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Abstract. In this paper we define the homogeneous Besov spaces associ-
ated with the Dunkl operators on Rd, and we give a complete analysis on
these spaces and same applications.

1. Introduction. Dunkl operators Tj (j = 1, . . . , d) introduced by
Dunkl in [13] are parameterized differential-difference operators on R

d that are
related to finite reflection groups. Over the last years, much attention has been
paid to these operators in various mathematical (and even physical) directions. In
this prospect, Dunkl operators are naturally connected with certain Schrödinger
operators for Calogero-Sutherland-type quantum many-body systems [3, 12, 17].
Moreover, Dunkl operators allow generalizations of several analytic structures,
such as Laplace operator, Fourier transform, heat semigroup, wave equations,
and Schrödinger equations ([11, 15, 21, 22, 23, 24]).
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In the present paper, we intend to continue our study of generalized spaces
of type Sobolev associated with Dunkl operators started in [20]. Indeed, in [20]
we provided a general theory for the Littlewood-Paley associated with the Dunkl
operators. Furthermore, we study some functions spaces associated with Dunkl
operators: generalized Sobolev spaces, generalized Hölder spaces and BMO as-
sociated with the Dunkl operators.

Next, in second paper [18] we have continue our investigation of function
spaces; generalized Bessel potential spaces, nonhomogeneous Besov spaces and
Triebel-Lizorkin spaces associated with Dunkl operators. We obtain their basic
properties and apply them to estimate the solutions of the Dunkl-Schrödinger
and the Dunkl heat equations.

The main subject of this paper is the study of the homogeneous Dunkl-
Besov spaces, establish refined Sobolev inequalities between the homogeneous
Dunkl-Besov spaces and many spaces as the homogeneous Dunkl-Riesz spaces and
the generalized Lorentz spaces. Generalize the Gagliardo-Nirenberg inequality in
the context of Dunkl theory. We shall also consider a few applications of these
results to the generalized heat equations and generalized Schrödinger equations.

The contents of the paper is as follows. In §2 we recall some basic re-
sults about the harmonic analysis associated with the Dunkl operators. In §3
we introduce the homogeneous Littlewood-Paley decomposition associated with
the Dunkl operators. We shall obtain Bernstein’s inequalities. §4 is devoted to
study the Dunkl-Riesz potential spaces, the homogeneous Dunkl-Besov spaces.
According to a standard process in the Euclidean case (cf. [28]), we shall con-
sider equivalent norms, lifting properties, interpolations and dualities of these
spaces. In §5 we summarize some results on embeddings and paraproduct op-
erators, which depend on the index γ associated to the multiplicity function of
the root system. We consider also some applications of the homogeneous Dunkl-
Besov spaces to differential-difference equations. We shall obtain Strichartz type
estimates of the solutions of the Dunkl-Schrödinger equation, a space-time esti-
mate of the solutions of the Dunkl heat equation. We give also as applications a
Sobolev inequalities in generalized Lorentz spaces.

2. Preliminaries. In order to confirm the basic and standard notations
we briefly overview the theory of Dunkl operators and related harmonic analysis.
Main references are [11, 13, 14, 15, 24, 25, 26, 29].

2.1. Root system, reflection group and multiplicity function. Let
R

d be the Euclidean space equipped with a scalar product 〈, 〉 and let ‖x‖ =√
〈x, x〉. For α in R

d\{0}, σα denotes the reflection in the hyperplane Hα ⊂ R
d
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perpendicular to α, i.e., for x ∈ R
d, σα(x) = x − 2‖α‖−2〈α, x〉α. A finite set

R ⊂ R
d\{0} is called a root system if R ∩ Rα = {±α} and σαR = R for all

α ∈ R. We normalize each α ∈ R as 〈α,α〉 = 2. We fix a β ∈ R
d\∪α∈RHα

and define a positive root system R+ of R as R+ = {α ∈ R | 〈α, β〉 > 0}. The
reflections σα, α ∈ R, generate a finite group W ⊂ O(d), called the reflection
group. A function k : R → C on R is called a multiplicity function if it is
invariant under the action of W . We introduce the index γ as

γ = γ(k) =
∑

α∈R+

k(α).

Throughout this paper, we will assume that k(α) ≥ 0 for all α ∈ R. We denote
by ωk the weight function on R

d given by

ωk(x) =
∏

α∈R+

|〈α, x〉|2k(α),

which is invariant and homogeneous of degree 2γ. In the case that the reflection
group W is the group Z

d
2 of sign changes, the weight function ωk is a product

function of the form
∏d

j=1 |xj|kj , kj ≥ 0. We denote by ck the Mehta-type
constant defined by

ck =

∫

Rd

e
−‖x‖2

2 ωk(x)dx.

In the following we denote by

C(Rd) the space of continuous functions on R
d.

Cp(Rd) the space of functions of class Cp on R
d.

E(Rd) the space of C∞-functions on R
d.

S(Rd) the Schwartz space of rapidly decreasing functions on R
d.

D(Rd) the space of C∞-functions on R
d which are of compact support.

S ′(Rd) the space of temperate distributions on R
d.

2.2. The Dunkl operators. Let k : R → C be a multiplicity function
on R and R+ a fixed positive root system of R. Then the Dunkl operators Tj ,
1 ≤ j ≤ d, are defined on C1(Rd) by

Tjf(x) =
∂

∂xj
f(x) +

∑

α∈R+

k(α)αj
f(x) − f(σα(x))

〈α, x〉 ,
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where α = (α1, α2, · · · , αd). Similarly as ordinary derivatives, each Tj satisfies
for all f , g in C1(Rd) and at least one of them is W -invariant,

Tj(fg) = (Tjf)g + f(Tjg)

and for all f in C1
b (Rd) and g in S(Rd),

∫

Rd

Tjf(x)g(x)ωk(x)dx = −
∫

Rd

f(x)Tjg(x)ωk(x)dx.

Furthermore, according to [13, 14], the Dunkl operators Tj, 1 ≤ j ≤ d commute
and there exists the so-called Dunkl’s intertwining operator Vk such that TjVk =
Vk(∂/∂xj) for 1 ≤ j ≤ d and Vk(1) = 1. We define the Dunkl-Laplace operator
△k on R

d by

△kf(x) =

d∑

j=1

T 2
j f(x)

= △f(x) + 2
∑

α∈R+

k(α)

( 〈∇f(x), α〉
〈α, x〉 − f(x) − f(σα(x))

〈α, x〉2
)
,

where △ and ∇ are the usual Euclidean Laplacian and nabla operators on R
d

respectively. Since the Dunkl operators commute, their joint eigenvalue problem
is significant, and for each y ∈ R

d, the system

Tju(x, y) = yju(x, y), j = 1, . . . , d, and u(0, y) = 1

admits a unique analytic solution K(x, y), x ∈ R
d, called the Dunkl kernel, which

has a holomorphic extension to C
d × C

d. For x, y ∈ C
d, the kernel satisfies

(a) K(x, y) = K(y, x),

(b) K(λx, y) = K(x, λy) for λ ∈ C,

(c) K(wx,wy) = K(x, y) for w ∈W .

2.3. The Dunkl transform. For functions f on R
d we define Lp-norms

of f with respect to ωk(x)dx as

‖f‖L
p
k(Rd) =

(∫

Rd

|f(x)|pωk(x)dx

) 1
p

,

if 1 ≤ p < ∞ and ‖f‖L∞
k (Rd) = ess supx∈Rd |f(x)|. We denote by Lp

k(R
d) the

space of all measurable functions f on R
d with finite Lp

k-norm.
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The Dunkl transform FD on L1
k(R

d) is given by

FD(f)(y) =
1

ck

∫

Rd

f(x)K(x,−iy)ωk(x)dx.

Some basic properties are the following (cf. [15] and [11]): For all f ∈ L1
k(R

d),

(a) ‖FD(f)‖L∞
k

(Rd) ≤ c−1
k ‖f‖L1

k
(Rd),

(b) FD(f(·/λ)))(y) = λ2γ+dFD(f)(λy) for λ > 0,

(c) if FD(f) belongs to L1
k(R

d), then

FD(f)(y) =
1

ck

∫

Rd

f(x)K(x,−iy)ωk(x)dx a.e.

and moreover, for all f ∈ S(Rd),

(d) FD(Tjf)(y) = iyjFD(f)(y),

(e) if we define FD(f)(y) = FD(f)(−y), then

FDFD = FDFD = Id.

Proposition 1. The Dunkl transform FD is a topological isomorphism
from S(Rd) onto itself and for all f in S(Rd),

∫

Rd

|f(x)|2ωk(x)dx =

∫

Rd

|FD(f)(ξ)|2ωk(ξ)dξ.

In particular, the Dunkl transform f → FD(f) can be uniquely extended to an
isometric isomorphism on L2

k(R
d).

We define the tempered distribution Tf associated with f ∈ Lp
k(R

d) by

(1) 〈Tf , φ〉 =

∫

Rd

f(x)φ(x)ωk(x)dx

for φ ∈ S(Rd) and denote by 〈f, φ〉k the integral in the righthand side.

Definition 1. The Dunkl transform FD(τ) of a distribution τ ∈ S ′(Rd)
is defined by

〈FD(τ), φ〉 = 〈τ,FD(φ)〉
for φ ∈ S(Rd).

In particular, for f ∈ Lp
k(R

d), it follows that for φ ∈ S(Rd),

〈FD(f), φ〉 = 〈FD(Tf ), φ〉 = 〈Tf ,FD(φ)〉 = 〈f,FD(φ)〉k.

Theorem 1. The Dunkl transform FD is a topological isomorphism from
S ′(Rd) onto itself.
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2.4. The Dunkl convolution.

Definition 2. Let y be in R
d. The Dunkl translation operator f 7→ τyf

is defined on S(Rd) by

(2) FD(τyf)(x) = K(ix, y)FD(f)(x), for all x ∈ R
d.

Proposition 2. If f(x) = F (‖x‖) in E(Rd), then we have

τyf(x) = Vk

[
F (
√

‖x‖2 + ‖y‖2 + 2〈x, .〉)
]
(x), for all x ∈ R

d

where Vk is the Dunkl intertwining operator. (Cf. [25]).

Using the Dunkl translation operator, we define the Dunkl convolution
product of functions as follows (cf. [29]).

