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ABSTRACT. In the present paper we introduce some multiplier sequence
spaces over n-normed spaces defined by a Musielak—Orlicz function M =
(My). We also study some topological properties and some inclusion rela-
tions between these spaces.

1. Introduction and preliminaries. The notion of difference se-
quence spaces was introduced by Kizmaz [9], who studied the difference sequence
spaces loo(A), ¢(A) and ¢o(A). The notion was further generalized by Et and Co-
lak [3]| by introducing the spaces loo(A"), ¢(A") and ¢,(A"™). Let w be the space
of all real or complex sequences z = (zx). Let m, n be non-negative integers,
then for Z = [, ¢ and ¢y, we have sequence spaces,

Z(Ap) ={z = (zr) € w: (Ajak) € Z}
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paranorm space.
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where A"z = (A z) = (A% Yoy — AP e ) and A% 2y = 2, for all k € N,
which is equivalent to the following binomial representation

Alzp=> (-1)" ( Z > Thtmo-

v=0

Taking m = n = 1, we get the spaces [ (A), ¢(A) and ¢p(A) introduced and
studied by Kizmaz [9].

Let X be a linear metric space. A function p: X — R is called paranorm,
if

(1) p(x) >0, for all z € X;
(2) p(—z) = p(x), for all z € X;
(3) p(z +y) < px) + ply), for all 7,y € X;

(4) if (o) is a sequence of scalars with o, — 0 as n — oo and (z,,) is a sequence
of vectors with p(z, —x) — 0 as n — oo, then p(o,x, —ox) — 0 as n — oo.

A paranorm p for which p(z) = 0 implies x = 0 is called total paranorm
and the pair (X,p) is called a total paranormed space. It is well known that
the metric of any linear metric space is given by some total paranorm (see [25],
Theorem 10.4.2, P-183).

An Orlicz function M is a function, which is continuous, non-decreasing
and convex with M (0) =0, M(z) > 0 for x > 0 and M(x) — oo as  — 0.

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to define
the following sequence space. Let w be the space of all real or complex sequences
x = (xy), then

EM:{J:Ew: iM(’%’) <oo}

which is called as an Orlicz sequence space. The space £, is a Banach space with

the norm
|| = inf{p >0: M<@> < 1}.
p
k=1

It is shown in [10] that every Orlicz sequence space £j; contains a subspace iso-
morphic to £,(p > 1). The Ay-condition is equivalent to M (Lz) < kLM (z) for all
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values of x > 0, and for L > 1. An Orlicz function M can always be represented
in the following integral form

where 7 is known as the kernel of M, is right differentiable for ¢ > 0,7(0) =
0,n(t) > 0, n is non-decreasing and n(t) — oo as t — oo.

A sequence M = (M},) of Orlicz function is called a Musielak-Orlicz func-
tion see [13, 19]. A sequence N = (Nj) defined by

Ni(v) = sup{|vju — My(u): u >0}, k=1,2,...
is called the complementary function of a Musielak—Orlicz function M. For a

given Musielak—Orlicz function M, the Musielak—Orlicz sequence space tpq and
its subspace hq are defined as follows

tam = {ac € w: Ipm(ex) < oo for some c>0},

ham = {wa:IM(cx) < oo for all c>0},

where Ix4 is a convex modular defined by

Im(z) = My(ag),z = (z1) € tu.
=1

We consider t equipped with the Luxemburg norm
. x
||| = mf{k >0: IM(E) < 1}

or equipped with the Orlicz norm
0_ . 1
|| :mf{E(l—i—IM(kx)): k>0}.

A Musielak-Orlicz function M = (M) satisfies Ag-condition if each Or-
licz function M, satisfies Ao-condition.

A sequence of positive integers 0 = (k) is called lacunary if kg = 0,
0 <k, <kpy1and h, =k, —k,_1 — 00 as r — oo. The intervals determined by 6
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k
will be denoted by I, = (k,—_1, k) and ¢, = . "_. The space of lacunary strongly
r—1

convergent sequences Ny was defined by Freedman et al.[4] as:

. 1
Ng:{wa. rlggoh_r,;m_”_o’ for some l}.
€l

Strongly almost convergent sequence was introduced and studied by Maddox [11]
and Freedman [4]. Parashar and Choudhary [20] have introduced and examined
some properties of four sequence spaces defined by using an Orlicz function M,
which generalized the well-known Orlicz sequence spaces [C,1,p], [C,1,plo and
[C,1,p]oo. It may be noted here that the space of strongly summable sequences
were discussed by Maddox [12]. Subsequently, difference sequence spaces have
been discussed by several authors see [1, 2, 14, 15, 16, 18, 21, 22, 23, 24].

