Ry)

)

=
⋃

k∈N\{n}
{µk}.

Then we use again [26, Theorem XIII.35] and derive

σ((1 − Πn)P0,θ(B,ω)(1 − Πn)) = σ
(

(1 − Πn)P0,θ(B, 0)(1 − Πn)
∣

∣

∣

L2(Ry)

)

(3.12)

+ σ
(

e2θω2x2
∣

∣

∣

L2(Rx)

)

=
⋃

k∈N\{n}
{µk + e2θλ; λ ≥ 0}. 2(3.13)

From now on, we fix n ∈ N. We put

(3.14) Tn =
{

z ∈ C; |Re z| ≤ 2β
√

B2 + ω2, |Im z| ≤ 2|Im θ|(1 − β)
√

B2 + ω2
}

,

where 0 < β < 1.

Proposition 3.3. Let θ ∈ C with |θ| small and Im θ < 0. Then for z ∈ Tn

the operator R0,θ(B,ω, z) :=
(

(1 − Πn)P0,θ(B,ω)(1 − Πn) − µn − z
)−1

(1 − Πn)

exists and the following estimate holds:
There exists C1 > 0 independent of B such that

(3.15) ‖R0,θ(B,ω, z)‖L2(R2) ≤
C1√

B2 + ω2
, uniformly in z ∈ Tn.

Moreover, for B large enough, the operator R1,θ(B,ω, z) =
(

(1−Πn)P1,θ(B,ω)(1−

Πn) − µn − z
)−1

(1 − Πn) exists for all z ∈ Tn and the following estimate holds:
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There exists C2 > 0 independent of B such that

(3.16) ‖R1,θ(B,ω, z)‖L2(R2) ≤
C3√

B2 + ω2
, uniformly in z ∈ Tn.

P r o o f. From (3.7) and the definition of Tn, one has σ((1−Πn)P0,θ(B,ω)(1−
Πn)− µn) ∩ Tn = ∅. It implies the existence of R0,θ(B,ω, z), z ∈ Tn. For z ∈ Tn,
we put

C(z) =
(

(1−Πn)(e2θD2
y+e

−2θy2+e2θω2x2)(1−Πn)−(2n+1)− z√
B2 + ω2

)−1
(1−Πn).

Since
1√

B2 + ω2
Tn =

{

1√
B2 + ω2

z; z ∈ Tn

}

is a compact set independent of

both B and ω, then there exists z0 ∈ Tn such that ‖C(z0)‖ = sup
z∈Tn

‖C(z)‖.
Remark that ‖C(z0)‖ does not depend on both B and ω. On the other hand,

by a change of variables x 7→ (B2 + ω2)
1
4x, we have R0,θ(B,ω, z) is unitarily

equivalent to
1√

B2 + ω2
C(z). Then

‖R0,θ(B,ω, z)‖ ≤ 1√
B2 + ω2

‖C(z0)‖,

uniformly in z ∈ Tn. Note that ‖C(z0)‖ is finite for Im θ < 0. And this proves
(3.15).

As a consequence of (3.15), we prove (3.16). Indeed, for z ∈ Tn,

(1 − Πn)P1,θ(B,ω)(1 − Πn) − µn − z

= (1 − Πn)P0,θ(B,ω)(1 − Πn) − µn − z + (1 − Πn)V w
θ (B,ω)(1 − Πn)

=
(

(1 − Πn)P0,θ(B,ω)(1 − Πn) − µn − z
)

×
(

1 +R0,θ(B,ω, z)(1 − Πn)V w
θ (B,ω)(1 − Πn)

)

.

Since V is bounded together with all its derivatives, there exists C > 0 such

that ‖R0,θ(B,ω, z)(1−Πn)V w
θ (B,ω)(1−Πn)‖ ≤ C√

B2 + ω2
uniformly in z ∈ Tn.

Then for B large enough, ‖R0,θ(B,ω, z)(1−Πn)V w
θ (B,ω)(1−Πn)‖ ≤ 1

2
and then
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R1,θ(B,ω, z) exists. Moreover, for B sufficiently large, there exists C2 > 0 such
that

‖R1,θ(B,ω, z)‖ =
∥

∥

∥

(

1 +R0,θ(B,ω, z)(1 − Πn)V w
θ (B,ω)(1 − Πn)

)−1
R0,θ(B,ω, z)

∥

∥

∥

(3.17)

≤ C2√
B2 + ω2

,

uniformly in z ∈ Tn. �

Remark 3.4. Let Q be equal to R0,θ(B,ω, z) or R1,θ(B,ω, z). Let
K be a compact set in R. Using the theory of h-pseudodifferential operators of
operator-valued symbols, we can view Q as an h-pseudodifferential operator in
the x-variable whose symbol q(x, ξ, θ;h) is bounded operator in the y-variable.
In particular, the proof of Proposition 3.3 shows that q(x, ξ, θ;h) is well-defined
on R

2
x,ξ (resp. K × R) for Im θ < 0 (resp. Im θ = 0).

3.2. Grushin problem. From now on, we use h =
1√

B2 + ω2
. To

indicate that the operators depend on h, we replace the indices (B,ω) by h. For
example, we write P1,θ(h) (resp. V w

θ (h)) instead of P1,θ(B,ω) (resp. V w
θ (B,ω)).

We now study the Grushin problem for P1,θ(h) − µn : Set

(3.18) P(z) =

(

P1,θ(h) − µn − z R−
R+ 0

)

: D × L2(R) → L2(R2) × L2(R),

where D ⊂ L2(R2) is the domain of P1,θ(h).

Fix θ ∈ C with |θ| small enough and Im θ < 0.

Theorem 3.5. For B large enough, the operator P(z) is invertible uni-
formly for z ∈ Tn. Moreover, the inverse of P(z) is holomorphic in z ∈ Tn and
given by

E(z) =

(

E(z) E+(z)
E−(z) E−+(z)

)

,

where

(3.19) E−+(z) = z − e2θω2x2 −R+V
w
θ (h)R− −R+b(z)[V

w
θ (h),Πn]R−

with b(z) = (I + [Πn, V
w
θ (h)]R1,θ(h, z))

−1.
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Here the operators E(z), E−(z) and E+(z) are given by

E(z) = R1,θ(h, z)b(z) ; E−(z) = R+b(z)

E+(z) = R− −R1,θ(h, z)b(z)[V
w

θ (h),Πn]R−.
(3.20)

In addition, z is an eigenvalue of P1,θ(h)−µn if and only if 0 is an eigenvalue of
E−+(z). Here the notation [·, ·] is the commutator which is defined by [A,C] =
AC − CA.

P r o o f. The proof follows from a simple modification of [27, Theorem
2.2] (see also [8, Section 6]). So we omit the details. �

Now we are interested in studying the operator E−+(z). In fact, for z ∈ Tn

(Tn is defined in (3.14)) and h sufficiently small, we prove that E−+(z) − (z −
e2θω2x2) is an h-pseudodifferential operator with bounded symbol.

By applying the Beal’s characterization of pseudodifferential operators
(see [9]), one easily sees that Πn is a pseudodifferential operator with bounded
symbol πn(y, η). Then making use of the pseudodifferential calculus ( see [9,
Chapter 7]), one obtains that the symbol of the commutator [V w

θ (h),Πn] has the

asymptotics
∑

j≥1
bjh

j
2 in S0(R4). It follows that

(3.21) [V w
θ (h),Πn] = O(h

1
2 )

in L(L2(R2)) – the space of bounded operators from L2(R2) to L2(R2).
Now for z ∈ Tn and h small enough,

E−+(z) = z − e2θω2x2 −R+V
w
θ (h)R− −R+b(z)[V

w
θ (h),Πn]R−

= z − e2θω2x2 −R+V
w
θ (h)R−(3.22)

−R+

∑

j≥0

(

[V w
θ (h),Πn]R1,θ(h, z)

)j
[V w

θ (h),Πn]R−.