Definition 3. The Dunkl convolution product of f and g in S(Rd) is the
function f ∗D g defined by

(3) f ∗D g(x) =

∫

Rd

τxf(−y)g(y)ωk(y)dy, for all x ∈ R
d.

This convolution is commutative and associative and satisfies the follow-
ing properties. (Cf. [26]).

Proposition 3. i) For f and g in S(Rd) the function f ∗D g belongs to
S(Rd) and we have

(4) FD(f ∗D g)(y) = FD(f)(y)FD(g)(y), for all y ∈ R
d.

ii) Let 1 ≤ p, q, r ≤ ∞, such that
1

p
+

1

q
− 1

r
= 1. If f is in Lp

k(R
d) and

g is a radial element of Lq
k(R

d), then f ∗D g ∈ Lr
k(R

d) and we have

(5) ‖f ∗D g‖Lr
k
(Rd) ≤ ‖f‖L

p
k
(Rd) ‖g‖L

q
k
(Rd) .

iii) Let W = Z
d
2. We have the same result for all f belongs to Lp

k(R
d)

and g ∈ Lq
k(R

d).

Definition 4. The Dunkl convolution product of a distribution S in
S ′(Rd) and a function φ in S(Rd) is the function S ∗D φ defined by

S ∗D φ(x) = 〈Sy, τ−yφ(x)〉.
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Proposition 4. Let f be in Lp
k(R

d), 1 ≤ p ≤ ∞, and φ in S(Rd). Then
the distribution Tf ∗D φ is given by the function f ∗D φ. If we assume that φ
is arbitrary for d = 1 and radial for d ≥ 2, then Tf ∗D φ belongs to Lp

k(R
d).

Moreover, for all ψ ∈ S(Rd),

(6) 〈Tf ∗D φ,ψ〉 = 〈f̌ , φ ∗D ψ̌〉k,

where ψ̌(x) = ψ(−x), and

(7) FD(Tf ∗D φ) = FD(Tf )FD(φ).

For each u ∈ S ′(Rd), we define the distributions Tju, 1 ≤ j ≤ d, by

〈Tju, ψ〉 = −〈u, Tjψ〉

for all ψ ∈ S(Rd). Then 〈△ku, ψ〉 = 〈u,△kψ〉 and these distributions satisfy the
following properties (see 2.3 (d)):

FD(Tju) = iyjFD(u),(8)

FD(△ku) = −‖y‖2FD(u).

In the following we denote Tf given by (1) by f for simplicity.

3. Homogeneous Dunkl-Littlewood-Paley decomposition.

One of the main tools in this paper is the homogeneous Littlewood-Paley de-
compositions of distributions associated with the Dunkl operators into dyadic
blocs of frequencies.

Lemma 1. Let us define by C the ring of center 0, of small radius
1

2
and

great radius 2. It exist two radial functions ψ and ϕ the values of which are in
the interval [0, 1] belonging to D(Rd) such that

suppψ ⊂ B(0, 1), suppϕ ⊂ C
∀ξ ∈ R

d, ψ(ξ) +
∑

j≥0

ϕ(2−jξ) = 1

∀ξ ∈ C,
∑

j∈Z

ϕ(2−jξ) = 1

|n−m| ≥ 2 ⇒ suppϕ(2−n.) ∩ suppϕ(2−m.) = ∅
j ≥ 1 ⇒ suppψ ∩ suppϕ(2−j .) = ∅.
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Notation. We denote by

(9) ∀ j ∈ Z, ∆jf = F−1
D

(
ϕ

(
ξ

2j

)
FD(f)

)
, Sjf =

∑

n≤j−1

∆nf.

The distribution ∆jf is called the j-th dyadic block of the homogeneous Little-
wood-Paley decomposition of f associated with the Dunkl operators.

Throughout this paper we define φ and χ by φ = F−1
D (ϕ) and χ = F−1

D (ψ).
When dealing with the Littlewood-Paley decomposition, it is convenient

to introduce the functions ψ̃ and ϕ̃ belonging to D(Rd) such that ψ̃ ≡ 1 on suppψ
and ϕ̃ ≡ 1 on suppϕ as well the operators S̃j and ∆̃j defined by

FD(∆̃jf) = ϕ̃

(
ξ

2j

)
FD(f), FD(S̃jf) = ψ̃

(
ξ

2j

)
FD(f).

We remark that

FD(Sjf)(ξ) = ψ̃

(
ξ

2j

)
FD(Sjf)(ξ) and FD(∆jf)(ξ) = ϕ̃

(
ξ

2j

)
FD(∆jf)(ξ).

We put
φ̃ = F−1

D (ϕ̃), and χ̃ = F−1
D (ψ̃).

Definition 5. Let us denote by S ′
h,k(R

d) the space of tempered distribu-
tion such that

lim
j→−∞

Sju = 0 in S ′(Rd).

Remark 1. i) If a tempered distribution u is such that its Dunkl trans-
form FD(u) is locally integrable near 0, then u belongs to S ′

h,k(R
d).

ii) A non zero constant function u does not belongs to S ′
h,k(R

d).
iii) The space S ′

h,k(R
d) is exactly the space of tempered distributions for

which we may write

u =
∑

j∈Z

∆ju.

Proposition 5 (Bernstein inequalities). For all α ∈ N
d and σ ∈ R, for

all j ∈ Z, for all 1 ≤ p, q ≤ ∞ and for all f ∈ S ′(Rd), we have

i) ‖∆jf‖L
q
k
(Rd) ≤ ‖φ̃‖Lr

k(Rd)‖∆jf‖L
p
k
(Rd)2

j(d+2γ)
�

1
p
− 1

q

�
, with

1

q
=

1

p
+

1

r
−1.
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ii) ‖Sjf‖L
q
k(Rd) ≤ ‖χ̃‖Lr

k
(Rd)‖Sjf‖L

p
k(Rd)2

j(d+2γ)
�

1
p
− 1

q

�
, with

1

q
=

1

p
+

1

r
−1.

iii) ‖(√−△k)
σ∆jf‖L

p
k
(Rd) ≤ ‖F−1

D (‖ξ‖σϕ̃)‖L1
k
(Rd)‖∆jf‖L

p
k
(Rd)2

jσ.

Moreover if W = Z
d
2, we have

iv) ‖Tα∆jf‖L
p
k
(Rd) ≤ 2

d
2 ‖Tαφ̃‖L1

k
(Rd)‖∆jf‖L

p
k
(Rd)2

j|α|.

v) ‖TαSjf‖L
p
k
(Rd) ≤ 2

d
2 ‖Tαχ̃‖L1

k(Rd)‖Sjf‖L
p
k
(Rd)2

j|α|.

P r o o f. The proof is similar to the nonhomogeneous case (cf. [18]). �

Definition 6. For s ∈ R, the operator Rs
k from S ′

h,k(R
d) to S ′

h,k(R
d) is

defined by
Rs

k(f) = F−1
D (‖ · ‖sFDf).

The operator R−s
k is called Dunkl-Riesz potentials.

4. Ḃs,k
p,q

, Ḣs
p,k

spaces and basic properties. In this section we define
analogues of the homogeneous Besov and Riesz potential spaces associated with
the Dunkl operators on R

d and obtain their basic properties. In particular, we
use the homogeneous Dunkl-Littlewood-Paley decomposition of f in S ′

h,k(R
d),

obtained in the previous section, and apply the standard process used in the
Euclidean case.

4.1. Definitions. From now, we make the convention that for all non-

negative sequence {aq}q∈Z, the notation (
∑

q

ar
q)

1
r stands for supq aq in the case

r = ∞. Let s ∈ R and 1 ≤ p ≤ ∞. For a sequence {uj}j∈Z of functions on R
d,

we define

‖{uj}‖lsq(Lp
k(Rd)) =

(∑

j∈Z

(2js‖uj‖L
p
k(Rd))

q
) 1

q
.

Definition 7. Let s ∈ R and p, q ∈ [1,∞]. The homogeneous Dunkl-

Besov spaces Ḃs,k
p,q(Rd) is the space of distribution in S ′

h,k(R
d) such that

‖f‖
Ḃs,k

p,q (Rd)
:=
(∑

j∈Z

(2sj‖∆jf‖L
p
k
(Rd))

q
) 1

q
<∞.
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Proposition 6 ([1]). Let s ∈ R, p and q two elements of [1,∞], the space

Ḃs,k
p,q(Rd) is the set of f ∈ S ′

h,k(R
d) verifying

‖ḟ‖
Ḃs,k

p,q (Rd)
=
(∫ ∞

0
(t−s‖f ∗D φt‖L

p
k(Rd))

q dt

t

) 1
q
<∞.

Definition 8. For s ∈ R and 1 ≤ p ≤ ∞, the homogeneous Dunkl-Riesz
potential space Ḣs

p,k(R
d) is defined as the space R−s

k (Lp
k(R

d)), equipped with the
norm ‖f‖Ḣs

p,k
(Rd) = ‖Rs

k(f)‖L
p
k(Rd).

Proposition 7. Let s ∈ R and 1 ≤ p, q ≤ ∞ satisfy

s <
d+ 2γ

p
, or s =

d+ 2γ

p
and q = 1.

Let {uj}j∈Z be a sequence of functions such that ‖{uj}‖lsq(Lp
k
(Rd)) <∞.

(1) If suppFD(uj) ⊂ 2jR for some annulus R centered at the origin,

then f =
∑

j∈Z

uj belongs to Ḃs,k
p,q(Rd) and there exists a positive constant C(s) such

that ‖f‖
Ḃs,k

p,q (Rd)
≤ C(s)‖{uj}‖lsq(Lp

k(Rd)).

(2) If s > 0 and suppFD(uj) ⊂ 2jB for some ball B centered at the
origin.

Then f =
∑

j∈Z

uj belongs to Ḃs,k
p,q(Rd) and there exists a positive constant

C(s) such that

‖f‖
Ḃs,k

p,q (Rd)
≤ C(s)‖{uj}‖lsq(Lp

k(Rd)).

P r o o f. We obtain these results by a similar ideas used in the nonhomo-
geneous case. (cf. [18]). �

Corollary 1. Let p, q be as above. The definitions of the space Ḃs,k
p,q(Rd)

do not depend on the choice of the couple (ϕ,ψ) defining the homogeneous Dunkl-
Littlewood-Paley decomposition.