The concept of 2-normed spaces was initially developed by Géhler [5] in
the mid of 1960’s, while that of n-normed spaces one can see in Misiak [17].
Since then, many others have studied this concept and obtained various results,
see Gunawan |6, 7] and Gunawan and Mashadi [8|. Let n € N and X be a linear
space over the field K, where K is field of real or complex numbers of dimension d,
where d > n > 2. A real valued function ||,...,-|| on X" satisfying the following
four conditions:

(1) ||x1,x2,...,z,]| = 0 if and only if z1,z9,...,z, are linearly dependent in
X;
(2) ||z1,22,..., x| is invariant under permutation;
(3) ||laxy, 2, ..., x| = |a| ||z1,22,...,2,| for any a € K, and
4) ||z + 2,29, ..., 20| < ||x, 20, .. 20| + |12, 22, . . o 2|
is called an n-norm on X and the pair (X, ||-,...,-||) is called a n-normed space
over the field K.

For example, we may take X = R" being equipped with the m-norm
|z1,2z2,...,2,||p = the volume of the n-dimensional parallelopiped spanned by
the vectors x1, xo, ..., x, which may be given explicitly by the formula

Hacl,acg, e ,anE = ‘ det(:r:ij)\,
where z; = (21, T2, ..., Tin) € R" for each i = 1,2,...,n and || - || denotes the

Euclidean norm. Let (X, ||-,...,-||) be an n-normed space of dimension d > n > 2
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and {a1, ag,...,a,} be linearly independent set in X. Then the following function
-+ |Joo on X! defined by

X1, 22,y .oy Tpo1l|oo = max{||x1,x2, ..., Tn-1,0:||: i =1,2,...,n}
defines an (n — 1)-norm on X with respect to {ai,as,...,a,}. A sequence (zy)
in a n-normed space (X, |-,...,||) is said to converge to some L € X if
lim ||xp — L,21,...,2n-1]| =0 for every zi,...,z,-1 € X.
k—o0
A sequence (zy) in a n-normed space (X, ||-,...,-||) is said to be Cauchy
if
lim |z —xp, 21,...,2n-1]| =0 for every z1,...,2,—1 € X.
k, p—oo

If every Cauchy sequence in X converges to some L € X, then X is said to be
complete with respect to the n-norm. Any complete n-normed space is said to be
n-Banach space.

Let M = (Mjy) be a Musielak-Orlicz function, p = (px) be a bounded
sequence of positive real numbers and u = (uy) be a sequence of positive reals
such that uy # 0 for all k, then we define the following sequence spaces in the
present paper:

6
wO(M,A}",u,p,s,H-,...,~H)
1 AT P
= {ac = (zg) € w: lim — Z k_SMk[HM,ZhZQ,...,zn_lﬂ g 0,
r—00 hr
kel
p>0, 5> 0},
we(MvA;nvuvp757”'7"'7'”)
1 Az, — L P
= {1: = (zr) €w: lim — Z kfsMk{HM,zl,zz,...,zn,lﬂ] o 0,
r—00 hr
kel
for some L, p>0, s > O}
and

wl (M, AT u,p, s, |-
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1 upg A
— {2 = (@) cws sup = KM PR 21z,
r Dy P
kel
If we take M(z) = x, we get
0
wO(A?L7u7p757 ”va)
A
= {1: = (zg) € w: lim — Z k_S{Huk L xk,Zl,ZQ,.
r—oo N,
kel
0
w (Alrn7u7p787 H7 ceey H)

. 1 _ up ANy, — L Pk
= {l’ = (xk) cw: Tll{goh_ Z k S|:Hl77217227"'7zn—1”] = 07

" kel, P

for some L, p>0, s > 0}

and
wgo(A;n,u,p,s, ”7 ) ”)

1 A
= {ac = (zg) € w: sup — Z k*S[HM,zth,...
r kel P

If we take p = (pr) = 1 for all k € N, we have

wg(M,A;n,u,s, ”v . 7”)