Here we used (3.16), (3.21) and the Neumann series. From this and the fact that
R+[V w

θ (h),Πn]R− = 0, one obtains

E−+(z) = z − e2θω2x2 −R+V
w
θ (h)R−

−R+

∑

j≥1

(

[V w
θ (h),Πn]R1,θ(h, z)

)j
[V w

θ (h),Πn]R−

= z − e2θω2x2 −R+V
w
θ (h)R− + h2Gθ(z;h),(3.23)
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where Gθ(z;h) is holomorphic for z ∈ Tn. We set

(3.24) Aθ(h) = e2θω2x2 +R+V
w
θ (h)R−.

As in [7], we can prove that R+V
w
θ (h)R− is an h-pseudodifferential operator with

bounded symbol which belongs to S0((x2+ξ2)−
δ
2 ), where δ is given in Assumption

(H1). Here S0((x2+ξ2)−
δ
2 ) is the class of symbols with order function (x2+ξ2)−

δ
2

(see [9, Chapter 7]). Therefore,

(3.25) Aθ(h) = aw(eθx, e−θhDx;h),

where a(·, ·;h) is holomorphic in some conic neighbourhood of R
2 and we have

the following complete expansion in powers of h:

(3.26) a(x, ξ;h) − a0(x, ξ) ∼
∑

j≥1

hjaj(x, ξ)

with

(3.27) a0(x, ξ) = ω2x2 + V (x, ξ) and a1(x, ξ) =
(2n+ 1)

4
∆V (x, ξ).

By using the arguments in [27], we can prove that E−+(z)− (z−e2θω2x2)
is an h-pseudodifferential operator with bounded symbol. Moreover the symbol
also admits a complete expansion in powers of h.

Fix θ ∈ C with |θ| small enough and Im θ < 0. We have obtained the
following:

Proposition 3.6. For z ∈ Tn and h sufficiently small, the operator
E−+(z)− (z − e2θω2x2) is an h-pseudodifferential operator with bounded symbol.
Moreover, the symbol admits a complete expansion in powers of h in S0(R2):

(3.28) E−+(z)− (z− e2θω2x2) = aw
0 (eθx, e−θhDx)+aw

1 (eθx, e−θhDx)h+O(h2),

where a0, a1 are given in (3.27).

Remark 3.7. It follows from the theory of h-pseudodifferential opera-
tors of operator-valued symbols, formula (3.23) and Remark 3.4 that the symbol
corresponding to E−+(z) is well-defined for x in a compact set and Im θ = 0.

Thanks to Theorem 3.5, our purpose is now to study the spectrum of the
effective Hamiltonian E−+(z).
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4. Spectral properties of the leading term of E
−+(z). In this

section, we investigate the spectrum of Aθ(h) near E . We recall that Aθ(h) =
e2θω2x2 + R+V

w
θ (h)R− which satisfies (3.25). For θ ∈ C with |θ| small enough

and Im θ < 0, we have the following:

Lemma 4.1. The essential spectrum of Aθ(h) is equal to the set
{e2θλ; λ ≥ 0}.

P r o o f. We regard R+V
w
θ (h)R− as the perturbation of the multiplication

operator e2θω2x2. Recall that the decay of V at infinity implies that the symbol of

R+V
w
θ (h)R− belongs to S0((x2 +ξ2)−

δ
2 ) (see Assumption (H1)). Therefore it fol-

lows that R+V
w
θ (h)R−(e2θω2x2 − z)−1 is a compact operator, for z 6∈ σ(e2θω2x2)

(see [22, page 62]). Thus, we apply [17, Theorem 52.35] to obtain the essential
spectrum of Aθ(h) is equal to that of e2θω2x2. In addition, the essential spectrum
of the multiplication operator e2θω2x2 is nothing but {e2θλ; λ ≥ 0}. The lemma
is proved. �

Without loss of generality, we may next assume that the total electric
potential a0(x, ξ) has a local minimum at (0, 0) (otherwise we study −Aθ(h)).
Moreover, the real part of θ can be ignored by a unitary transformation, it is
then sufficient to consider Re θ = 0.

To study the spectrum of Aθ(h) near E, it is very important to know some
properties of the principal symbol. We will see below that a0(e

θx, e−θξ) − E is
elliptic outside (0, 0).

So far, we want to show the exponential decay of eigenfunctions of Aθ(h)
corresponding to eigenvalues near E. Then it is essential to study an operator of

the form e
f(x)

h Aθ(h)e
− f(x)

h , of which the principal symbol is a0(e
θx, e−θ(ξ+if ′(x)).

So by choosing a suitable function f , we show below that a0(e
θx, e−θ(ξ+if ′(x)))−

E has the same properties as a0(e
θx, e−θξ) − E.

From now on we fix θ = iγ with γ < 0 . Let β > 0, we set B(β) =
{(x, ξ) ∈ R

2; |x| + |ξ| < β}.
Lemma 4.2. For β > 0 sufficiently small and |γ| small enough, there

exists a smooth function f(x) such that

f(x) > 0 for x ∈ R \ {0},(4.1)

f(x) = c1x
2 for x near 0,(4.2)

where c1 is a small positive constant, and the following lower bounds hold:
There exists C > 0 large enough such that

(4.3) Re
(

a0(e
iγx, e−iγ(ξ + if ′(x))) − E

)

≥ 1

C
(x2 + ξ2) for (x, ξ) ∈ B(β),
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(4.4)
∣

∣

∣
a0(e

iγx, e−iγ(ξ + if ′(x))) − E
∣

∣

∣
≥ |γ|

C
for (x, ξ) ∈ R

2 \B(β).

P r o o f. Put Γ1 := {x ∈ R; ∃ξ ∈ R, (x, ξ) ∈ Γ}. Remember that Γ =
{(x, ξ) ∈ R

2; ω2x2+V (x, ξ) = E} and lim
|(x,ξ)|→∞

V (x, ξ) = 0, then Γ1 is a bounded

set.
For β, |γ| small enough chosen later on, we construct a real smooth func-

tion f depending on these constants:

f(x) = c1x
2χ1(x) + c2χ2(x) + c3χ3(x),

where χ1 ∈ C∞
0 (R; [0, 1]), χ3, χ2 ∈ C∞(R; [0, 1]) satisfy:

• χ1 = 1 on {x ∈ R; ∃ξ ∈ R s.t. (x, ξ) ∈ B(β)}, the support of χ1 lies in
some small neighbourhood of 0 and χ1 + χ2 = 1.

• The support of χ3 lies outside a neighbourhood of Γ1∪{0} and χ3(x) = 1
for |x| large,

and positive constants c1, c2, c3 > 0 small enough (to be chosen later on).
Remark that c1, c2 depend on γ, c3 is independent of γ.

Then it is easy to see that (4.1), (4.2) are verified. By using a symplectic
change of coordinates if necessary, one can assume that Hessian of a0 at (0, 0) is
given by

a′′0(0, 0) =

(

λ 0
0 µ

)

.

