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ABSTRACT. We consider a forced second order functional differential equa-
tion with «-Laplacian, damping, and mixed nonlinearities in the form of

(r(t)gy (2'(£)))" + p(t)y (2 (2))
b
+ () ¢p(x(t)) +/ q(t, 8)¢a(s)(x(g(t, 5)))dC(s) = e(t),

where 7,0 € [0,00),—00 < a < b < 00, a € Ca,b) is strictly increasing
is such that 0 < a(a) < p < a(b—) with 8 >~ > pu > 0; 7, p, g, € €
C ([to,o0),R) with () > 0 on [ty,00); ¢ € C(]0,00) X [a,b)); and ( :
[a,b) — R is nondecreasing. The function g € C ([0, 00) X [a,b), [0,00)) is
such that tli)rgo g(t,s) = oo, for s € [a,b). Interval oscillation criteria of the
El-Sayed type and the Kong type are obtained. These criteria are further
extended to equations with deviating arguments.
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1. Introduction. We are concerned with the oscillatory behavior of
forced second order functional differential equations with -Laplacian, damping
and mixed nonlinearities in the form of

(L) ()6 (& (1)) + p(E)n (' (1))
b
+ qo(t)ds(a(t)) + / 4(t, 8) ey (@(g(t, $)))dC(s) = e(t),

where ¢q (u) := |u|*sgnu, 7,8 € [0,00),—00 < a <b< oo, ac Cla,bd) is
strictly increasing such that 0 < a(a) < p < a(b—) with 8 > v > p > 0;
r, p, qo, € € C([to,00),R) with () > 0 on [tp,0); ¢ € C ([0,00) X [a,b)); and
¢ : [a,b) — R is nondecreasing. The function g € C ([0,00) X [a,b), [0,00)) is
such that tlggo g(t,s) = oo, for s € [a,b). Our interest is to establish oscillation

criteria for Eq. (1.1) without assuming that p(t), qo(t), ¢ (¢, s), and e(t) are of
b
definite sign. Here / f(s)d¢ (s) denotes the Riemann-Stieltjes integral of the

function f on [a,b) with respect to .

We note that as special cases, the integral term in the equation becomes
a finite sum when ¢ (s) is a step function and a Riemann integral when ¢ (s) = s.

As usual, a solution z(t) of Eq. (1.1) is said to be oscillatory if it is defined
on some ray [I',00) with T > 0, and has an unbounded set of zeros. Eq. (1.1)
is said to be oscillatory if every solution extendible throughout [¢,,c0) for some
t, > 0 is oscillatory.

In the last 50 years, there has been extensive work on oscillation and
nonoscillation of various differential equations, see |1, 3, 4, 5, 6, 7, 8, 10, 19, 20,
21, 22, 31, 26| and the references cited therein. Special cases of the equation

N
(1.2) (r(®) (2'(0))") + g0 (£) 27 (1) + > 4(t)ag (2(1)) = e(t),
j=1

where ¢ (u) := |u|”sgnu, v is a quotient of odd positive integers and «a; > 0,
j=1,2,...,N, such that

Q] > Qg > >0y > D> Qg > > > 0.

has been studied by many authors. Wheny =N =1, r(t) =1, p(t) = qo (t) =0,
and ¢ (t) > 0, Kartsatos |19, 20| initiated an approach for oscillation under the
assmption that e () is the second derivative of an oscillatory function. This
method was further developed by different authors, See Keener [21], Kong and
Wong [24], Kong and Zhang [25], Rankin 30|, Skidmore and Leighton [32], Skid-
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more and Bowers [31], Teufel [39], and Wong [40].

Results were also obtained for oscillation of special cases of Eq. (1.2) with-
out imposing the assumption that e (¢) is the second derivative of an oscillatory
function. Most of them were for the case when v =1, r(¢) = 1, and p(t) = 0. For
instance, see Nasr [27] for N =1 and aq > 1, Sun and Wong [36] for o;; < 1, and
Sun and Wong [37| and Sun and Meng [35| for mixed nonlinearities. Among them,
there were interval oscillation criteria which can be regarded as generalizations of
the one by El-Sayed [9] for second order forced linear differential equations, and
other interval oscillation criteria can be regarded as generalizations of the one
by Kong [22] established initially for the second order homogeneous linear equa-
tions, see also [23]. Hassan, Erbe and Peterson [15] discussed the oscillation of an
equation with p-Lapacian, more specifically, they established oscillation criteria
of El-Sayed-type for the equation (1.2)

Hassan and Kong [16] considered the forced second order differential equa-
tions with v-Laplacian and damping in the form of

N
(1.3) (rt)dy (/1)) + )y (2'(1) + > aj(t)ay (x(t)) = e(t),
§=0

where a; >0, j =0,1,2,..., N, such that
(1.4) aj >, j=12,...,m; and a; <75, j=m+1L01+2,...,N.

and 7, p, ¢;, e € C([0,00),R) with r(¢) > 0 on [0,00). They established oscil-
lation criteria of El-Sayed-type and Kong-type for Eq. (1.3). Sun and Kong [34]
considered the equation

b
(r()2'(t))" + qo(t)(t) +/0 q(t; 8)Pa(s) (2(t))dC(s) = e(t).

Recently, Hassan and Kong [17] established interval oscillation criteria of both
the El-Sayed-type and the Kong-type for the more general equation

b
(r()(2' (1)) + qo(t) b~ (x(2)) +/O q(t; 8)Pa(s) ((g(t, 5)))dC(s) = e(t).

Motivated by above, in this paper, we will establish interval oscillation criteria of
both the El-Sayed-type and the Kong-type for the more general equation (1.1).