1 A
= {x = (zg) € w: lim — E k*SMk[||M7217227
oo he P

we(Mv A;nvuv 5, H7 SR H)

Pk
,zn_lH] < 00,

p>@szo}

...,Z,HH] —0,

p>Q520}



Some multiplier sequence spaces 25

. s up Atz — L
:{:c:(xk)Ew: lim h—Zkz My, [H% 21522y ey Zn— 1||}

r—00
kel,

for some L, p>0, s > O}
and

0
Woo (M, AT uy s, ||+ 50]l)
ukAmxk
= {1: = (a) € w: Sup— Z k™5 My, |:”Tl7217227---72n71”] < 00,
" kel

p>0,820}.

If we take M(z) =z,s =0, u=e=(1,1,1,...,1) then these spaces reduces to

( l?pvu H
A fL‘k Pk
:{J::(ack)Ew hm —Z[ zl,zg,...,zn_lH} =0, p>0},
kel
( l?pvu H
. A .’Ek—L
:{li:(lik)ewrli{lgoh_kzl[ T217227 <5 Zn— 1”]
clr

for some L, p > 0}

and

Wl (AT, [l -[1)

1 Aml‘k Pk
:{x:(xk)ew:sup—Z[H L ,21,22,...,,2”_1]]] <oo,p>0}.
v kel, P

The following inequality will be used throughout the paper. If 0 < pr, < supp =
H, K = max(1,2771) then

(1.1) |ak + be[P* < K {Jag[P* + [by [P+ }

for all k and ay, by, € C. Also |a|P* < max(1, |a|*?) for all a € C.
In this paper we study some topological properties and prove some inclu-
sion relations between these spaces.
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2. Main results.

Theorem 2.1. Let M = (M) be a Musielak-Orlicz function, p = (px)
be a bounded sequence of positive real numbers and u = (ug) be any sequence
of strictly positive real numbers then the classes of sequences wo(/\/l A", u,p, s,

ooy, W (M, AT wps, |- -|]) and wf (M, AT u,p, s, |- ..., -|) are lin-
ear spaces over the field of comple:r number C.
Proof. Let z = (‘rk)vy = (yk’) € wg(M,Am,U,p,S, ||7 s ||) and «a, 3 €
C. In order to prove the result we need to find some p3 such that
AT P
lim — Zk *M;, [H“’“ O PN Loy
T—00 p3
" kel,
Since = = (z1),y = (yx) € W (M, A" u,p, s, |- ...,|), there exist positive num-
bers p1, p2 > 0 such that
1 up A" P
lim — Z kisMk’ |:||M7217227 s 7zn71”i| ' =0
r—00 h. f1
kel
and Am
P
lim — Z ks M, [yyu,zl,zQ,...,zn_lu] S
r—00 ke[ p2

Define p3 = max(2|a|p1, 2|6|p2). Since M}, is non-decreasing, convex function and
so by using inequality (1.1), we have

h Zk SM |:||’U'kA (0‘$k+ﬂyk) 21y 29 2 1||:|

kel p3
aukA Tk Bui ATy, Pk
< — Z k™ SM |: ) 17227"'72:77,—1” + ”T;:zl:zQ:"'vzn—IH]
" kel
ukAme‘k Pk
S h Zgﬂk M, |: pl1 ,2’1,22,...,2‘”_1”]

ukAlmyk Pk
— k™5 M, [ L 72,y Zn }
+ K h k;%k P 1,22 -1l

ukA T Pk
K Zk SM |: 21,22,...,2‘,1,1”}
" kel

IN
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+ K Zk S M,
kJEIr

) R1yR2y e - azn71||

{”ukA}”yk

— Qasr — oo.

Thus we have az + By € wh(M, A" u,p,s,||-...,-||). Hence w§(M, A",
u,p, S, H 1) is a linear space. Similarly we can prove that we(./\/l, A" u,p, s,
Iy sl and wl (M, A™ u,p,s,]|-...,|) are linear spaces.