We start by proving (4.3). Notice that the constant C may change from line to
line in what follows. For β > 0 small enough, by applying Taylor formula of order
three to a0 at (0, 0), one obtains:

(4.5) a0(e
iγx, e−iγξ) = E +

1

2
(λei2γx2 + µe−i2γξ2) + O((x, ξ)3)

for (x, ξ) ∈ B(β). We replace ξ by ξ + if ′(x) in (4.5). Since f ′(x) = 2c1x for
x ∈ {y ∈ R; ∃η ∈ R s.t. (y, η) ∈ B(β)}, we can choose c1 small enough such that
there exists C > 0 large:

Re
(

a0(e
iγx, e−iγ(ξ + if ′(x))) −E

)

≥ 1

C
(x2 + ξ2),

for (x, ξ) ∈ B(β). Thus the lower bound estimate (4.3) is proved.
Now we demonstrate the estimate (4.4). The proof is divided into two

cases according to the sign of E.



Resonances of two-dimensional Schrödinger operators 555

Case E < 0. First remark that ΩE is a compact set in this case.
Since (0, 0) is an isolated point, then for β small enough, Γ = Γ ∩ R

2 \ B(β) =
ΩE∩R

2\B(β). It implies that Γ is also a compact set. We choose a neighbourhood
of Γ as follows:

The non-trapping condition on Γ (see Assumption (H3)) implies that, for
each (x0, ξ0) ∈ Γ, there exists ε(x0, ξ0) > 0 such that

(4.6) |x∂xa0(x, ξ) − ξ∂ξa0(x, ξ)| ≥
1

C(x0, ξ0)
> 0,

for all (x, ξ) ∈ D
(

(x0, ξ0), ε(x0, ξ0)
)

. Here C(x0, ξ0) is a large constant depending
on (x0, ξ0) and D

(

(x0, ξ0), ε(x0, ξ0)
)

= {(x, ξ) ∈ R
2; |x − x0|2 + |ξ − ξ0|2 <

ε(x0, ξ0)
2}. The compactness of Γ gives: there exists a finite number of such

discs such that

Γ ⊂
k
⋃

j=1

D
(

(xj , ξj), ε(xj , ξj)
)

=: V(Γ).

a) For (x, ξ) ∈ V(Γ):

(4.7) |x∂xa0(x, ξ) − ξ∂ξa0(x, ξ)| ≥
1

max
1≤j≤k

C(xj , ξj)
> 0,

where C(xj, ξj), j = 1, . . . , k, are given in (4.6).

Since Im (eiγx, e−iγξ) = sin(γ)(x,−ξ) and Re (eiγx, e−iγξ) = cos(γ)(x, ξ),
then

Im (eiγx, e−iγξ).∇a0(Re (eiγx, e−iγξ))

= sin(γ)
(

x∂xa0(cos(γ)(x, ξ)) − ξ∂ξa0(cos(γ)(x, ξ))
)

.

Combining this with (4.7) we have, for |γ| small enough,

(4.8)
∣

∣

∣
Im (eiγx, e−iγξ).∇a0(Re (eiγx, e−iγξ))

∣

∣

∣
≥ |γ|

C
, ∀(x, ξ) ∈ V(Γ),

where C is a large constant.

Notice that (x, ξ) near Γ corresponds to x near Γ1. Then we can choose
c1, c2 small depending on γ such that |f ′(x)| ≤ c′|γ| for x near Γ1. Here the
constant c′ is small enough. Thus the inequality (4.8) remains true when we
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replace (eiγx, e−iγξ) by w := (eiγx, e−iγ(ξ+if ′(x))), i.e., there exists C sufficiently
large such that

(4.9) |Imw.∇a0(Rew)| ≥ |γ|
C
.

Remark that the Hessian of a0 is given by

a′′0(x, ξ) =

(

2ω2 + ∂2
xxV (x, ξ) ∂2

xξV (x, ξ)

∂2
ξxV (x, ξ) ∂2

ξξV (x, ξ)

)

and ∂α
xξa0(x, ξ) = ∂α

xξV (x, ξ) for all α ∈ N
2, |α| ≥ 3. Then we apply the Taylor

formula of order two to a0(w) at Rew:

(4.10) a0(w) = a0(Rew) + i Imw∇a0(Rew) + ω2x2 sin2(γ) + r(w),

where |r(w)| ≤ C sin2(|γ|). Combine this with (4.9), we have for C large enough,

(4.11) |a0(w) − E| ≥ |Im (a0(w) − E)| ≥ |γ|
C
, ∀(x, ξ) ∈ V(Γ).

b) For (x, ξ) ∈ R
2 \B(β) and (x, ξ) 6∈ V(Γ): From now on, we set Ṽ(Γ) :=

R
2 \ (B(β) ∪ V(Γ)).

Choose R > 0 sufficiently large such that: ω2R2 > sup
R2

|V | and

sup
{(x,ξ)∈R2; |ξ|≥R}

|V (x, ξ)| < −E
2

. Then

(4.12) ω2x2 + V (x, ξ) −E ≥ −E
2
> 0

for all (x, ξ) ∈ {(x, ξ) ∈ Ṽ(Γ); |x| ≥ R or |ξ| ≥ R}. In fact for |x| ≥ R we
use ω2x2 + V (x, ξ) − E ≥ ω2R2 − sup

R2

|V | − E > −E and for |ξ| ≥ R we use

ω2x2 + V (x, ξ) − E ≥ − sup
{(x,ξ)∈R2; |ξ|≥R}

|V (x, ξ)| − E > −E
2
. Then for |γ| small

and c3 small (c3 is independent of γ),

(4.13) Re
(

a0(e
iγx, e−iγ(ξ + if ′(x))) − E

)

≥ −E
4
> 0

on the set {(x, ξ) ∈ Ṽ(Γ); |x| ≥ R or |ξ| ≥ R}.
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Since Γ∩Ṽ(Γ) = ∅ and a0(x, ξ)−E = 0 if and only if (x, ξ) ∈ Γ∪{(0, 0)},
one has a0(x, ξ)−E 6= 0 on Ṽ(Γ). Thus, on the compact set {(x, ξ) ∈ Ṽ(Γ); |x| ≤
R, |ξ| ≤ R},

|a0(x, ξ) − E| ≥ const > 0.

By a perturbation argument, for |γ| and c1, c2, c3 small enough, one obtains

(4.14)
∣

∣

∣
a0(e

iγx, e−iγ(ξ + if ′(x))) − E
∣

∣

∣
≥ const > 0,

for (x, ξ) ∈ {(x, ξ) ∈ Ṽ(Γ); |x| ≤ R, |ξ| ≤ R}.
Therefore, from (4.13) and (4.14), one has

(4.15)
∣

∣

∣
a0(e

iγx, e−iγ(ξ + if ′(x))) − E
∣

∣

∣
≥ const > 0,

for all (x, ξ) ∈ Ṽ(Γ).

It follows from (4.11), (4.15) that, for |γ| and c1, c2, c3 small enough, there
exists C large enough such that

(4.16)
∣

∣

∣
a0(e

iγx, e−iγ(ξ + if ′(x))) − E
∣

∣

∣
≥ |γ|

C
,

for all (x, ξ) ∈ R
2 \B(β).

Case E > 0. Note that ΩE is no longer a compact set. In fact, there are

two asymptotes of Γ: x = ±
√
E

ω
since V vanishes at infinity. Let ε > 0 small,

we can choose R > 0 large enough such that Γ ∩ R2 \ D((0, 0), R) ⊂ {(x, ξ) ∈
R

2 \D((0, 0), R); |ω2x2 − E| < ε}. Here R >> β.