Proposition 8. Let s ∈ R and 1 ≤ p, q ≤ ∞.

i) The operator △k is a linear continuous operator from Ḃs,k
p,q(Rd) into

Ḃs−2,k
p,q (Rd) and from Ḣs

p,k(R
d) into Ḣs−2

p,q (Rd).
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ii) When W = Z
d
2, the operators Tj , j = 1, . . . , d are a linear continuous

operators from Ḃs,k
p,q(Rd) into Ḃs−1,k

p,q (Rd) and from Ḣs
p,k(R

d) into Ḣs−1
p,q (Rd).

P r o o f. We obtain these results by a similar ideas used in the nonhomo-
geneous case. (cf. [18]). �

Theorem 2. Let s, t ∈ R and 1 ≤ p, q ≤ ∞. The operator Rt
k is a linear

continuous injective operator from Ḃs,k
p,q(Rd) onto Ḃs−t,k

p,q (Rd), and from Ḣs
p,k(R

d)

onto Ḣs−t
p,k (Rd).

P r o o f. Since FD satisfies (4), we can apply the same arguments used in
the proof of Theorem 5.1.1 in [28]. �

4.2. Embeddings. As in the Euclidean case (cf. [28]), the monotone
character of lq-spaces and Minkowski’s inequality yield the following.

Proposition 9. If 1 ≤ q1 < q2 ≤ ∞ we have

(10) Ḃs,k
p,q1

(Rd) →֒ Ḃs,k
p,q2

(Rd), (1 ≤ p ≤ ∞, s ∈ R).

Moreover

(11) Ḃs,k
p,1(R

d) →֒ Ḣs
p,k(R

d) →֒ Ḃs,k
p,∞(Rd), (1 ≤ p ≤ ∞, s ∈ R).

If s0 6= s1 we also have

(12) (Ḣs0
p,k(R

d), Ḣs1
p,k(R

d))θ,q = Ḃs,k
p,q(R

d) (1 ≤ p, q ≤ ∞, θ ∈ (0, 1)),

where s = (1 − θ)s0 + θs1.

P r o o f. We obtain these results by a similar ideas used in the nonhomo-
geneous case. (cf. [18]). �

Proposition 10. We assume that s − d+ 2γ

p
= s1 −

d+ 2γ

p1
. Then the

following inclusion hold

Ḃs,k
p,q(R

d) →֒ Ḃs1,k
p1,q1

(Rd), (1 ≤ p ≤ p1 ≤ ∞, 1 ≤ q ≤ q1 ≤ ∞, s, s1 ∈ R).

P r o o f. In order to prove the inclusion, we use the estimate.

∆jf = φ̃j ∗D ∆jf.
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The Proposition 5 i) give that

‖∆jf‖L
p1
k

(Rd) = ‖φ̃j ∗D ∆jf‖L
p1
k

(Rd)

≤ C2
j(d+2γ)( 1

p
− 1

p1
)‖∆jf‖L

p
k
(Rd).

By definition of the homogeneous Dunkl-Besov spaces, we therefore infer

‖f‖
Ḃ

s1,k
p1,q1

(Rd)
=




∞∑

j=−∞

(2js1‖∆jf‖L
p1
k

(Rd))
q1




1
q1

≤ C



∑

j∈Z

(2js12
j(d+2γ)( 1

p
− 1

p1
)‖∆jf‖L

p
k
(Rd))

q1




1
q1

≤ C



∑

j∈Z

(2js‖∆jf‖L
p
k
(Rd))

q1




1
q1

≤ C‖f‖
Ḃs,k

p,q (Rd)
,

since q ≤ q1. This gives the inclusion. �

As a consequence of real and complex interpolations, we can deduce mul-
tiplicative inequalities, which will be needed in the theory of differential-difference
operators.

Theorem 3. (1) If u belongs to Ḃs,k
p,q(Rd) ∩ Ḃt,k

p,q(Rd), then u belongs to

Ḃθs+(1−θ)t,k
p,q (Rd) for all θ ∈ [0, 1] and

‖u‖
Ḃ

θs+(1−θ)t,k
p,q (Rd)

≤ ‖u‖θ

Ḃs,k
p,q (Rd)

‖u‖1−θ

Ḃt,k
p,q(Rd)

.

(2) If u belongs to Ḃs,k
p,∞(Rd)∩ Ḃt,k

p,∞(Rd) and s < t, then u ∈ Ḃθs+(1−θ)t,k
p,1 (Rd) for

all θ ∈ (0, 1) and there exists a positive constant C(t, s) such that

‖u‖
Ḃ

θs+(1−θ)t,k
p,1 (Rd)

≤ C(t, s)‖u‖θ

Ḃs,k
p,∞(Rd)

‖u‖1−θ

Ḃt,k
p,∞(Rd)

.

(3) If u belongs to Ḃs,k
p,∞(Rd) ∩ Ḃs+ε,k

p,∞ (Rd) and ε > 0, then u belongs to Ḃs,k
p,1(R

d)
and there exists a positive constant C such that

‖u‖
Ḃs,k

p,1(Rd)
≤ C

ε
‖u‖

Ḃs,k
p,∞(Rd)

log2

(
e+

‖u‖
Ḃs+ε,k

p,∞ (Rd)

‖u‖
Ḃs,k

p,∞(Rd)

)
.
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P r o o f. The proof is the same as in the nonhomogeneous frame work,
and thus omitted. �

4.3. Subspace dense. We proceed as in the Euclidean case (cf. [27] and
[28]), we prove.

Lemma 2. Let a and b two numbers real such that 0 < a < b and (ut)t>0

a family of distributions such that

i) suppFD(ut) ⊂
{
ξ ∈ R

d : a
t
≤ ‖ξ‖ ≤ b

t

}
,

ii)

(∫ ∞

0
(t−s‖ut‖L

p
k(Rd))

q dt

t

) 1
q

<∞.

Then ∥∥∥∥
∫ ∞

0
ut
dt

t

∥∥∥∥
Ḃs,k

p,q (Rd)

≤ C(a, b, s)

(∫ ∞

0
(t−s‖ut‖L

p
k
(Rd))

q dt

t

) 1
q

.

If s > 0, we have the same conclusion when we replace i) by

iii) suppFD(ut) ⊂
{
ξ ∈ R

d : ‖ξ‖ ≤ b
t

}
.

Proposition 11. For q <∞, the subspace
{
u ∈ Ḃs,k

p,q(R
d) : support(FD(u)) is compact

}

is dense in Ḃs,k
p,q(Rd).

P r o o f. Let f ∈ Ḃs,k
p,q(Rd) and fε =

∫ 1
ε

ε

f ∗D φt
dt

t
. From the previous

lemma we deduce that fε belongs to Ḃs,k
p,q(Rd), on the other hand since q <∞ we

see that fε tends to f in norm Ḃs,k
p,q(Rd). �

Proposition 12. If q is a real number greater than 1 and (s, p) is cou-

ple of real numbers so that s <
d+ 2γ

p
and p greater than 1, then the space

⋂

s∈R

Ḃs,k
p,q(R

d) is a dense subspace of Ḃs,k
p,q(Rd).

P r o o f. The proof of this consists in writing that

‖u− Sju‖Ḃs,k
p,q (Rd)

≤
∥∥∥
∑

i≥j

∆iu
∥∥∥
Ḃs,k

p,q (Rd)

≤ C

(∑

i≥j

2qis‖∆iu‖q

L
p
k
(Rd)

) 1
q

.
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So, the proposition is proved because the remainder term of a convergent series
tends to 0. �

Proposition 13. For all s ∈ R and 1 ≤ p, q ≤ ∞, the couple (Ḃs,k
p,q(Rd),

‖ · ‖
Ḃs,k

p,q (Rd)
) is a normed space. If besides q is finite then D(Rd) ∩ Ḃs,k

p,q(Rd) is

densely embedded in Ḃs,k
p,q(Rd).

P r o o f. It is obvious that ‖ · ‖
Ḃs,k

p,q (Rd)
is a semi-norm. Let us assume that

‖u‖
Ḃs,k

p,q (Rd)
= 0 for some u in S ′

h,k(R
d). This implies that Supp FD(u) ⊂ {0}

and thus that for any j ∈ Z we have Sju = u. As u belongs to S ′
h,k(R

d), we
must have lim

j→−∞
Sju = 0 so that we can conclude that u = 0. Now, if q is

finite and u ∈ Ḃs,k
p,q(Rd), it is obvious that the sequence of general term

∑

|m|≤n

∆mu

belongs to E(Rd) ∩ Ḃs,k
p,q(Rd) and tends to u in Ḃs,k

p,q(Rd). Arguing like as the
nonhomogeneous case (cf. [18]), it is then easy to exhibit a sequence of functions

of D(Rd) ∩ Ḃs,k
p,q(Rd) which tends to u in Ḃs,k

p,q(Rd). �

Theorem 4. If s <
d+ 2γ

p
, then (Ḃs,k

p,q(Rd), ‖ · ‖
Ḃs,k

p,q (Rd)
) is a Banach

space. For any p, the space Ḃ
d+2γ

p
,k

p,1 (Rd) is also a Banach space.

P r o o f. Let us first prove that (Ḃs,k
p,q(Rd), ‖ · ‖

Ḃs,k
p,q (Rd)

) is continuously

embedded in S ′(Rd). The case q = 1 and s =
d+ 2γ

p
is easy because the series

∑

j

∆ju is convergent in L∞
k (Rd). As u =

∑

j

∆ju, this implies that u belongs to

L∞
k (Rd). Besides, we have

(13) Ḃ
d+2γ

p
,k

p,1 (Rd) →֒ Ḃ0,k
∞,1(R

d) →֒ L∞
k (Rd) →֒ S ′(Rd).

Let us now assume that s <
d+ 2γ

p
. Using that

Ḃs,k
p,q(R

d) →֒ Ḃs− d+2γ
p

,k

∞,∞ (Rd).

By a simple calculation we prove one can find a large integer M such that for all



Generalized homogeneous Besov spaces and their applications 589

nonnegative j

|〈∆ju, χ〉| ≤ C2
j(d+2γ

p
−s)‖u‖

Ḃ
s−

d+2γ
p ,k

∞,∞ (Rd)
‖χ‖L1

k(Rd)

≤ C2
j(d+2γ

p
−s)‖u‖

Ḃs,k
p,q (Rd)

‖χ‖M,S

where
‖χ‖M,S := sup

x∈Rd, |ν|≤M

(1 + ‖x‖)M |T νu(x)|.