Theorem 2.2. Let M = ( k) be a Musielak—Orlicz function, p = (p)
be a bounded sequence of positive real numbers and u = (ux) be a sequence of
strictly positive real numbers. Then wg(M,Am,u,p,s, Iy ,-Il) is a topological
linear space paranormed by

. pr. A Pk %
g(m):mf{pH:( Zk 5 M, [ 21,22,...,,2”_1\\} ) gl},

" kel

where H = max(1, sup py) < 00
k

Proof. Clearly g(z) > 0 for z = (1) € wi(M, A" u,p, s, |-...,-|])
Since My (0) = 0 we get g(0) = 0. Again if g(x) = 0 then

\ NG 1
inf{p%: ( > kM, [ SR T 21,22,---,zn71||}pk)H Sl}:().

" kel

This implies that for a given € > 0 there exist some p.(0 < p. < €) such that

up A" Pr\
( Zk SM |: k k 21,22,...,Zn_1“:| k)H S 1.
" kel,

Thus

AT
( Zk SM |: uk ok 217227"'72n71||i|pk>H

" kel
1
ukA T P\ 7
( E k™ SM[ 21,22,...,Zn_1“:| ) .
" kel

Suppose (xy) # 0 for each k¥ € N. This implies that A]"(zx) # 0 for each k € N.

Let € — 0 then
ukA;”:L‘k
Hf,zl,z%...,zn,lﬂ — 00.
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It follows that
A 1
( Zk 5 M, { il M 21,22,...,2,1,1”}%)}1 — 00.
ke]r

Which is a contradiction. Therefore Aj*(zy) = 0 for each k and thus (z3) = 0 for
each k € N. Let p; > 0 and pz > 0 be such that

AP PEN\ T
< Zk SM |:||Uk o h y R1y 22y« + 7zn71”i| k>H S]-

" kel,

and

A™ 1
( S kM, [HM 21,22,...,,2”_1]]}”)]1 <1

" kel
Let p = p1 + p2, then by using Minkowski’s inequality, we have

A™ 1
( Zk s M, [ Up (:Ek+yk)7217227“'72n71”}pk>H

kEIr P
Az + up A DPEN
< ( Zk S0, { uk | Tk T Uk lyk7217227“_7zn_1u} k)H
" hel. p1+ p2
1 _ ukA Ty,
< <h—2k SMk( [j: [H 21722,---,%—1”}
r kel, P1 P2
P2 up AT Y Pr\ 7
|| 7217227-"7271*1”
pP1+ p2 P2
<

A 1
< )( Zk SM |: Uk o 217227"'72n71||i|pk>H
1+P2

+ < )( Zk 5 M, { ukAl Yk L2, 2 z ||}pk>;l
p1+p2 1,225+ y4n—1

< 1.

Since p, p1 and po are non-negative, so we have

g(z +y)

= 1nf{ ( Zk 5 My, [ ukA;n(xk+yk),Z1,Z2,...,zn1”}pk>% Sl}

kEIr P
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AT 1
< inf{ (p1) 7 : ( Zk "My, [ Dy Bk 217227---727171“}%)[{ Sl}
" kel
AT 1
+ 1nf{ pﬁ- ( Zk S M, [ el lyk 21,22,...,,2“,1”}“)}[ §1}.

" kel,

Therefore g(x +y) < g(z) + g(y). Finally we prove that the scalar multiplication
is continuous. Let A be any complex number. By definition

g(A\x) :inf{p%: ( Zk: S My, { ukA ATk 21,22,...,2n1|]]pk>;1 < 1}.

" kel
Thus
A 1
g(x) = { )5 ( Zk 5 M, [ Uy Tk zl,zz,...,zn,ﬂy]p’“)’f < 1},
" kel
1 S
where ;= ﬁ Since |A|P" < max(1, [A\[*"PP"), we have

ukA l‘k

g(Ax) < max(1, |A\*"PP")inf {t%: ( Z k™% My, {

" kel,
1
P\ 7
21722,'-',Zn71||} ) Sl}-

So the fact that scalar multiplication is continuous follows from the above inequal-
ity. This completes the proof of the theorem. O

Theorem 2.3. Let M = (M) be a Musielak—Orlicz function. If
sup[ My (z)]P* < oo for all fived x > 0, then
k

wg(M7AlTnvuvp757 ||7 R ||) - wgo(MaA;n»U»P»Sv ”7 .. 7”)

Proof. Let x = (x1) € wl(M, A" u,p, s, ...,||), then there exists
positive number p; such that