First, for (x, ξ) ∈ D((0, 0), R) \ B(β), by using the same arguments as
in case E < 0, i.e., the non-trapping condition on Γ and the compactness of
D((0, 0), R), we obtain (4.4).

Next we divide the set R
2 \D((0, 0), R) into two sets

R
2 \D((0, 0), R) = R(ε) ∪R(ε)c,

where

R(ε) := {(x, ξ) ∈ R
2 \D((0, 0), R); |ω2x2 − E| < ε}.

• In R(ε), when ε→ 0 one has

V (x, ξ), x∂xV (x, ξ), ξ∂ξV (x, ξ) = o(1),
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and

ω2x2 − E = o(1).

Therefore, for ε sufficiently small and (x, ξ) ∈ R(ε)

(4.17)
∣

∣

∣
{x.ξ, a0(x, ξ)}

∣

∣

∣
=
∣

∣

∣
x(2ω2x+∂xV (x, ξ))−ξ∂ξV (x, ξ)

∣

∣

∣
≥ |2E+o(1)| ≥ E.

Apply again the perturbation argument, one gets

(4.18)
∣

∣

∣
Im (eiγx, e−iγ(ξ + if ′(x))).∇a0(Re (eiγx, e−iγ(ξ + if ′(x))))

∣

∣

∣
≥ E|γ|

2
> 0.

The same arguments as in (4.11), one obtains

(4.19)
∣

∣

∣
a0(e

iγx, e−iγ(ξ + if ′(x))) − E
∣

∣

∣
≥ E|γ|

2
> 0.

• In R(ε)c, one has |ω2x2 −E| ≥ ε. Since lim
|(x,ξ)|→∞

V (x, ξ) = 0, we choose

R large enough such that

|ω2x2 + V (x, ξ) − E| ≥ ε

2
,

for all (x, ξ) ∈ R(ε)c. Now we apply again the perturbation argument to obtain,
for |γ| and c1, c2, c3 small enough,

(4.20)
∣

∣

∣
a0(e

iγx, e−iγ(ξ + if ′(x))) − E
∣

∣

∣
≥ ε

4
> 0.

The proof of the lemma is thus complete. �

Since x and ξ play the same role, the following lemma can be proved by
using the same arguments as above:

Lemma 4.3. For β sufficiently small and |γ| small enough, there exists
a smooth function g(ξ) such that

(4.21) g(ξ) > 0 for ξ ∈ R \ {0} and g(ξ) = c2ξ
2 for ξ near 0,

where c2 is a small positive constant, and the following lower bounds hold:

There exists C > 0 sufficiently large such that

(4.22) Re
(

a0(e
iγ(x+ ig′(ξ)), e−iγξ) − E

)

≥ 1

C
(x2 + ξ2) for (x, ξ) ∈ B(β),
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(4.23)
∣

∣

∣
a0(e

iγ(x+ ig′(ξ)), e−iγξ) − E
∣

∣

∣
≥ |γ|

C
for (x, ξ) ∈ R

2 \B(β).

Recall that γ = Im θ < 0.

By relying on Lemma 4.2 and Lemma 4.3, we prove the exponential decay
of eigenfunctions corresponding to eigenvalues of Aiγ(h) near E:

Theorem 4.4. Let f be constructed in Lemma 4.2. Let C0 > 0 be a large
and fixed constant, we define a neighbourhood of E,

D = {z ∈ C; |z − E| < C0h}.

Suppose that λ(h) ∈ D is an eigenvalue of Aiγ(h) and u(h) is a normalized
eigenfunction associated to λ(h), then there exists C > 0 such that

(4.24) ‖ef(x)/hu(h)‖ ≤ C,

P r o o f. Let ãiγ be the symbol of Aiγ(h) − e2iγω2x2. We recall that
(x, ξ) 7→ ãiγ(x, ξ;h) is holomorphic in some conic neighbourhood of R

2. Let

us put Af (h) = e
f
hAiγ(h)e−

f
h . Then by using the contour integration in the ξ

variable, one has for u ∈ C∞
0 (R),

(

Af (h) − e2iγω2x2
)

u(x) =
1

2πh

∫∫

e(i(x−y)ξ+f(x)−f(y))/h ãiγ

(x+ y

2
, ξ;h

)

u(y)dydξ

=
1

2πh

∫∫

ei(x−y)(ξ−if ′(x,y))/hãiγ

(x+ y

2
, ξ;h

)

u(y)dydξ

=
1

2πh

∫∫

ei(x−y)ξ/hãiγ

(x+ y

2
, ξ + if ′(x, y);h

)

dydξ,

where f ′(x, y) is determined by f(x) − f(y) = (x− y)f ′(x, y).
Using the analyticity of ãiγ , it follows from Cauchy formula that Af (h)−

e2iγω2x2 is also an h-pseudodifferential operator with bounded symbol. Moreover,
the symbol of Af (h)−e2iγω2x2 can also be expanded in powers of h in S0(R2) (the
set of bounded symbols) with the principal symbol is V (eiγx, e−iγ(ξ + if ′(x))).
Then the principal symbol of Af (h) is a0(e

iγx, e−iγ(ξ + if ′(x))).

Let us put uf (h) := e
f
hu(h) which belongs to L2(R) since f is bounded.

Let B(β) be as in Lemma 4.2, we choose a partition of unity χ1 + χ2 = 1,
suppχ1 ⊂ B(β), χ1 = 1 near (0, 0). The idea of the proof is to estimate separately
χw

1 (x, hDx)uf (h) and χw
2 (x, hDx)uf (h).
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Firstly we want to evaluate χw
2 (x, hDx)uf (h). From (4.4), the symbol

χ2(x, ξ)
(

a0(e
iγx, e−iγ(ξ + if ′(x))) − λ(h)

)−1
exists. Moreover since (Af (h) −

λ(h))uf (h) = 0, one has

(

χ2(x, ξ)
(

a0(e
iγx, e−iγ(ξ+if ′(x)))−λ(h)

)−1
)w

(x, hDx)(Af (h)−λ(h))uf (h) = 0.

By applying the h-pseudodifferential calculus in the right hand side of this equal-
ity, one obtains

(4.25)
(

χw
2 (x, hDx) + O(h)

)

uf (h) = 0.

Secondly, we estimate u1
f (h) := χw

1 (x, hDx)uf (h). In fact, it results from the

compactness of the support of χ1 and
(

Af (h) − λ(h)
)

uf (h) = 0 that

Re
〈

(Af (h) − λ(h))u1
f (h), u1

f (h)
〉

= Re
〈

[Af (h), χw
1 (x, hDx)]uf (h), u1

f (h)
〉

(4.26)

= O(h)
〈

uf (h), u1
f (h)

〉

.(4.27)

In addition, by using (4.3) and the G̊arding inequality, one obtains

(4.28)

Re
〈

(Af (h) − λ(h))u1
f (h), u1

f (h)
〉

= e−iγ(hDx + if ′(x))) − E
)

u1
f (h), u1

f (h)
〉

+ O(h)‖u1
f (h)‖2

≥ 1

C

〈

(h2D2
x + x2 − C1h)u

1
f (h), u1

f (h)
〉

,

for some large constants C,C1.