Because u belongs to S ′
h,k(R

d), we have 〈u, χ〉 =
∑

j

〈∆ju, χ〉. Therefore, for

large enough M

(14) |〈u, χ〉| ≤ C‖u‖
Ḃs,k

p,q (Rd)
‖χ‖M,S

and we can conclude that Ḃs,k
p,q(Rd) →֒ S ′(Rd).

We still have to prove that for all triplet (s, p, q) satisfying the hypothesis

of the theorem, the set Ḃs,k
p,q(Rd) is a Banach space. So let us consider a Cauchy

sequence (un)n in Ḃs,k
p,q(Rd). Using (13) or (14), this implies that a temperate

distribution u exists such that the sequence (un)n converges to u in S ′(Rd). We

now have to state that u belongs to S ′
h,k(R

d). Let us first assume that s <
d+ 2γ

p
.

Since un belongs to S ′
h,k(R

d), we have, thanks to (14),

∀ j ∈ Z, ∀n ∈ N, |〈Sjun, χ〉| ≤ C2j(d+2γ
p

−s)‖un‖Ḃs,k
p,q (Rd)

‖χ‖M,S .

As the sequence (un)n tends to u in S ′(Rd), we have

∀ j ∈ Z, ∀n ∈ N, |〈Sju, χ〉| ≤ C2
j(d+2γ

p
−s)

sup
n∈N

‖un‖Ḃs,k
p,q (Rd)

‖χ‖M,S .

Thus u belongs to S ′
h,k(R

d).

The case when u belongs to Ḃ
d+2γ

p
,k

p,1 (Rd) is a little bit different. Let ε > 0.

As (un)n is a Cauchy sequence in Ḃ
d+2γ

p
,k

p,1 (Rd) →֒ Ḃ0,k
∞,1(R

d), there exists an integer
N such that

∀ j ∈ Z, ∀n ≥ N,
∑

m≤n

‖∆mun‖L∞
k (Rd) ≤

ε

2
+
∑

m≤n

‖∆muN‖L∞
k (Rd).
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Let us choose J small enough so that

∑

m≤J

‖∆muN‖L∞
k (Rd) ≤

ε

2
.

As un belongs to S ′
h,k(R

d), we have

∀ j ≤ J, ∀n ≥ N, ‖Sjun‖L∞
k

(Rd) ≤ ε.

As sequence (un)n tends to u in L∞
k (Rd), this implies that

∀ j ≤ J, ‖Sju‖L∞
k

(Rd) ≤ ε.

This proves that u belongs to S ′
h,k(R

d). Next, arguing like in the nonhomoge-
neous case completes the proof. �

4.4. Comparison with nonhomogeneous spaces. We recall the defi-
nition of nonhomogeneous Besov spaces associated with the Dunkl operators (cf.
[18]).

Definition 9. For s ∈ R and p, q ∈ [1,∞], we write

‖f‖
B

s,k
p,q (Rd)

= ‖S0f‖L
p
k
(Rd) +

(∑

j≥1

(2sj‖∆jf‖L
p
k
(Rd))

q
) 1

q
.

The Besov space Bs,k
p,q (Rd) associated with the Dunkl operators is defined by

Bs,k
p,q (Rd) =

{
f ∈ S ′(Rd) : ‖f‖

B
s,k
p,q (Rd)

<∞
}
.

We give now another definition equivalently for the Besov space Bs,k
p,q (Rd).

Proposition 14. Let s ∈ R, p and q two elements of [1,∞], the space

Bs,k
p,q (Rd) is the set of f ∈ S ′(Rd) verifying

‖ḟ‖
B

s,k
p,q (Rd)

= ‖f ∗D ψ‖L
p
k
(Rd) +

(∫ 1

0
(t−s‖f ∗D φt‖L

p
k
(Rd))

q dt

t

)1
q

<∞.

Theorem 5. i) We assume that f ∈ S ′(Rd) and 0 /∈ suppFD(f). Then
for all s in R and 1 ≤ p, q ≤ ∞ we have

f ∈ Ḃs,k
p,q(R

d) ⇐⇒ f ∈ Bs,k
p,q (Rd).
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ii) For all s > 0 and 1 ≤ p, q ≤ ∞, we have

(15) Bs,k
p,q (Rd) = Ḃs,k

p,q(R
d) ∩ Lp

k(R
d).

On the other hand the norm of f in Bs,k
p,q (Rd) is equivalently to ‖f‖L

p
k(Rd) +

‖f‖
Ḃs,k

p,q (Rd)
.

iii) For all s < 0 and 1 ≤ p, q ≤ ∞, we have

(16) Bs,k
p,q (Rd) = Ḃs,k

p,q(R
d) + Lp

k(R
d).

Moreover the norm of f in Bs,k
p,q (Rd) is equivalently to

inf
{
‖f1‖L

p
k
(Rd) + ‖f2‖Ḃs,k

p,q (Rd)
: f = f1 + f2

}
.

P r o o f. i) If FD(f)(ξ) = 0 in a neighborhood of ξ = 0 and if f ∈ Ḃs,k
p,q(Rd),

then S0f being a finite sum of the form
∑

j

S0(∆jf) belongs to Lp
k(R

d). Thus

f ∈ Bs,k
p,q (Rd). Conversely, if f ∈ Bs,k

p,q (Rd) then ∆jf = ∆j(S0f) if j < 0. Thus

∆jf ∈ Lp
k(R

d) for all j and since
(∑

j<0

(2js‖∆jf‖L
p
k(Rd))

q
) 1

q
, is a finite sum,

f ∈ Ḃs,k
p,q(Rd).

ii) In order to prove (15), we first note that it is obvious that for all s ∈ R

Ḃs,k
p,q(R

d) ∩ Lp
k(R

d) ⊂ Bs,k
p,q (Rd).

Conversely, if f ∈ Bs,k
p,q (Rd), then ‖∆jf‖L

p
k
(Rd) ≤ C‖S0f‖L

p
k
(Rd) for j < 0. Thus

if s > 0 (
∑

j<0

(2js‖∆jf‖L
p
k
(Rd))

q

) 1
q

≤ C‖S0f‖L
p
k
(Rd)

then f ∈ Ḃs,k
p,q(Rd).

iii) We assume that s < 0. If f belongs to Bs,k
p,q (Rd), we put

f1 = f ∗D χ, f2 =

∫ 1

0
f ∗D φt

dt

t
.
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This gives that

‖f1‖L
p
k
(Rd) = ‖f ∗D χ‖L

p
k
(Rd) ≤ C‖f‖

B
s,k
p,q (Rd)

.

Moreover Lemma 2 implies that

‖f2‖Ḃs,k
p,q (Rd)

≤ C

(∫ 1

0

(
t−s‖f ∗D φt‖L

p
k
(Rd)

)q dt

t

) 1
q

≤ C‖f‖
B

s,k
p,q (Rd)

.

Conversely, let f = f1 + f2, where f1 ∈ Lp
k(R

d) and f2 ∈ Ḃs,k
p,q(Rd). By

relation (5) we obtain

‖f1‖B
s,k
p,q (Rd)

≤ C‖f1‖L
p
k
(Rd).

On the other hand there exists c > 0 such that χ ∗D φt = 0 for t ≤ c, this gives
that

f2 ∗D χ =

∫ ∞

c

(f2 ∗D φt ∗D χ)
dt

t
.

Hence

‖f2 ∗D χ‖L
p
k(Rd) ≤ C‖χ‖L1

k
(Rd)

∫ ∞

c

‖f2 ∗D φt‖L
p
k(Rd)

dt

t

≤ C‖χ‖L1
k
(Rd)

∫ ∞

c

(
t−s‖f2 ∗D φt‖L

p
k
(Rd)

)
ts
dt

t

≤ C‖χ‖L1
k(Rd)

(∫ ∞

c

t−sq′ dt

t

) 1
q′

‖f2‖B
s,k
p,q (Rd)

.

The inequalities

( ∫ 1

0
(t−s‖f2 ∗D φt‖L

p
k(Rd))

q dt

t

) 1
q ≤ C‖f2‖Ḃs,k

p,q (Rd)

is immediately. We obtain then

‖f2‖B
s,k
p,q (Rd)

≤ C‖f2‖Ḃs,k
p,q (Rd)

.

This gives then the result. �
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5. Application.

5.1. Paraproduit algorithm associated with Dunkl operators. In
this section, we are going to study how the product acts on homogeneous Besov
spaces associated with the Dunkl operators. This is could be well useful in non-
linear partial differential-difference equations. Let us consider two temperate
distributions u and v in S ′

h,k(R
d), and we write

u =
∑

p∈Z

∆pu and v =
∑

q∈Z

∆qv.

Formally, the product can be written as

uv =
∑

p,q∈Z

∆pu∆qv.

Now we introduce the paraproduct operator associated with the Dunkl operators.

Definition 10. We define the homogeneous paraproduct operator Πa:
S ′

h,k(R
d) → S ′

h,k(R
d) by

Πau =
∑

q≥1

(Sq−2 a)∆qu,

where u ∈ S ′
h,k(R

d); {∆qa} and {∆qu} are the homogeneous Littlewood-Paley

decompositions and Sqa =
∑

p≤q−1

∆pa.

Let R indicate the following bilinear symmetric operator defined by

R(u, v) =
∑

|p−q|≤1

∆pu∆qv, for all u, v ∈ S ′
h,k(R

d).

Obviously from Definition 10 it is clear that

uv = Πuv + Πvu+R(u, v).

The following theorems describe the action of the homogeneous paraproduct and
remainder on the homogeneous Besov spaces associated with the Dunkl operators.