1 up A" x Dk
. — | Yk
lim — E k SMk|:||7,Zl,ZQ,...,Zn71|| =0.
r—oo h P1

kel,
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Define p = 2p;. Since M} is non-decreasing, convex and so by using inequality
(1.1), we have

ukﬁml‘k Pk
suph Zk 5 M, [HTl,zl,ZQ,...,zn_lH]

kel
PO G| B R 1™
= Ssu 21y Ry e vy Zp—
ph p 3“1y %2, s An—1
kel
up A"z, — L Pk
< Kot Skt L ag AL ]
< SUP kz; oPn P 21, 22 Zn—1|
L Pk
+ KSUph Z ﬁMk[ 01 y Z1s %25 - - ,Zn,1H]
Al'xy — L P
< KSUp—Zk SM [\\M,zl,z%...,zn_lﬂ *
T kel 1

L Pk
+ Ksup— Sk sMk{H—,zl,zg,...,zn_lH}
" kel P1

< oQ.

Hence x = (z1) € wﬁo(M,AZ",u,p,sa -...sel]). O

Theorem 2.4. Let 0 < infpy = h < pp < suppy = H < oo and
M = (M), M = (M}) be Musielak-Orlicz functions satisfying Aa-condition,
then we have

(6) wg (M, AT u,p, s, [ o[) C w(Mo M AR upys, |-l

(i) Wl (M AT u,p, s, || sel]) Cwl (Mo M AT up, s, |- .., |);

(iid) Wiy (M, AT u,p, s, ||+ o|]) Cwlo (Mo M AT u,p, s, || ..
Proof. Let z = (1) € wi(M', A u,p, s, || ...,-||) then we have

r—00 h

up ATy, Pk
lim — Z k™ SMk{Hi 21,22,y 2n—1]l|  =0.
kel P

Let € > 0 and choose 0 with 0 < § < 1 such that My (t) < € for 0 < ¢ < 4. Let
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upg A P
(y)PF = M, [H%»ZLZ% e ,zn,1||} " for all k € N. We can write

. 1 s 1 s
—Zk Mi[yl™* = >k Myl + -~ D kT Myl

" kel, " kel y,<s " kel yp>6
So we have
1 _ 1 _
Y EM < DL Y R M
" kel ,yp<é kel y,<é
1 _
(2.) < L@ Y M
kel yp<é
For y, > d,yr < %—k <14 F Since Mj.s are non-decreasing and convex, it

follows that
ka )

1
Mi(y) < Mi(1+ %) < §Mk( )+ Mk( 5

Since M = (Mj,) satisfies Ag-condition, we can write

Yk Yk _ 7Yk

@2 5 X el <ma (LB LS ey

" kel yp>6 kel y,<s

From equation (2.1) and (2.2), we have x = (z}) € wg(./\/l o M/ A}, u,p, s,
|I,---,-|l). This completes the proof of (7). Similarly we can prove that

w’ (M AT w8, ) € w (Moo MU AT uyp, s, | )
and

WM AT upy s, [l l) C (Mo M AT upy s Iy of). O

Theorem 2.5. Let 0 < h =infpr = pr < suppr = H < 0o. Then for a
Musielak—-Orlicz function M = (My,) which satisfies Aa-condition, we have

(z) wg(A;”,u,p,s, ”v . 7”) C wg(MvAlmvuvva7 H? . 7'”);
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(i1) W (A™ u,p, s, |- ..., ) € W (M, A" up,s, || ....|);

(z”) wgo(A;nvuvva7 H? cet 7”) - wgo(MvA;nvuvva7 H? Tt H)
Proof. It is easy to prove so we omit the details. O

Theorem 2.6. Let M = (M, ) be a Musielak-Orlicz function and 0 <

b= infpr. Then wl (M, A, u,p, 5, |-y, -[) © (AP 1D, 5, |- -|l) if and
only if
(2.3) lim — Z k™S My, (t)PF = oo

" kel,

for some t > 0.

Proof. Let w/ (M,A" u,p,s,||-...,-) € wh(A", u,p,s,|--...,|)
Suppose that (2.3) does not hold. Therefore there are subinterval I, ;) of the
set of interval I, and a number ¢y > 0, where

to = || ———,21,22,...,2n—1|| for all k,

such that

(2.4) > kT My(to)* < K <oo,m=1,2,3,...