Since h2D2
x is a positive operator, then

(4.29)
〈

(h2D2
x + x2 − C1h)u

1
f (h), u1

f (h)
〉

≥
〈

(x2 − C1h)u
1
f (h), u1

f (h)
〉

.

Let M be a large constant. We decompose the scalar product in (4.29) into two
parts according to |x| > Mh and |x| ≤Mh. Then one has

〈

(x2 − C1h)u
1
f (h), u1

f (h)
〉

=
〈

(x2 − C1h)u
1
f (h), u1

f (h)
〉

L2({x∈R; |x|>Mh1/2})
(4.30)

+
〈

(x2 − C1h)u
1
f (h), u1

f (h)
〉

L2({x∈R; |x|≤Mh1/2})
.
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By using x2 ≥ 0, one obtains

〈

(x2 − C1h)u
1
f (h), u1

f (h)
〉

≥
〈

(M2 −C1)hu
1
f (h), u1

f (h)
〉

L2({x∈R; |x|>Mh1/2})
(4.31)

− C1h
〈

u1
f (h), u1

f (h)
〉

L2({x∈R; |x|≤Mh1/2})

=
〈

(M2 −C1)hu
1
f (h), u1

f (h)
〉

−M2h
〈

u1
f (h), u1

f (h)
〉

L2({x∈R; |x|≤Mh1/2})
.

For |x| ≤Mh1/2, one has
f(x)

h
=
c1x

2

h
≤ c1M

2. Combining this with the

fact that ‖u(h)‖ = 1, one derives: There exists C(M) > 0 such that

(4.32)
〈

u1
f (h), u1

f (h)
〉

L2({x∈R; |x|≤Mh1/2})
< C(M).

Then, combining (4.29), (4.31) and (4.32) one has

(4.33)
〈

(h2D2
x + x2 −C1h)u

1
f (h), u1

f (h)
〉

≥ (M2 − C1)h‖u1
f (h)‖2 −M2C(M)h.

From (4.26), (4.28) and (4.33), there exists C2 > 0 such that

(4.34) (M2 −C1)h‖u1
f (h)‖2 −M2C(M)h ≤ C2h‖u1

f (h)‖‖uf (h)‖,

which implies that

‖u1
f (h)‖2 ≤ M2C(M)

(M2 − C1)
+

C2

(M2 − C1)
‖uf (h)‖2.

From (4.25), (4.34) and the fact that χw
1 (x, hDx) + χw

2 (x, hDx) = 1 we have

‖uf (h)‖2 = ‖(χw
1 (x, hDx) + χw

2 (x, hDx))uf (h)‖2

≤ M2C(M)

(M2 − C1)
+

C2

(M2 − C1)
‖uf (h)‖2 + C3h‖uf (h)‖2,

for some C3 > 0. The proof follows by choosing M sufficiently large, h small
enough. �

Since x and ξ play the same role, we also obtain the following:
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Theorem 4.5. Let g and D be as in Lemma 4.3 and Theorem 4.4.
Suppose that λ(h) ∈ D is an eigenvalue of Aiγ(h) and u(h) is a normalized
eigenfunction associated to λ(h), then there exists C > 0 such that

(4.35) ‖eg(hDx)/hu(h)‖ ≤ C.

Thanks to the Theorems 4.4 and 4.5, we need only study the symbol of
the operator Aiγ(h) near (0, 0). We also have assumed near (0, 0) that a0(x, ξ) =
E + 1

2 (λx2 + µξ2) + O((x, ξ)3) (i.e., the matrix a′′0(0, 0) is diagonal). Putting

(4.36) A0
iγ(h) =

1

2
(λe2iγx2 + µe−2iγh2D2

x) +
2n+ 1

4
∆V (0, 0)h.

Since ∆V (0, 0) = λ+µ−ω2, then it is clear that the spectrum of A0
iγ(h), σ(A0

iγ (h)) =
{hek; k ∈ N} where

(4.37) ek =
(2k + 1)

√
λµ

2
+

(2n + 1)(λ+ µ− 2ω2)

4
, k ∈ N.

Notice here that in the work of X. P. Wang (see [28]) the total electric potential is
W (x, y) = ωx+V (x, y) and then ∆W (x, y) = ∆V (x, y). But in our case, the total
electric potential is a0(x, y) = ω2x2 +V (x, y). Then ∆a0(x, y) = 2ω2 +∆V (x, y).
This explains why there is −2ω2 in the formula of ek.

Let C0 be a large fixed constant such that C0 6= ek, k ∈ N. Henceforth
we denote the neighbourhood of E,

(4.38) D = {z ∈ C; |z − E| ≤ C0h}.

For β > 0 small and j ∈ N, let Dj = {z ∈ D; |z − E − hej | ≤ βh}. Then we
prove that the spectrum of Aiγ(h) in D \ ⋃

j∈N

Dj is empty.

Proposition 4.6. Let z be in D \ ⋃
j∈N

Dj . For h small enough, the

following resolvent estimate holds:

‖(Aiγ(h) − z)−1‖ ≤ Ch−1,

for some C > 0.

P r o o f. Choosing {χ1, χ2} a partition of unity on R
2, χ1 = 1 near (0, 0)

and χ1 = 0 outside an β-neighbourhood of (0, 0).
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From the proof of the inequality (4.4), it is easy to see that for z ∈ D,

one has |a0(e
iγx, e−iγξ) − z| ≥ |γ|

C
for (x, ξ) ∈ suppχ2. Denote by B1(z) the

h-pseudodifferential operator with symbol χ2(x, ξ)(a0(e
iγx, e−iγξ) − z)−1. Then

one has

(4.39) B1(z)(Aiγ(h) − z) = χw
2 (x, hDx) + O(h).

For z ∈ D \ ⋃
j∈N

Dj , then z − E ∈ ρ(A0
iγ(h)) which shows the existence of

B2(z) := (A0
iγ(h)+E− z)−1. Our purpose is to study χw

1 (x, hDx)B2(z)(Aiγ(h)−
z). It can be readily verified that xj(hDx)kB2(z) is unitarily equivalent to

h
k+j
2

−1xjDk
x

(1

2
(λe2iγx2 + µe−2iγD2

x) +
2n+ 1

4
∆V (0, 0) +

E − z

h

)−1
.

Then,

(4.40) ‖xj(hDx)kB2(z)‖ ≤ Ch
k+j
2

−1, 0 ≤ k + j ≤ 2.

We have

χw
1 (x, hDx)B2(z)(Aiγ(h) − z) = χw

1 (x, hDx)
(

1 +B2(z)(Aiγ(h) −A0
iγ(h) − E)

)

= χw
1 (x, hDx)

(

1 +B2(z)(Aiγ(h) −A0
iγ(h) −E)

)(

χw
3 (x, hDx) + 1 − χw

3 (x, hDx)
)

,

where χ3 = 1 near suppχ1 and χ3 = 0 outside 2β-neighbourhood of (0, 0). From
(4.40) and suppχ1∩ suppχ3 = ∅, we obtain by inductive arguments that

(4.41) χw
1 (x, hDx)B2(z)(Aiγ(h) −A0

iγ(h) − E)(1 − χw
3 (x, hDx)) = O(h∞).

One has the symbol of Aiγ(h) −A0
iγ(h)−E on the support of χ3 is O((x, ξ))h+

O(h2). Thus we use again (4.40) to obtain

(4.42) ‖χw
1 (x, hDx)B2(z)(Aiγ(h) −A0

iγ(h) −E)χw
3 (x, hDx)‖ ≤ Cβ + Ch,

for some C large.