Theorem 6. Let 1 ≤ p, r ≤ ∞ and s ∈ R.
1) If s > 0 then Π is a bilinear continuous from L∞

k (Rd) × Ḃs,k
p,r(Rd) to

Ḃs,k
p,r(Rd) and there exists a positive constant C such that

‖Π‖
L(L∞

k (Rd)×Ḃs,k
p,r(Rd),Ḃs,k

p,r(Rd))
≤ Cs+1.
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2) If t < 0 and 1 ≤ r, r1, r2 ≤ ∞ are such that
1

r
=

1

r1
+

1

r2
and

0 < s + t <
d+ 2γ

p
, then Π is a bilinear continuous from Ḃt,k

∞,r1(R
d) × Ḃs,k

p,r2(R
d)

to Ḃs+t,k
p,r (Rd) and there exists a positive constant C such that

‖Π‖
L(Ḃt,k

∞,r1
(Rd)×Ḃs,k

p,r2
(Rd),Ḃs+t,k

p,r (Rd))
≤ Cs+t

−t .

Theorem 7. Let (s1, s2) ∈ R
2 and 1 ≤ p, p1, p2, r, r1, r2 ≤ ∞. Assume

that

1

p
≤ 1

p1
+

1

p2
,

1

r
=

1

r1
+

1

r2
≤ 1 and s1 + s2 > (d+ 2γ)

(
1

p1
+

1

p2
− 1

p

)
.

Then the remainder R maps Ḃs1,k
p1,r1(R

d)×Ḃs2,k
p2,r2(R

d) in Ḃs1,2,k
p,r (Rd) and there exists

a positive constant C such that

‖R‖
L(Ḃ

s1,k
p1,r1

(Rd)×,Ḃ
s2,k
p2,r2

(Rd),Ḃ
s1,2,k

p,r (Rd))
≤ Cs1+s2+1

s1 + s2
,

with s1,2 = s1 + s2 − (d+ 2γ)

(
1

p1
+

1

p2
− 1

p

)
.

Corollary 2. 1) Let s > 0 and p, r ∈ [1,∞]. Then Ḃs,k
p,r(Rd) ∩L∞

k (Rd) is
an algebra and there exists a positive constant C such that

‖uv‖
Ḃs,k

p,r (Rd)
≤ C[‖u‖L∞

k
(Rd)‖v‖Ḃs,k

p,r (Rd)
+ ‖v‖L∞

k
(Rd)‖u‖Ḃs,k

p,r (Rd)
].

2) Moreover, for any (s1, s2), any p2 and any r2 such that s1+s2 >
d+ 2γ

p1

and s1 <
d+ 2γ

p1
, we have

‖uv‖
Ḃs,k

p2,r2
(Rd)

≤ C
[
‖u‖

Ḃ
s1,k
p1,∞(Rd)

‖v‖
Ḃ

s2,k
p2,r2

(Rd)
+ ‖u‖

Ḃ
s2,k
p2,r2

(Rd)
‖v‖

Ḃ
s1,k
p1,∞(Rd)

]
,

where s = s1 + s2 −
d+ 2γ

p1
.

3) Moreover, for any (s1, s2), any p2 and any (r1, r2) such that

s1 + s2 >
d+ 2γ

p1
, s1 <

d+ 2γ

p1
,

1

r1
+

1

r2
= 1, we have

‖uv‖
Ḃs,k

p,∞(Rd)
≤ C

[
‖u‖

Ḃ
s1,k
p1,r1

(Rd)
‖v‖

Ḃ
s2,k
p2,r2

(Rd)
+ ‖u‖

Ḃ
s2,k
p2,r2

(Rd)
‖v‖

Ḃ
s1,k
p1,r1

(Rd)

]
.
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4) Moreover, for any (s1, s2), any (p1, p2, p) and any (r1, r2) such that

sj <
d+ 2γ

pj
, s1 + s2 > (d+ 2γ)

(
1

p1
+

1

p2
− 1

p

)
and p ≥ max(p1, p2), we have

‖uv‖
Ḃ

s1,2,k

p,r (Rd)
≤ C‖u‖

Ḃ
s1,k
p1,r1

(Rd)
‖v‖

Ḃ
s2,k
p2,r2

(Rd)
.

with s1,2 = s1 + s2 − (d+ 2γ)

(
1

p1
+

1

p2
− 1

p

)
and r = max(r1, r2).

5) Moreover, for any (s1, s2), any (p1, p2, p) and any (r1, r2) such that

sj <
d+ 2γ

pj
, s1+s2 > (d+2γ)

(
1

p1
+

1

p2
− 1

p

)
, p ≥ max(p1, p2), and

1

r1
+

1

r2
= 1,

we have
‖uv‖

Ḃ
s1,2,k

p,∞ (Rd)
≤ C‖u‖

Ḃ
s1,k
p1,r1

(Rd)
‖v‖

Ḃ
s2,k
p2,r2

(Rd)
.

P r o o f. The prove of these results used the same method as in [20]. �

Remark 2. In the classical case, a similar result can be found in [5, 8, 9],
where the authors used another methods that we can not adapt at the moment.

5.2. The slowly hypoellipticity. In this subsection we treat differential
difference equations, given by replacing the Laplacian ∆ in a differential equation
with the Dunkl-Laplacian ∆k, and consider some basic properties of the solutions
in homogeneous Dunkl-Besov spaces. Though the process is a standard way, we
sketch their proofs to understand the essential parts.

We consider the linear equation

−△ku+
∑

1≤i,j≤d

ci,jTiuTju+ cu = 0(17)

with ci,j ∈ R and c ≥ 0.

Theorem 8. We assume that W = Z
d
2. If u is a solution of (17) such

that u belongs to Ḃ2,k
1,2(Rd)∩Ẇ 1,∞

k (Rd), where Ẇ 1,∞
k (Rd) :=

{
f ∈ D′(Rd) : Tjf ∈

L∞
k (Rd), j = 1, . . . , d

}
, then u belongs to Ḃn,k

1,2 (Rd) ∩ L∞
k (Rd) for all n ∈ N and

in particular, u ∈ E(Rd).

P r o o f. If u in Ḃ2,k
1,2(Rd), then each Tiu ∈ Ḃ1,k

1,2(Rd). Therefore, it follows

from Corollary 2, (1) that ci,jTiuTju ∈ Ḃ1,k
1,2(Rd)∩L∞

k (Rd). Hence, we can deduce
that

−△ku+ cu ∈ Ḃ1,k
1,2(Rd).
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Since the operator −△k + cI is isomorphism from Ḃs,k
p,q(Rd) in Ḃs−2,k

p,q (Rd) for all

s ∈ R and (p, q ∈ [1,∞]2), it follows that u ∈ Ḃ3,k
1,2(Rd). By iteration we deduce

that u ∈ Ḃn+2,k
1,2 (Rd) for all n ∈ N. Then it follows from the Proposition 10 that

u ∈ Ḃn− d+2γ
2

+2,k

2,2 (Rd). On the other hand, the Sobolev imbedding theorem (see
[20], Theorem 4.3) yields that

Ḣs
2,k(R

d) = Ḃs,k
2,2(R

d) →֒ Cs−γ− d
2 (Rd) if s > γ +

d

2
.

There by, the desired result follows. �

5.3. Dunkl-Schrodinger equation.

Notations. We denote by:

p′ conjugate of p ∈ [1,∞] given by
1

p
+

1

p′
= 1.

Ik(t) the group of isometries on L2
k(R

d) generated by the skew-adjoint
operator i△k i.e. Ik(t) = eit△k .

For any interval I of R (bounded or unbounded) and a Banach space X,
we define the mixed space-time Lq(I,X) Banach space of (classes of) measurable
functions u : I → X such that ‖u‖Lq(I,X) <∞, with

‖u‖Lq(I,X) =
(∫

I

‖u(t, .)‖q
Xdt

) 1
q
, if 1 ≤ q <∞,

‖u‖L∞(I,X) = ess sup
t∈I

‖u(t, .)‖X .

Similarly, we shall write C(I,X), for 1 ≤ r ≤ ∞ the space of functions
from I into X such that the map

t 7→ ‖u(t, .)‖X

is continuous.

Proposition 15 ([22]). If p ∈ [2,∞] and t 6= 0, then Ik(t) maps Lp′

k (Rd)
continuously to Lp

k(R
d) and

(18) ‖Ik(t)g‖L
p
k(Rd) ≤

1

(c2k|t|2γ+d)
( 1
2
− 1

p
)
‖g‖

L
p′

k
(Rd)

.
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Corollary 3. If t 6= 0, then

‖Ik(t)g‖Ḣs
p,k(Rd) ≤

1

(c2k|t|2γ+d)(
1
2
− 1

p
)
‖g‖Ḣs

p,k(Rd) for all g ∈ Ḣs
p,k(R

d),

where s ∈ R and p ∈ [2,∞]. Moreover

‖Ik(t)g‖Ḃs,k
p,q (Rd)

≤ 1

(c2k|t|2γ+d)
( 1
2
− 1

p
)
‖g‖

Ḃs,k

p′ ,q
(Rd)

for all g ∈ Ḃs,k
p,q(R

d),

where s ∈ R and p ∈ [2,∞].

P r o o f. Fix t 6= 0 and let u(t, .) = Ik(t)g. Given v ∈ S(Rd) it is easy to
see that

(19) F−1
D (vFD(u(t, .))) = Ik(t)(F−1

D (vFD(g)).

In particular, it follows from (18) that

‖F−1
D (vFD(u(t, .)))‖L

p
k(Rd) ≤

1

(c2k|t|2γ+d)
( 1
2
− 1

p
)
‖F−1

D (vFD(g)‖
L

p′

k
(Rd)

,

2 ≤ p ≤ ∞.

The result follows immediately from the above estimate and the definitions of the
homogeneous Dunkl-Sobolev and Dunkl-Besov norms. �

Definition 11. We say that the exponent pair (q, r) is
d+ 2γ

2
-admissible

if q, r ≥ 2,

(
q, r,

d+ 2γ

2

)
6= (2,∞, 1) and

(20)
1

q
+
d+ 2γ

2r
≤ d+ 2γ

4
.

If equality holds in (20) we say that (q, r) is sharp
d+ 2γ

2
-admissible, otherwise

we say that (q, r) is nonsharp
d+ 2γ

2
-admissible. Note in particular that when

d+ 2γ > 2 the endpoint

P =

(
2,

2d+ 4γ

d+ 2γ − 2

)

is sharp
d+ 2γ

2
-admissible.
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In the follows, we recall the result proved in [22].

Theorem 9 (Strichartz-type Schrödinger estimate).