) kel

let us define x = (xy) as follows:

m. _ | pto, k€I
Al xk_{ 0, k¢l

Thus, by (2.4), z € wlf,(M,A™ u,p,s,|-...,-|). But z ¢ w’ (A™ u,p,s
|-s...,]]). Hence (2.3) must hold.

Conversely, suppose that (2.3) holds and that x € w? o (MAT u,p, s
|I-,...,-|]). Then for each r,

up A P
(2.5) —Zk: s Mj, [”u izl < K < 0.
" kel p
Suppose that = ¢ wi (A", u,p, s, ||-,...,-||). Then for some number € > 0, there

is a number ko such that for a subinterval I,.(;), of the set of interval I,

’U,kAm.I'k
||Tl,zl,22,...,zn,1|] > € for k > ko.
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From properties of sequence of Orlicz function, we obtain

ukA T Pk
” 217227"'7271*1” > Mk(e)pk

which contradicts (2.3), by using (2.5). Hence we get
go(Mv A?L,u,p, S, H? R H) - w(e)(Almvuvpv S, H? R H)
This completes the proof. O

Theorem 2.7. Let M = (My) be a Musielak—Orlicz function. Then the
following statements are equivalent:

(7’) wgo(AEnvuvpv& vaH) - wgo(M,A}",u,p,s, H77H)7
(i) Wl (AT u,p, 8, ||+ s -|]) € wlo (M, AT u,py s, ||+ |]);

(#4) Sup— Z kE° My (t)P* < oo for allt > 0.
" kel

Proof. (i) = (ii). Let (¢) holds. To verify (i), it is enough to prove

0 0
wO( ;",u,p,s, H7 SR H) - woo(MvAlTnvuvpv*S? H? ) H)
Let z = (z3) € w)(A",u,p, s, |-, ..,||). Then for € > 0 there exists r > 0, such
that A
e ] Pk
—Zk { 21,22,...,2,1,1”} <e.
" kel

Hence there exists K > 0 such that

s [ ukA Ty
suph Z S{Hi 21y 22y ey 2y 1”] < K.
kel, p

So we get x = (zy) € wf o (M AT u,p s, |5y 0]])

(79) = (i13). Let (4i) holds. Suppose (iii) does not hold. Then for some ¢ > 0

sup— Z k™° My (t)P* = oo
" ke,
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and therefore we can find a subinterval I, o of the set of interval I, such that

J)

(2.6)

Z k™ SMk p’“>] ji=1,23,.
T(]) kel (j)

Let us define z = (z) as follows:

p

=, kel

Almack = J r@ .

0, kel
Then z = (l'k) S w(g)( ?Lauapa*S? H77H) But by (2 6 ¢ w (M Al y U, Py 8,
|-s....|]), which contradicts (ii). Hence (iii) must holds.
(791) = (i). Let (i) hOldb and suppose z = (J:k) e wl (AT u,p, s, |- ...,|).
Suppose that z = (ack ¢ wl (M, A" u,p,s,|-,...,||), then

A

(2.7) sup — Z k™ My, {Huk Tk 21522, ,zn,lﬂ]pk = 0.

" kel

H up ATy,

Let t = , 21,29, ...,2n—1|| for each k, then by (2.7)

suph Z k™5 My (t)PF = o0
kel

which contradicts (ii7). Hence (i) must holds. O

Theorem 2.8. Let M = (Mj,) be a Musielak-Orlicz function. Then the
following statements are equivalent:

(7’) w(e)(MvAlTnvuvpv*S? vaH) - wg(A;",u,p,s, H? 7'”)7'
(“) wg(M,A;",u,p,s, ”va) C wgo(A;n,u,p,s, ”77”)7

(#4) 1nf— Z E7*My(t)P* > 0 for allt > 0.
" kel,
Proof. (i) = (ii). It is obvious.
(73) = (i73). Let (4i) holds. Suppose that (i77) does not hold. Then

1nf— Z k™ My(t)P* = 0 for some t > 0,
" kel,
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and we can find a subinterval I o of the set of interval I, such that

J)

1
(2.8) > kM ()P <5 j=1,2,3,.

h 7(j) kEL.(j

Let us define x = (xy) as follows:

pj, k€ Ir()
Az, = 7,
L { 0. k¢ L
Thus by (2.8), = = (z1) € W (M, AT u,p, s, || ...,-||) but z = (xx) ¢ wl (A™,
u,p, S, ||+ - -+, -||). Which contradicts (i7). Hence (7i7) must holds.
(i4i) = (i). Let (i) holds. Suppose that z = () € wi(M, A" u,p, s,
I;...,+]|)- Then
ukA T Pk
(2.9) —Zk S My, { 21,22,y 2n—1|l]  — 0asr — oo.
" kel
Again suppose that = = (1) € w)(A",u,p, s, |-,...,||). for some number € > 0

and a subinterval I,;, of the set of interval /. we have

up Al
HM,zl,zQ,...,zn,lH > e for all k.