These arguments give

(4.43) χw
1 (x, hDx)B2(z)(Aiγ(h) − z) = χw

1 (x, hDx) + O(β) + O(h).
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From (4.39) and (4.43), there exist C1, C2, C3, C4 > 0 such that

(1 − Cβ − C1h)‖u‖ ≤ ‖χw
1 (x, hDx)B2(z)(Aiγ(h) − z)u‖ + ‖B1(z)(Aiγ(h) − z)u‖

≤ C2h
−1‖(Aiγ(h) − z)u‖ + C3‖(Aiγ(h) − z)u‖

≤ C4h
−1‖(Aiγ(h) − z)u‖, ∀u ∈ C∞

0 (R).

We choose β and h small such that (1 − Cβ − C1h) >
1
2 . It implies that Aiγ(h)

does not have any eigenvalue in D \ ⋃
j∈N

Dj . On the other hand Lemma 4.1

asserts that σess(Aiγ(h)) ∩ D \ ⋃
j∈N

Dj = ∅. Thus D \ ⋃
j∈N

Dj ⊂ ρ(Aiγ(h)) and

‖(Aiγ(h) − z)−1‖ ≤ Ch−1 for all z ∈ D \ ⋃
j∈N

Dj. �

From Proposition 4.6, the spectrum of Aiγ(h) near E is contained in
⋃

j∈N

Dj. Further, one obtains the following:

Theorem 4.7. Let D be the set defined in (4.38). Then for h sufficiently
small, there is one to one correspondence between the eigenvalues of Aiγ(h) in D
and the set {ej ; ej < C0, j ∈ N}. Moreover, we can rearrange the eigenvalues of
Aiγ(h) in D such that the jth eigenvalue is

(4.44) Ej(h) = E + hej + O(h
3
2 ).

P r o o f. According to Proposition 4.6, it suffices to show that for each j

such that ej < C0, in Dj = {z ∈ D; |z−E− hej | ≤ βh} there exists uniquely an
eigenvalue of Aiγ(h). Denote Γj = {z ∈ C; |z − E − hej | = 2βh} ⊂ D \ ⋃

j∈N

Dj .

For z ∈ Γj, one has ‖(z −Aiγ(h))−1‖ ≤ Ch−1. Let us define for each j ∈ N

(4.45) Ξj(h) =
1

2πi

∫

Γj

(z −Aiγ(h))−1dz.

In the same notations as in Proposition 4.6, one has

B1(z)(Aiγ(h) − z) = χw
2 (x, hDx) + O(h)

and

χw
1 (x, hDx)B2(z)(Aiγ(h) − z) = χw

1 (x, hDx)(1 +B2(z)(Aiγ(h) −A0
iγ(h) − E)).
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Then,

(B1(z) + χw
1 (x, hDx)B2(z))(Aiγ (h) − z)

= 1 + O(h) + χw
1 (x, hDx)B2(z)(Aiγ(h) −A0

iγ(h) − E)

= 1 + O(h) + χw
1 (x, hDx)B2(z)(Aiγ(h) −A0

iγ(h) − E)χw
3 (x, hDx),

which shows that

(Aiγ(h) − z)−1 = B1(z) + χw
1 (x, hDx)B2(z)

(4.46)

−
(

O(h) + χw
1 (x, hDx)B2(z)(Aiγ(h) −A0

iγ(h) − E)χw
3 (x, hDx)

)

(Aiγ(h) − z)−1.

We notice here that B1(z) is holomorphic in z ∈ D. Then, by inserting (4.46)
into (4.45), one obtains

Ξj(h) = χw
1 (x, hDx)Π0(h) +

∫

Γj

(O(1) + O(β)h−1)dz

= χw
1 (x, hDx)Π0(h) +B3(h, β),(4.47)

where Π0(h) is the spectral projector associated to ej of A0
iγ(h) and ‖B3(h, β)‖ →

0 as β, h → 0. It implies that, for j ∈ N such that ej < C0, rankΞj(h) =
rankχ1Π

0(h) = 1. According to [26, Theorem XII.6] there exists uniquely a
simple eigenvalue of Aiγ(h) inside Γj denoted by Ej(h).

Now we prove the estimate (4.44). Let φj,iγ(x;h) be the unique eigenvalue

associated to hej of A0
iγ(h). Since φj,iγ(x;h) is of the form pj(

eiγx√
h

)h−
1
4 e−c ei2γ x2

2h

where pj is a polynomial, by a scaling argument, one gets

‖xj(hDx)k(χw
1 (x, hDx)φj,iγ(x;h))‖ = O(h

k+j
2 ), 0 ≤ k + j ≤ 3.

It follows from this that

(4.48) (Aiγ(h) − E −A0
iγ(h))χw

1 (x, hDx)φj,iγ(x;h) = O(h
3
2 ).

A direct computation gives

(Aiγ(h) − E − hej)χ
w
1 φj,iγ(x;h)

= [Aiγ(h), χw
1 ]φj,iγ(x;h) + χw

1 (Aiγ(h) − E −A0
iγ(h))(φj,iγ(x;h))

= [Aiγ(h), χw
1 ]φj,iγ(x;h) + χw

1 (Aiγ(h) − E −A0
iγ(h))(χw

3 + 1 − χw
3 )(φj,iγ(x;h)).



566 Anh Tuan Duong

Combining this with (4.41) and (4.48), one has

(4.49) (Aiγ(h) − E − hej)χ
w
1 φj,iγ(x;h) = [Aiγ(h), χw

1 ]φj,iγ(x;h) + O(h
3
2 ).

Let χ̃ ∈ C∞
0 (R2) such that χ̃ = 1 near (0, 0) and χ1χ̃ = χ̃. It follows from the

h-pseudodifferential calculus that [Aiγ(h), χw
1 ]χ̃w = O(h∞). Combining this with

the exponential decay of φj,iγ(x;h), one obtains

[Aiγ(h), χw
1 ]φj,iγ(x;h) = [Aiγ(h), χw

1 ]χ̃wφj,iγ(x;h) + [Aiγ(h), χw
1 ](1 − χ̃w)φj,iγ(x;h)

= O(h∞).(4.50)

From (4.49) and (4.50), one obtains

(4.51) (Aiγ(h) − E − hej)χ
w
1 (x, hDx)φj,iγ(x;h) = O(h

3
2 ).

Let uj,iγ(h) be a normalized eigenfunction of Aiγ(h) associated to Ej(h). We
denote by Aiγ(h)∗ the adjoint of Aiγ(h). Now we take uj,iγ(h)

∗ an eigenfunction of
Aiγ(h)∗ such that Aiγ(h)∗uj,iγ(h)

∗ = Ēj(h)uj,iγ(h)∗ and 〈uj,iγ(h), uj,iγ(h)∗〉 = 1.

It follows from (4.47), (4.51) that

(4.52)
〈

(Aiγ(h) − E − hej)(uj,iγ(h) −B3(h, β)uj,iγ(h)), uj,iγ(h)∗
〉

= O(h
3
2 ).

Remark that uj,iγ(h) (resp. uj,iγ(h)∗) is the eigenfunction of Aiγ(h) (resp. Aiγ(h)∗).
Then (4.52) follows that

(4.53) (Ej(h) − E − hej)(1 − 〈B3(h, β)uj,iγ(h), uj,iγ(h)∗〉) = O(h
3
2 ).