Suppose that d ≥ 1 and (q, r) and (q1, r1) are
d+ 2γ

2
-admissible pairs. If u is a

solution to the problem

(21)

{
∂tu(t, x) − i△ku(t, x) = f(t, x), (t, x) ∈ I × R

d

u|t=0 = g

for some data, g, f and an interval I of R (bounded or not), then

(22) ‖u‖Lq(I,Lr
k
(Rd)) + ‖u‖C(I,L2

k
(Rd)) ≤ C

(
‖g‖L2

k(Rd) + ‖f‖
L

q
′
1 (I,L

r
′
1

k
(Rd))

)
.

In practice, we use the integral formulation of (21)

(23) u(t, x) = Ik(t)g(x) +

∫ t

0
Ik(t− s)f(s, x)ds,

which is essentially equivalent. In the follows, we note by Φk the operator defined
by

(24) Φk(f)(t, x) :=

∫ t

0
Ik(t− s)f(s, x)ds.

The estimate of Theorem can be generalized to various spaces involving Dunkl
operators and Dunkl transform.

Corollary 4. Let I be an interval of R (bounded or not).

(1) If (q, r) and (q1, r1) are d+2γ
2 -admissible pairs, then there exits a constant

C such that

‖Ik(.)g‖Lq(R,Ḣs
r,k

(Rd)) ≤ C‖g‖Ḣs
r,k

(Rd),

‖Φk(f)‖Lq(I,Ḣs
r,k

(Rd)) ≤ C‖f‖
L

q′1 (I,Ḣs
r′
1

,k
(Rd))

.

(2) If (q, r) and (q1, r1) are
d+ 2γ

2
-admissible pairs, then there exits a constant

C independent of I such that

‖Ik(·)g‖Lq(R,Ḃs,k
r,2 (Rd))

≤ C‖g‖
L

q′
1 (I,Ḃs,k

r′
1

,2
(Rd))

,

‖Φk(f)‖
Lq(I,Ḃs,k

r,2 (Rd))
≤ C‖f‖

L
q
′
1 (I,Ḃs,k

r′
1

,2
(Rd))

.



Generalized homogeneous Besov spaces and their applications 599

P r o o f. (1) Using

Ik(t)
(
F−1

D (‖ξ‖s)FD(g))
)

= F−1
D

(
‖ξ‖s)FD(Ik(t)g)

)

we deduce the result.

(2) Using the homogenous Littlewood-Paley decomposition associated
with Dunkl operators, it is easy to establish similar estimates in homogeneous
Dunkl-Besov spaces. �

5.4. Generalized heat equation. The generalized Dunkl heat equation
reads

(25)

{
∂tu(t, x) −△ku(t, x) = f(t, x), (t, x) ∈ [0,∞) × R

d

u|t=0 = g.

Rösler in [24] introduced the generalized heat semi-group Hk(t) for the Dunkl-
Laplace operator

Hk(t)f(x) :=





∫

Rd

Γk(t, x, y)f(y)ωk(y)dy if t > 0

f(x) if t = 0,

where Γk is the generalized heat kernel defined by

Γk(t, x, y) :=
ck

(4t)γ+ d
2

e−
‖x‖2+‖y‖2

4t K

(
x√
2t
,
y√
2t

)
; x, y ∈ R

d, t > 0.

In practice, we use the integral formulation of (25)

(26) u(t, x) = Hk(t)g(x) +

∫ t

0
Hk(t− s)f(s, x)ds.

Theorem 10. Let s be a positive real number and (p, r) ∈ [1,∞]2. A

constant C exists which satisfies the following property. For u ∈ Ḃ−2s,k
p,r (Rd), we

have

(27) C−1‖u‖
Ḃ−2s,k

p,r (Rd)
≤
∣∣∣
∣∣∣ ‖tsHk(t)u‖L

p
k
(Rd)

∣∣∣
∣∣∣
Lr(R+, dt

t
)
≤ C‖u‖

Ḃ−2s,k
p,r (Rd)

.

For proof this result we need the following lemma.
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Lemma 3 ([23]). There exist two positive constants κ and C depending
only on ϕ such that for all 1 ≤ p ≤ ∞, τ ≥ 0 and j ∈ Z, we have

‖∆j(Hk(τ)u)‖L
p
k
(Rd) ≤ Ce−κ22jτ‖∆ju‖L

p
k
(Rd).

P r o o f o f Th e o r em 10. Using Lemma 3, the fact that the operator
∆j commutes with the operator Hk(t) and the definition of the homogeneous
Dunkl-Besov (semi) norm, we get

‖tsHk(t)u‖L
p
k(Rd) ≤ C‖u‖

Ḃ−2s,k
p,r (Rd)

∑

j∈Z

ts22jse−κt22j

cr,j

where (cr,j)j∈Z denotes, as in all this proof, a generic element of the unit sphere
of lr(Z). In the case when r = ∞, the required inequality comes immediately
from the following easy result: for any positive s, we have

(28) sup
t>0

∑

j∈Z

ts22jse−κt22j

<∞.

In the case r <∞, using Hölder inequality and inequality (28) we obtain

∫ ∞

0
trs‖Hk(t)u‖r

L
p
k
(Rd)

dt

t

≤ C‖u‖r

Ḃ−2s,k
p,r (Rd)

∫ ∞

0

(∑

j∈Z

ts22jse−κt22j

)r−1(∑

j∈Z

ts22jse−κt22j

crr,j

)
dt

t

≤ C‖u‖r

Ḃ−2s,k
p,r (Rd)

∫ ∞

0

(∑

j∈Z

ts22jse−κt22j

crr,j

)
dt

t
.

This gives directly the result by Fubini’s theorem.
In order to prove the other inequality, let us observe that for any s greater

than −1, we have

∆ju =
1

Γ(s+ 1)

∫ ∞

0
ts(−△k)

s+1Hk(t)∆judt.

Then Lemma 3, Proposition 5 and the fact that the operator ∆j commutes with
the operator Hk(t), leads to

(29) ‖∆ju‖L
p
k(Rd) ≤ C

∫ ∞

0
ts22j(s+1)e−κt22j‖Hk(t)∆ju‖L

p
k(Rd)dt.
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In the case r = ∞, we simple write

‖∆ju‖L
p
k
(Rd) ≤ C

(
supt>0 t

s‖Hk(t)u‖L
p
k
(Rd)

)∫ ∞

0
22j(s+1)e−κt22j

dt

≤ C22js
(

supt>0 t
s‖Hk(t)u‖L

p
k(Rd)

)
.

In the case r <∞, Hölder’s inequality with the weight e−κt22j
gives

(∫ ∞

0
ts22j(s+1)e−κt22j‖Hk(t)∆ju‖L

p
k
(Rd)dt

)r

≤ C2−2j(r−1)

∫ ∞

0
ts22j(s+1)e−κt22j‖Hk(t)∆ju‖r

L
p
k(Rd)dt.

Thanks to (28) and Fubini’s theorem, we infer from (29) that

∑

j∈Z

2−2jrs‖∆ju‖r
L

p
k
(Rd) ≤ C

∫ ∞

0
trs‖Hk(t)u‖r

L
p
k
(Rd)

dt

t
.

The theorem is proved. �

5.5. Sobolev embedding Theorem. The main results of this subsec-
tion are in sprit of the classical case (cf. [2, 9, 10, 16, 19]).

Theorem 11. Let p ∈ [1,∞] and let s ∈ R such that 0 < s <
d+ 2γ

r
,

then we have the continuous embedding

Ḃs,k
r,r (Rd) →֒ Lp

k(R
d),

where p =
r(2γ + d)

2γ + d− rs
.

P r o o f. Let f be a Schwartz class, we have

|f(x)| ≤
∑

j∈Z

|∆jf(x)|.

Fix N ∈ Z. Then

∑

j≥N

|∆jf(x)| ≤
∑

j≥N

2−sj sup
j

(2sj|∆jf(x)|) ≤ 2−sNH(x),
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where H ∈ Lr
k(R

d), as f ∈ Ḃs,k
r,r (Rd)

∥∥ sup
j

(2sj |∆jf(x)|)
∥∥

Lr
k
(Rd)

≤
∥∥∥∥
∑

j

(2sj |∆jf(x)|)r
∥∥∥∥

L1
k(Rd)

.

On the other hand,

∑

j<N

|∆jf(x)| ≤
∑

j<N

2−(s− d+2γ
r

)N sup
j

(2(s− d+2γ
r

)j |∆jf(x)|) ≤ C2−(s− d+2γ
r

)NG(x),

where G ∈ L∞
k (Rd), as f ∈ Ḃs− d+2γ

r
,k

∞,∞ (Rd) by a Proposition 10. Finally,

|f(x)| ≤ C
(
2−(s− d+2γ

r
)NG(x) + 2−sNH(x)

)
.

We optimize on N , and

|f(x)| ≤ CH
r
p (x)G

1− r
p (x),

so that

‖f‖p

L
p
k
(Rd)

≤ C‖H‖r
Lr

k
(Rd)‖G‖

p−r

L∞
k (Rd)

. 2

We did slightly better the following

Theorem 12. Let p ∈ [1,∞] and let s ∈ R such that 0 < s <
d+ 2γ

r
,

then we have

‖f‖L
p
k
(Rd) ≤ C‖f‖1− r

p

Ḃ
−(

2γ+d
r −s),k

∞,∞ (Rd)

‖f‖
r
p

Ḃs,k
r,r (Rd)

where p =
r(2γ + d)

2γ + d− rs
.

Theorem 13. Let 1 < p <∞ and 0 < s <
d+ 2γ

p
be given. There exists

a positive constant C such that for all function f ∈ Ḣs
p,k(R

d) we have

(30) ‖f‖L
q
k
(Rd) ≤ C‖f‖1−θ

Ḣs
p,k

(Rd)
‖f‖θ

Ḃ
s−

d+2γ
p ,k

∞,∞ (Rd)

,

where θ =
sp

d+ 2γ
and q =

p(d+ 2γ)

d+ 2γ − ps
.
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P r o o f. By density we can suppose that f belongs to S(Rd). It is easy
to see that

f =

∫ ∞

0
Hk(t)△kfdt

and decompose the integral in two parts:

f =

∫ A

0
Hk(t)△kfdt+

∫ ∞

A

Hk(t)△kfdt,

where A is a constant to be fixed later.
On the other hand, by Theorem 10

‖Hk(t)△kf‖L∞
k (Rd) ≤

C

t1−
1
2
(s− d+2γ

p
)
‖f‖

Ḃ
s−

d+2γ
p ,k

∞,∞ (Rd)
.