Then from properties of the Orlicz function, we can write

ukA T Pk
” 217227"'7zn71”i| > Mk(e)pk

consequently, by (2.9), we have
. —s PE —
Thm 0 kEEI k™ My (e)P* =0

which contradicts (i7i). Hence () must holds. O

Theorem 2.9. Let 0 < pi < qi for all k and let ( ) be bounded. Then
Pk

we(MaA;n7u7Q7sa H7 ey H) g we(_/\/l,A;n,u,p,s, H7 ey H)
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Proof. Let z = (x) € w’(M, A, u,q, s, ||, ...,-||), write
ukAme‘k dk
ty = My, \\71721,2’27---7271—1!!]

and yp = 2% for all k € N. Then 0 < yp < 1 for all k € N. Take 0 < pu < p, for

k
k € N. Define sequences (uy) and (vg) as follows:
For t; > 1, let up = t; and vy = 0 and for ¢ < 1, let up = 0 and vy = t;. Then
clearly for all £k € N, we have

tﬂk

tr = ur + vg, —uk +v

Now it follows that ug’“ <y, <t and vf:’“ < vg. Therefore,

_Ztuk _ _Z k+v

" kel, " kel,
< E tr —‘r — E ’Uk
" kel, " kel,

Now for each k,

Py = Y () ()

" kel kel

|
/~
B
=
ol
<
-
—
=

and so . ) )
o
— < = ty + (— ) .
h, ”k—hTZk hrzvk
kel kel kel

Hence = = (z3) € w’(M, A u,p,s,|-...,
theorem. 0O

-|[). This completes the proof of the

Theorem 2.10. (i) If0 < infpy < py <1 for all k € N, then

W (M, AT uyp s, |-l S wl (M, AT u s ).
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(i) If 1 < pp <suppr = H < o0, for all k € N, then

wG(M,Am,u,s, ||7 R ||) g we(MvA;n7u7p757 ”7 ey ||)
Proof. (i) Let x = (1) € w? (M, A" u,p, s, |-...,|), then
. 1 _ up AN, — L Pk
T’li{lgoh_r;k SMk|:Hl772172277zn—1Hi| =0.
el,

Since 0 < inf p < pr < 1. This implies that

. 1 _ upAxy, — L
Tlggoh—r >k SMk[Hli,Zl,Zm---,Zn—ﬂq
kel
. 1 _ up A"x — L Pk
cim Ly e AL L
_ngoh”; k| 21, 22 Zn—1|
therefore,
. 1 _ ukAmxk —L
rlggoh_r Z k SMk|:||l7,Zl,22,...,Zn,1||:| =0.
kel
Therefore
W (M, AT up,s, ||y ]) © w(MOAT uys, ).
(i) Let pg > 1 for each k and suppy < co. Let z = (x3) € w? (M, A", u,
Sy|ly--,-l), then for each p > 0, we have
1 A"xp — L p
lim — Z kisMk|:||M,Zl,22,...,Zn,1||} o<1
oo he (T P

Since 1 < pi < suppg < 0o, we have

1
lim — S kM {
r—00 hr I;IT & H

up Ay — L Pk
—A N/ DR 7Zn—1H

1 Ay, — L
<l S ETM [
r—oo h, 1)
kel,
=0

< 1.
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Therefore z = (z1) € w? (M, A u,p,s,||-,...,||), for each p > 0. Hence
W (M AT uy s, ||y ]]) C w? (M AT u,p, s, )
This completes the proof of the theorem. O
Theorem 2.11. If0 < infpr < pr < suppr = H < 00, for all k € N,
then
0 0
w (Mv A;nauvpv S ||7 ceey ||) =w (Mv Ar»“» S, ”v SR H)
Proof. It is easy to prove so we omit the details.
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