Recall that ‖B3(h, β)‖ → 0 as h, β → 0. Then for h, β sufficiently small, it results

from (4.53) that Ej(h) = E + hej + O(h
3
2 ). �

By using the fact that Ej(h) is a simple eigenvalue and repeating the
same arguments as in [20] (see also [14]), we obtain:

Theorem 4.8. The eigenvalue Ej(h) of Aiγ(h) can be expanded asymp-
totically in powers of h, i.e.,

Ej(h) ∼
∑

k≥0

λj,kh
k,

where λj,0 = E,λj,1 = ej .
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5. Proof of the main theorem. In this section, we prove the exis-
tence of resonances and show the width of resonances is O(h∞).

5.1. The existence of resonances. In this subsection, we prove the
existence of resonances of P (B,ω) in each set Un, n ∈ N. For fix j ∈ N, let
us recall some notations used in the proof of Theorem 4.7. We consider uj,iγ(h)
be a normalized eigenfunction of Aiγ(h) associated to Ej(h). We denote by
Aiγ(h)∗ the adjoint of Aiγ(h). Take uj,iγ(h)

∗ an eigenfunction of Aiγ(h)∗ such
that Aiγ(h)∗uj,iγ(h)

∗ = Ēj(h)uj,iγ(h)∗, 〈uj,iγ(h), uj,iγ(h)∗〉 = 1. Let Π̃j(h) be
the spectral projection associated to Ej(h) of Aiγ(h) defined by Π̃j(h)(u) =
〈u, uj,iγ(h)∗〉uj,iγ(h).

Lemma 5.1. For ε small enough, we put Ωj := {z ∈ C; |z − Ej(h)| <
εh}. Let z ∈ Ωj, then for h sufficiently small, one has

(5.1) R̃(z) = ((1 − Π̃j(h))Aiγ(h)(1 − Π̃j(h)) − z)−1(1 − Π̃j(h))

exists. Moreover, R̃(z) is holomorphic in z ∈ Ωj and ‖R̃(z)‖ ≤ Ch−1.

P r o o f. By Theorem 4.7, there is only a simple eigenvalue Ej(h) of Aiγ(h)
in Ωj. This shows that

σ
(

(1 − Π̃j(h))Aiγ(h)(1 − Π̃j(h))
)

= σ(Aiγ(h)) \ {Ej(h)}.

Then,

Ωj ⊂ ρ
(

(1 − Π̃j(h))Aiγ(h)(1 − Π̃j(h))
)

,

which gives the existence of R̃(z). The estimate of R̃(z) can be followed immedi-
ately by imitating the proof of Proposition 4.6. Then we omit the details. �

Theorem 5.2. For each n ∈ N fixed above, and let h be small enough,
there exists only one resonance En,j(h) of P (B,ω) in {z ∈ C; |z− (2n+ 1)h−1 −
Ej(h)| < εh},

(5.2) En,j(h) = (2n + 1)h−1 + E + hej + O(h2)

which is algebraically simple. In particular, for all j such that ej < C0 (C0 is
defined in (2.2)), En,j(h) is a resonance of P (B,ω) in Un. Remark that Un is
defined by (2.2).

P r o o f. Let

R1
− : C → L2(R), λ 7→ λuj,iγ(h)
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R1
+ : L2(R) → C, v 7→ 〈v, uj,iγ(h)∗〉.

Then R1
−R

1
+ = Π̃j(h) and R1

+R
1
− = 1. Let us consider the following Grushin

problem for E−+(z):

P1(z) =

(

E−+(z) R1
−

R1
+ 0

)

: L2(R) × C → L2(R) × C.

We treat this problem in the same way as Theorem 3.5. In the same notations
as in Lemma 5.1, we put

Ẽ1(z) =

(−R̃(z) R1
−

R1
+ Ej(h) − z

)

.

By a simple computation, we also get P1(z)Ẽ1(z) = I + O(h) and Ẽ1(z)P1(z) =
I + O(h) uniformly in z ∈ Ωj . So P1(z) is invertible, whose inverse is

E1(z)

= Ẽ1(z)

(

(1 − h2Giγ(z;h)R̃(z))−1 −(1 − h2Giγ(z;h)R̃(z))−1h2Giγ(z;h)uj,iγ(h)

0 1

)

=

(

e(z) e+(z)

e−(z) e−+(z)

)

,

where h2Giγ(z;h) = (E−+(z)−z+Aiγ(h)) = O(h2) (see (3.23)). The right lower
corner element of E1(z) is

e−+(z) = Ej(h) − z −
〈

(1 − h2Giγ(z;h)R̃(z))−1h2Giγ(z;h)uj,iγ(h), uj,iγ(h)∗
〉

= Ej(h) − z + O(h2).

We have e−+(z) : C → C and 0 ∈ σ(E−+(z)) if and only if z ∈ σ(e−+(z)).
Combining this with (3.18), z ∈ σ(e−+(z)) if and only if (2n + 1)h−1 + z ∈
σ(P1,iγ(h)).

By applying the Rouché theorem, e−+(z) = 0 has a unique simple solution
in Ωj, z = Ej(h) + O(h2). Therefore En,j(h) := (2n + 1)h−1 + Ej(h) + O(h2) is
an unique resonance of P (B,ω) in {z ∈ C; |z − (2n+ 1)h−1 − Ej(h)| < εh}. �

5.2. The width of resonances. In this subsection, we use the same
notations as in the preceding sections. Let j ∈ N and Ωj := {z ∈ C; |z−Ej(h)| <
εh} be fixed as above (here ε > 0 small enough). We want to construct an
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approximate eigenvalue z̃j(h) ∈ Ωj and an approximate eigenfunction ũj,θ(h)
such that

(5.3) E−+(z̃j(h))ũj,θ(h) = O(h∞),

where we recall that

E−+(z) = z −Aθ(h) + h2Gθ(z;h)

and θ ∈ C with |θ| small enough, Im θ < 0 (see (3.23)).

Let χ ∈ C∞
0 (R) such that χ = 1 near [−R,R] (R > 0). It follows

from Remark 3.7 that G̃θ(z;h) := χ(x)Gθ(z;h) is well-defined and holomorphic
in θ ∈ C, |θ| small enough. In addition, G̃θ(z;h) is self-adjoint if z real and
Im θ = 0.

Let χ̃ ∈ C∞
0 (R) such that suppχ̃ ⊂ (−R,R). Using the h-pseudodifferential

calculus, one has

(5.4) ‖χ̃(x)[G̃θ(z;h) −Gθ(z;h)]‖ = O(h∞).

Then we are led to construct an approximate solution for the following problem

(5.5)
(

A0(h) − h2G̃0(z;h)
)

u(x) = zu(x), z ∈ Ωj.