Therefore after integrating we get
∫ ∞

A

‖Hk(t)△kf‖L∞
k (Rd)dt ≤ A

1
2
(s− d+2γ

p
)‖f‖

Ḃ
s−

d+2γ
p ,k

∞,∞ (Rd)
.

On the other hand, denoting g = (−△k)
s
2 f , we have

Hk(t)△kf =
1

(−t)1− s
2

Hk(t)(−t△k)
1− s

2 g.

We proceed as in [20], we prove

|Hk(t)(−t△k)
1− s

2 g(x)| ≤ C(s)Mk(g)(x)

where Mk(g) is a maximal function of g associated with the Dunkl operators (cf.
[26]).

This leads to
∣∣∣∣
∫ A

0
Hk(t)△kf(x)dt

∣∣∣∣ ≤ CA
s
2Mk(g)(x).

In conclusion, we get
∣∣∣∣
∫ ∞

0
Hk(t)△kf(x)dt

∣∣∣∣ ≤ C

(
A

s
2Mk(g)(x) +A

1
2
(s− d+2γ

p
)‖f‖

Ḃ
s−

d+2γ
p ,k

∞,∞ (Rd)

)
,

and the choice of A such that

A
d+2γ

2p Mk(g)(x) = ‖f‖
Ḃ

s−
d+2γ

p ,k

∞,∞ (Rd)
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ensures that
∣∣∣∣
∫ ∞

0
Hk(t)△kf(x)dt

∣∣∣∣ ≤ C
(
Mk(g)(x)

)1− ps
d+2γ ‖f‖

ps
d+2γ

Ḃ
s−

d+2γ
p ,k

∞,∞ (Rd)

.

Finally taking the Lq
k norm with q =

p(d+ 2γ)

d+ 2γ − ps
, end the proof thanks to The-

orem 6.1 of [26] i.e. (the maximal function Mk is bounded of Lq
k(R

d) into itself
for q > 1). �

Theorem 14 (Precised Sobolev inequality). Let 1 ≤ p < q <∞. For all

function f such that ∇kf ∈ Lp
k(R

d) and such that f ∈ Ḃ−β,k
∞,∞(Rd) we have

(31) ‖f‖L
q
k
(Rd) ≤ C‖∇kf‖θ

L
p
k(Rd)‖f‖1−θ

Ḃ−β,k
∞,∞(Rd)

,

where ∇kf := (T1f, . . . , Tdf), θ =
p

q
and β =

θ

1 − θ
.

P r o o f. Firstly we recall the following result

Lemma 4. Let (aj)j∈Z a sequence and let s = θs1 + (1 − θ)s2 with
0 < θ < 1 and s 6= s1. Then for all r, r1, r2 ∈ [1,∞] we have

(32) ‖2jsaj‖lr ≤ C‖2js1aj‖θ
lr1‖2js2aj‖1−θ

lr2 .

We apply now this Lemma for the dyadic blocs ∆jf with s = 0, s1 = 1,
s2 = −β and r = r1 = 2 and r2 = ∞. We obtain

(33)

(∑

j∈Z

|∆jf(x)|2
) 1

2

≤ C

(∑

j∈Z

22j |∆jf(x)|2
) θ

2 (
sup
j∈Z

2−βj |∆jf(x)|
)1−θ

.

Thus by Holder’s inequality we deduce that

∥∥∥∥
(∑

j∈Z

|∆jf |2
)1

2
∥∥∥∥

L
q
k
(Rd)

≤ C

∥∥∥∥
(∑

j∈Z

22j |∆jf |2
) 1

2
∥∥∥∥

θ

L
p
k
(Rd)

(
sup
j∈Z

2−βj‖∆jf‖L∞
k

(Rd)

)1−θ
.
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Finally by using the characterization theorem of Lebesgue spaces via the Little-
wood-Paley decomposition associated to the Dunkl operators we obtain the re-
sult. �

Theorem 15. Let 1 < p < q < ∞. For all function f such that
f ∈ Ḣs1

p,k(R
d)
⋂ Ḃ−β,k

∞,∞(Rd) we have

(34) ‖f‖Ḣs
p,k

(Rd) ≤ C‖f‖θ
Ḣ

s1
p,k(Rd)

‖f‖1−θ

Ḃ−β,k
∞,∞(Rd)

,

where θ =
p

q
, s = θs1 − (1 − θ)β with β > 0, −β < s < s1.

P r o o f. It suffices to prove that

(35) ‖(−△k)
s−s1

2 f‖L
q
k(Rd) ≤ C‖f‖θ

L
p
k
(Rd)‖f‖1−θ

Ḃ
−β−s1,k
∞,∞ (Rd)

.

Indeed we use the following identity

(36) (−△k)
− δ

2 f(x) =
1

Γ( δ
2)

∫ ∞

0
t

δ
2
−1Hk(t)f(x)dt,

with δ = s1 − s > 0.
Let T be a parameter when will be choose later

(37) (−△k)
− δ

2 f(x) =
1

Γ( δ
2 )

∫ T

0
t

δ
2
−1Hk(t)f(x)dt +

1

Γ( δ
2)

∫ ∞

T

t
δ
2
−1Hk(t)f(x)dt.

We proceed as in [20] we obtain

|Hk(t)f(x)| ≤ CMk(f)(x).

On the other hand we use Theorem 10 and the fact that f belongs to Ḃ−β−s1,k
∞,∞ (Rd)

we deduce that
|Hk(t)f(x)| ≤ Ct

−β−s1
2 ‖f‖

Ḃ
−β−s1,k
∞,∞ (Rd)

.

Thus by applying the preceding estimates on the right part of (37) we obtain

(38) |(−△k)
− δ

2 f(x)| ≤ C1

Γ( δ
2)
T

δ
2Mk(f)(x) +

C2

Γ( δ
2)
T

δ−β−s1
2 ‖f‖

Ḃ
−β−s1,k
∞,∞ (Rd)

.

We fix now

T =

(‖f‖
Ḃ
−β−s1,k
∞,∞ (Rd)

Mk(f)(x)

) 2
β+s1

,
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we obtain

|(−△k)
− δ

2 f(x)| ≤ C1 + C2

Γ( δ
2)

(
Mk(f)(x)

)θ

‖f‖1−θ

Ḃ
−β−s1,k
∞,∞ (Rd)

.

Thus we deduce that

‖(−△k)
− δ

2 f‖L
q
k(Rd) ≤

C1 + C2

Γ( δ
2 )

‖Mk(f)‖θ
L

p
k
(Rd)‖f‖1−θ

Ḃ
−β−s1,k
∞,∞ (Rd)

.

For conclure we used the Theorem 6.1 of [26]. �

Corollary 5 (Precised Gagliardo-Nirenberg inequality). Let 1 ≤ p < q

such that p

(
1 +

1

d+ 2γ

)
≤ q. Then, if ∇kf ∈ Lp

k(R
d) and f ∈ Lr

k(R
d) we have

(39) ‖f‖L
q
k(Rd) ≤ C‖f‖1− p

q

Lr
k(Rd)

‖∇kf‖
p
q

L
p
k
(Rd)

,

where r =

(
q

p
− 1

)
(d+ 2γ).

P r o o f. We apply Theorem 15 with s = 0 and s1 = 1, then β =
p

q − p
=

d+ 2γ

r
and we apply the Propositions 11 and 10, we have the following inclusions

Lr
k(R

d) ⊂ Ḃ0,k
r,∞(Rd) ⊂ Ḃ−β,k

∞,∞(Rd).

Hence we infer

‖f‖
Ḃ−β,k
∞,∞(Rd)

≤ C‖f‖
Ḃ0,k

r,∞(Rd)
≤ C ′‖f‖Lr

k
(Rd).

Thus the result is immediately. �

Theorem 16. Let 1 < q, r ≤ ∞. For all function f belongs to
Ḣs1

r,k(R
d)
⋂
Lq

k(R
d) we have

(40) ‖f‖Ḣs
p,k(Rd) ≤ C‖f‖1−θ

Ḣ
s1
p,k

(Rd)
‖f‖θ

L
q
k(Rd),

where
1

p
=
θ

q
+

1 − θ

r
and θ = 1 − s

s1
.
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P r o o f. We decompose f as in the follow

f = Sjf + (Id− Sj)f.

We proceed as in [20] p.21 we prove that

|Sj(−△k)
s
2 f(x)| ≤ C2jsMk(f)(x)

and
|(Id− Sj)(−△k)

s
2 f(x)| ≤ C2−j(s1−s)Mk((−△k)

s1
2 f)(x).

Thus

|(−△k)
s
2 f(x)| ≤ C2jsMk(f)(x) + C2−j(s1−s)Mk((−△k)

s1
2 f)(x).

Choosing j such that

2j ≍
(
Mk((−△k)

s1
2 f)(x)

Mk(f)(x)

)

we infer that

|(−△k)
s
2 f(x)| ≤ C[Mk(f)(x)]

1− s
s1 [Mk((−△k)

s1
2 f)(x)]

s
s1 .

Applying Hölder inequality, we obtain

‖f‖Ḣs
p,k(Rd) ≤ C‖Mk(f)‖

1− s
s1

L
q
k
(Rd)

‖Mk((−△k)
s1
2 f‖

s
s1

L
q
k
(Rd)

.

For conclure we used the Theorem 6.1 of [26]. �

For any measurable function f on R
d, we define its distribution and re-

arrangement functions

df,k(λ) := mk(
{
|f | ≥ λ

}
), f∗k (s) := inf

{
λ : df,k(λ) ≤ s

}
.

For 1 ≤ p <∞ and 1 ≤ q ≤ ∞, define

‖f‖L
p,q
k (Rd) =





(∫ ∞

0
(s

1
p f∗k (s))q

ds

s

) 1
q

if q <∞

sup
s>0

s
1
p f∗k (s) if q = ∞.

The generalized Lorentz spaces Lp,q
k (Rd) is defined as the set of all measurable

functions f such that ‖f‖L
p,q
k (Rd) <∞.
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It is easy to see that Lp,p
k (Rd) = Lp

k(R
d) and that generalized Lorentz

spaces can be derived from Lp
k(R

d) spaces by the real interpolation method. In
particular, when 1 < p < ∞ we have Lp,q

k (Rd) = [L1
k(R

d), L∞
k (Rd)]θ,q, with

1

p
= 1 − θ.