In fact, the same problem was studied in [20, 21, 28] by using the WKB method,
so we only want to recall main steps. First of all, with the help of Theorem 4.4,
one can construct an approximate solution near 0 to

(5.6) (A0(h) − z(j)(h))u(j)(x;h) = O(e
−d(x)

h h∞)

in the form

z(j)(h) ∼
∑

l≥0

λ
(j)
l hl

and

u(j)(x;h) ∼ e
−d(x)

h

∑

l≥0

u
(j)
l (x)hl,

where d(x) is some phase function holomorphic in x near 0 and Re (d(x)) > 0 for

x ∈ R \ {0}, λ(j)
0 = E, λ

(j)
1 = ej , λ

(j)
l ∈ R for all l, j ∈ N. Here z(j)(h) −Ej(h) =

O(h∞) and ‖u(j)
0 ‖ > const > 0.
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After that, one solves the following problem by using inductive arguments
in k ∈ N:

(5.7)
(

A0(h) − h2G̃0(t
(j)
k−1(h);h) − t

(j)
k (h)

)

v
(j)
k (x;h) = O

(

e−
d(x)

h h∞
)

,

where v
(j)
0 (x;h) = u(j)(x;h), t

(j)
0 (h) = z(j)(h). The solution of (5.7) is of the form

t
(j)
k (h) ∼

∑

l≥0

λ
(j)
l,kh

l and v
(j)
k (x;h) ∼ e−

d(x)
h

∑

l≥0

v
(j)
l,k (x)hl,

where t
(j)
k+1(h)− t

(j)
k (h) = O(hk+2) and v

(j)
k+1(x;h)− v

(j)
k (x;h) = O(hk+2), λ

(j)
l,k are

real and v
(j)
l,k are holomorphic near 0. Here λ

(j)
0,k = E and λ

(j)
1,k = ej . Taking the

diagonal series, we get an approximate solution of (5.5):

z̃j(h) ∼
∑

l≥0

λ
(j)
l,l h

l,

and

ũj(x;h) ∼ e−
d(x)

h

∑

l≥0

v
(j)
l,l (x)hl,

where λ
(j)
0,0 = E and λ

(j)
1,1 = ej .

Let χ1 ∈ C∞
0 (R), χ1 = 1 near 0. Let us choose ũj,θ(x;h) = χ1(x)ũj(e

θx;h).
From the analyticity of G̃θ(z;h) with respect to θ near 0 and (5.4), we obtain
an approximate eigenvalue z̃j(h) and an approximate eigenfunction ũj,θ(x;h) of
(5.3).

Thus, we have proved the following theorem:

Theorem 5.3. Let Ωj := {z ∈ C; |z − Ej(h)| < εh}, for some small
constant ε > 0, j ∈ N. There exist z̃j(h) ∈ Ωj and ũj,θ(·;h) ∈ L2(R) verifying
‖ũj,θ(·;h)‖ > const > 0, such that

(5.8) E−+(z̃j(h))ũj,θ(x;h) = O(h∞),

where

z̃j(h) ∼
∑

l≥0

λ
(j)
l,l h

l,

λ
(j)
0,0 = E, λ

(j)
1,1 = ej and λ

(j)
l,l ∈ R, ∀j, l ∈ N.
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Now we carry out again Subsection 5.1 in which θ = iγ, the eigenfunction
uj,iγ(h) of Aiγ(h) is replaced by ũj,iγ(·;h) given in Theorem 5.3, uj,iγ(h)∗ is re-

placed by
1

〈ũj,iγ(·;h), ũj,−iγ(·;h)〉 ũj,−iγ(·;h) and Ej(h) is replaced by z̃j(h). We

then obtain

(5.9) En,j(h) ∼ (2n+ 1)h−1 +
∑

l≥0

λ
(j)
l,l h

l.

5.3. End of the proof of Theorem 2.1. We end the proof of our main
result in this subsection by proving the following

Proposition 5.4. The resonance En,j(B,ω) has an asymptotic expansion
in powers of B−1 as B → ∞:

(5.10) En,j(B,ω) ∼ (2n + 1)B + E

+
1

2

(

(2j + 1)
√

λµ+
(2n+ 1)(λ + µ)

2

)

B−1 +
∑

k≥2

c
(k)
n,jB

−k,

where c
(k)
n,j ∈ R and λ, µ are two eigenvalues of a′′0(0, 0). In particular, the width

of resonance En,j(B,ω) is of order O(B−∞).

P r o o f. For B large enough, one has | ω
B | < 1. Thus, for all N ∈ N,

√

B2 + ω2 = B

√

1 +
ω2

B2
= B

(

1 +
1

2

ω2

B2
+
∑

k≥2

akB
−2k + O(B−2(N+1))

)

,(5.11)

1√
B2 + ω2

=
1

B

1
√

1 + ω2

B2

=
1

B

(

1 − 1

2

ω2

B2
+
∑

k≥2

bkB
−2k + O(B−2(N+1))

)

,(5.12)

where ak, bk ∈ R.

Replacing h by
1√

B2 + ω2
in (5.9) and taking into account (5.11), (5.12),

we obtain, for all N ∈ N,

(5.13) En,j(B,ω) = (2n+ 1)B +

N
∑

k=0

c
(k)
n,jB

−k + O(B−N−1),
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where c
(0)
n,j = E, c

(1)
n,j = ej +

2n + 1

2
ω2 =

1

2

(

(2j + 1)
√
λµ+

(2n+ 1)(λ + µ)

2

)

,

c
(k)
n,j ∈ R. In particular, the imaginary part of En,j(B,ω) is of order O(B−∞).

This ends the proof of Proposition 5.4. �

Acknowledgements. The author would like to thank the anonymous
referees for their constructive comments and suggestions to improve the quality
of this paper.

REFERE NC ES

[1] J. Avron, I. Herbst, B. Simon. Schrödinger operators with magnetic
fields. I. General interactions. Duke Math. J. 45, 4 (1978), 847–883.

[2] J. F. Bony, V. Bruneau, G. Raikov. Resonances and spectral shift func-
tion near the Landau levels. Ann. Inst. Fourier (Grenoble) 57, 2 (2007),
629–671.

[3] V. Bruneau, P. Miranda, G. Raikov. Discrete spectrum of quantum
Hall effect Hamiltonians I. Monotone edge potentials. J. Spectr. Theory 1,
3 (2011), 237–272.

[4] H. L. Cycon. Resonances defined by modified dilations. Helv. Phys. Acta
58, 6 (1985), 969–981.
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Largeur des résonances. Comm. Math. Phys. 135, 3 (1991), 517–530.



574 Anh Tuan Duong

[22] A. Martinez. An Introduction to Semiclassical and Microlocal Analysis.
Universitext. New York, Springer-Verlag, 2002.

[23] H. Matsumoto, N. Ueki. Applications of the theory of the metaplectic
representation to quadratic Hamiltonians on the two-dimensional Euclidean
space. J. Math. Soc. Japan 52, 2 (2000), 269–292.

[24] M. Melgaard, G. Rozenblum. Eigenvalue asymptotics for weakly per-
turbed Dirac and Schrödinger operators with constant magnetic fields of full
rank. Comm. Partial Differential Equations 28, 3–4 (2003), 697–736.

[25] G. Raikov, S. Warzel. Quasi-classical versus non-classical spectral as-
ymptotics for magnetic Schrödinger operators with decreasing electric po-
tentials. Rev. Math. Phys. 14, 10 (2002), 1051–1072.

[26] M. Reed, B. Simon. Methods of modern mathematical physics. IV: Analy-
sis of operators. New York–San Francisco–London, Academic Press, 1978.

[27] X. P. Wang. Barrier resonances in strong magnetic fields. Comm. Partial
Differential Equations 17, 9–10 (1992), 1539–1566.

[28] X. P. Wang. On the magnetic Stark resonances in two-dimensional case.
In: Schrödinger operators (Aarhus, 1991). Lecture Notes in Phys. vol. 403,
Berlin, Springer, 1992, 211–233.

LAGA, (UMR CNRS 7539)
Univ. Paris 13
F-93430 Villetaneuse, France
e-mail: duongat@math.univ-paris13.fr

Received December 5, 2011
Revised June 23, 2012