Theorem 17. Assume that W = Z
d
2. Let q ∈ [1,∞] and let s ∈ R such

that 0 < s <
2γ + d

q
, then we have

(41) ‖f‖L
p,q
k (Rd) ≤ C‖f‖1− q

p

Ḃ
s−

d+2γ
q ,k

∞,q (Rd)

‖f‖
q
p

Ḃs,k
q,q (Rd)

,

where p =
q(2γ + d)

2γ + d− qs
.

P r o o f. Let f be in S(Rd), we have

‖f‖q

L
p,q
k

(Rd)
= p

∫ ∞

0
λq
(
df,k(λ)

) q
p dλ

λ
.

For A > 0, we put f = f1,A + f2,A with f1,A = Ad+2γψ(A.) ∗D f , and f2,A =
Ad+2γφ(A.) ∗D f . We proceed as [27, 28], we prove

(42)

∫ ∞

0
Asq−d−2γ−1‖f1,A‖q

L∞
k

(Rd)
dA ≤ C‖f‖q

Ḃ
s−

d+2γ
q ,k

∞,q (Rd)

and

(43)

∫ ∞

0
Asq−1‖f2,A‖q

L∞
k (Rd)

dA ≤ C‖f‖q

Ḃs,k
q,q (Rd)

.

For all λ > 0, we have

{
|f | ≥ λ

}
⊂
{
|f1,A| ≥

λ

2

}⋃{
|f2,A| ≥

λ

2

}
.

We take now λ = λ(A) such that

‖f1,A‖L∞
k

(Rd) =
λ

4
.

Then we deduce from the choice of λ, that then

df,k(λ) ≤ df2,Aλ
,k

(
λ

2

)
.
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By Bienaymene-Tchebytchev inequality, we have

df2,Aλ
,k

(
λ

2

)
≤ 2qλ−q‖f2,Aλ

‖q

L
q
k(Rd)

.

Moreover

‖f‖q

L
p,q
k

(Rd)
= p

∫ ∞

0
λq
(
df,k(λ)

) q
p
dλ

λ

≤ p

∫ ∞

0
λ(A)q−1λ′(A)

(
df2,Aλ

,k

(
λ

2

)) q
p

dA.

From definitions of λ and f2,Aλ
, we deduce

‖f‖q

L
p,q
k

(Rd)
≤ C

[∫ ∞

0
A(d+2γ)q‖ψ(A.) ∗D f‖q

L∞
k

(Rd)

(
df2,Aλ

,k

(
λ

2

)) q
p dA

A

+

∫ ∞

0
A(d+2γ)(q−1)‖ψ(A.) ∗D f‖q−1

L∞
k

(Rd)
‖Θ(A.) ∗D f‖L∞

k
(Rd)

(
df2,Aλ

,k

(
λ

2

)) q
p

dA

]

= I1 + I2,

where

Θ(Ax) = 〈∇ψ(Ax), x〉.

Applying Hölder inequality, we obtain

I1 ≤ C

(∫ ∞

0
Aqs−(d+2γ)‖f1,A‖q

L∞
k (Rd)

dA

A

)1− q
p
(∫ ∞

0
Aqs‖f2,A‖q

L
q
k
(Rd)

dA

A

) q
p

≤ C

(
‖f‖

q
p

Ḃs,k
q,q (Rd)

‖f‖1− q
p

Ḃ
s−

d+2γ
q ,k

∞,q (Rd)

)q

.

Proceeding in an exactly similar manner for I1, we obtain

I2 ≤ C

(∫ ∞

0
A(d+2γ)(q−1)‖ψ(A.) ∗D f‖q−1

L∞
k (Rd)

‖Θ(A.) ∗D f‖L∞
k

(Rd)
dA

A

) q
p

×
(∫ ∞

0
Aqs‖f2,A‖q

L
q
k(Rd)

dA

A

) q
p

.
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By a simple calculations it is easy to obtain

I2 ≤ C

(
‖f‖

q
p

Ḃs,k
q,q (Rd)

‖f‖1− q
p

Ḃ
s−

d+2γ
q ,k

∞,q (Rd)

)q

.

Combining our estimates for I1 and I2 we have proved that

‖f‖q

L
p,q
k (Rd)

≤ C

(
‖f‖

q
p

Ḃs,k
q,q (Rd)

‖f‖1− q
p

Ḃ
s−

d+2γ
q ,k

∞,q (Rd)

)q

,

which is the desired result. �

Corollary 6. Assume that W = Z
d
2. Let s be a real number in the

interval

(
0,
d+ 2γ

q

)
and let q be a real number in [1,∞] There is a constant C

such that, for any function f ∈ Ḃs,k
q,q (Rd), the following inequality holds:

(44)

(∫

Rd

|f(x)|q
‖x‖sq

ωk(x)dx

) 1
q

≤ C‖f‖θ

Ḃs,k
q,q (Rd)

‖f‖1−θ

Ḃ
s−

d+2γ
q ,k

∞,q (Rd)

,

where θ = 1 − qs

d+ 2γ
.

For proof this result we need the following lemma which we prove as the
Euclidean case.

Lemma 5. Let 1 ≤ p1, p2, q1, q2 ≤ ∞. If f ∈ Lp1,q1

k (Rd) and g ∈
Lp2,q2

k (Rd), then

(45) ‖fg‖L
p,q
k (Rd) ≤ C‖f‖L

p1,q1
k

(Rd)‖g‖L
p2,q2
k

(Rd),

where
1

p
=

1

p1
+

1

p2
and

1

q
=

1

q1
+

1

q2
.

P r o o f o f C o r o l l a r y 6. Let as in the previous theorem 1 < p < ∞
and s ∈

(
0,
d+ 2γ

q

)
with

1

p
=

1

q
− s

d+ 2γ
. We take g(x) =

1

‖x‖s
and apply

(45), in the specific form

‖fg‖L
q,q
k (Rd) ≤ C‖f‖L

p,q
k (Rd)‖g‖L

r,∞
k (Rd)
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where r =
d+ 2γ

s
and p =

q(d+ 2γ)

d+ 2γ − qs
. As g ∈ Lr,∞

k (Rd), we have

(∫

Rd

|f(x)|q
‖x‖sq

ωk(x)dx

) 1
q

≤ C‖f‖L
p,q
k (Rd).

Combining this with (41), we obtain (44). �

In the follow we prove a special case of Corollary 6 without assume that
W = Z

d
2.

Theorem 18. Let
d+ 2γ

4
< s <

d+ 2γ

2
be given. There exists a positive

constant C such that for all function u ∈ Ḣs
2,k(R

d) we have

(46)

∫

Rd

|u(x)|2
‖x‖2s

ωk(x)dx ≤ C‖u‖2
Ḣs

2,k
(Rd)

.

For proof this theorem we need the following lemma, which we obtain by a simple

calculations.

Lemma 6. Let s be a real number in the interval (0, γ + d
2). Then the

function x 7→ ‖x‖−2s belongs to the Dunkl-Besov space Ḃd+2γ−2s,k
1,∞ (Rd).

P r o o f o f T h e o r em 18. Let us define

Is,k(u) :=

∫

Rd

|u(x)|2
‖x‖2s

ωk(x)dx = 〈‖ · ‖−2s, u2〉.

Using homogeneous Littlewood-Paley decomposition and the fact that u2 belongs
to S ′

h,k(R
d), we can write

Is,k(u) =
∑

|n−m|≤2

〈∆n(‖ · ‖−2s),∆m(u2)〉

≤ C
∑

|n−m|≤2

〈2n(d+2γ
2

−2s)∆n(‖ · ‖−2s), 2−m(d+2γ
2

−2s)∆m(u2)〉.

Lemma 6 claims that ‖ · ‖−2s belongs to Ḃ
d+2γ

2
−2s,k

2,∞ (Rd). Corollary 2 yields

‖u2‖
Ḃ

2s−
d+2γ

2 ,k

2,1 (Rd)
≤ C‖u‖2

Ḣs
2,k(Rd)

.



612 H. Mejjaoli

Thus

Is,k(u) ≤ C‖u‖2
Ḣs

2,k(Rd)
. 2
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(4) 14 (1981), 209–246.

[6] C. Cancelier, J.-Y. Chemin, C.-J. Xu. Calcul de Weyl-Hörmander et
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[17] K. Hikami. Dunkl operators formalism for quantum many-body prob-
lems associated with classical root systems. J. Phys. Soc. Japan 65 (1996),
394–401.

[18] T. Kawazoe, H. Mejjaoli. Generalized Besov spaces and their applica-
tions. Tokyo J. Math. (to appear).

[19] M. Ledoux. On improved Sobolev embedding theorems. Math. Res. Lett.
10, (2003), 659–669.

[20] H. Mejjaoli. Littlewood-Paley decomposition associated with the Dunkl
operators, and paraproduct operators. JIPAM, J. Inequal. Pure Appl. Math.
9, 4 (2008), Paper No 95, 25 p., electronic only.

[21] H. Mejjaoli. Strichartz estimates for the Dunkl wave equation and appli-
cations. J. Math. Anal. Appl. 346, 1 (2008), 41–54.



614 H. Mejjaoli

[22] H. Mejjaoli. Dispersion phenomena in Dunkl-Schrödinger equation and
applications. Serdica Math. J. 35, 1 (2009), 25–60.

[23] H. Mejjaoli. Dunkl heat semigroup and applications. Appl. Anal. (to ap-
pear).

[24] M. Rösler. Generalized Hermite polynomials and the heat equation for
Dunkl operators. Comm. Math. Phys. 192 (1998), 519–541.

[25] M. Rösler. A positive radial product formula for the Dunkl kernel. Trans.
Amer. Math. Soc. 355 (2003), 2413–2438.

[26] S. Thangavelu, Y. Xu. Convolution operator and maximal functions for
Dunkl transform. J. Anal. Math. 97 (2005), 25–56.

[27] H. Triebel. Interpolation Theory, Functions Spaces Differential Operators.
Amesterdam, North-Holand, 1978.

[28] H. Triebel. Theory of function spaces II. Monographs in Mathematics vol.
84. Basel etc, Birkhäuser Verlag, 1992.
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