This paper is organized as follows: after this introduction, we state lem-
mas, in Section 2, we state oscillation criteria for (1.1) with g(¢, s) = t, in Section
3, we establish oscillation criteria for (1.1) with g(t, s) # ¢.
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2. Lemmas. We denote by L¢ (a,b) the set of Riemann-Stieltjes inte-
grables functions on [a,b) with respect to (. Let ¢ € (a,b) such that a(c) = p.
We further assume that

c b
o' € L¢(a,b)  such that / d¢ (s) > 0 and / d¢ (s) > 0.

To state our main results, we begin with the following lemmas which we
will need in the proof of our main results. The following lemma generalizes |17,
Lemma 2.1].

Lemma 2.1. Let

m::u(/cbdg“(s))
n::u(/acdg*(s))l/:al () dC ().

Then for any § € (m,n), there exists n € L¢ (a,b) such that n(s) >0 on [a,b),

-1

/ "0 (s) ¢ (5

and

b b
(2.1) [aen@dE=n md [ =

Proof. Let
0, s € (a,c)

m(s) = ™ (s) </de§ (s)> , s€[cb),

and

M2 (8) := pa” (s) </ach (S)> 71, s € (a,c)

Clearly for i = 1,2, n; € L¢ (a,b) and

b
/ a(s)ni(s)dC (s) = p.

Moreover,

b b
/ m(s)dC () =m and / 2 (5) dC (5) = .
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For k € [0,1] let
77(87k) = (l_k)nl (3)+k772(3)7 SE[a,b)-
Then it is easy to see that

b
[t =p.

Furthermore, since 1 (s,0) =1 (s) and 7 (s,1) = n2 (s), we have

b b
/n(s,O)dC(s):m and /n(s,l)dc(s):n.

By the continuous dependence of 7 (s, k) on k there exists k* € (0,1) such that
n(s) :=n(s, k™) satisfies

b
/ n(s)d (s) = b

b
Note that n(s) > 0 for s € [a,b) and / a(s)n(s)d¢ (s) = u and the definitions

a
of mandngives0 <m<1l<n. O

The next Lemma is a generalized Arithmetic-Geometric mean inequality
established in [34].

Lemma 2.2. Let u € C'[a,b) and n € L¢ (a,b) satisfyingu >0, n >0 on

b
[a, b) and/ n(s)d¢(s) =1. Then

/ab77 (s)u(s)d( (s) > exp (/abn (s)In [u(s)] do (S)> 7

where we use the convention that In0) = —oo and e *° = 0.

3. Oscillation Criteria for (1.1) with g(t, s) = t. In this section,
we establish oscillation criteria for equation (1.1) with g(¢,s) = ¢, namely,

(31)  (r(O)dy (/1)) + pt)ds (@ (1) + a0 (1) b5 (x(8))
b
4 / 0 (t,5) bas) (2()) dC (5) = e(t).

The first result provides an oscillation criterion of the El-Sayed-type.
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Theorem 3.1. Suppose that for any T > 0 and for i = 1,2, there exist
constants a; and b; with T < a; < b; such that, fori=1,2

(3.2) qo(t) >0 fort € |a;, by,

(3.3) q(t,s) >0, for (t,s) € [a;b;] X [a,b),
and

(3.4) (=1)'e(t) >0, fort € |a;,bi].

Assume further that for i = 1,2, there exist u; € C'[a;, b;] satisfying u; (a;) =
u; (b)) =0, u; (t) 0 on [a;,b;] and a continuous positive function p(t) such that

(3.5)
su " w; w1 _pOrt) Ul W +1
g [ |@@mr - LUy + 1P i
> 0,
where
_r@®  pl)
29 PO="0 "y
and
(3.7) Q(t) := 3p(t) (qo(£) ™= () P,
with
5= (B — p)(B —~) 0B B=) (y — )=/ (B=p),
and

i) = [%] e ( / " (s)n [%} a (s)) |

with n (s) is defined as in Lemma 2.1 based on §. Here we use the convention that
In0=—o00,e®=0,and 0" =1 and (1—6)"°=1for 6 =1. Then Eq. (3.1)
1s oscillatory.

Proof. Assume Eq. (1.1) has an extendible solution z(¢) which is even-

tually positive or negative. Then, without loss of generality, assume z (t) > 0 for
all t > T > 0, where T depends on the solution z (). When z (t) is eventually
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negative, the proof follows the same way except that the interval [ag, bs], instead
of a1, b1], is used. Define

)y (@ (1)
(3.8) z(t) == p(t) PE) t>T
Then
, (r(0)6, (1) ()05 (@) (6 @) . r(B)d (@)
=0 ”(t)[ NE0) D) A 0
06 @) 0oy @)1 (D] . ()6 (@ (1)
(3.9) ‘p(”[ & @) o (2(0)) x(t)]*”(” o (2(0)

It follows from (1.1), (3.6) and (3.8) that for ¢ > T,
b
2 (t)=—p(t)qo () 2?77 (t) — p(t) / q(t,s) [z (1)) 77 d¢ (s) + p (t) e(t)a™ (L)

LH
vlz@)
T
(p(t)r(t)
From the assumption, there exists a nontrivial interval [a1,b;] C [T, 00) such that
(3.3) and (3.4) hold with i = 1.

(I) We first consider the case where the supremum in (3.5) is assumed at
d =1. From (3.4) and (3.10), we have that for ¢ € [a1, b1]

(3.10) +P (t)z(t) —

(3.11)
b
()< —p(t)qo () z” 7 (t) — p(t) a7 (t)/ q(t,s) [z (1) dC (s)
P
Pt - 2O
(p(t)r(t)~

Let n € L¢ (a,b) be defined as in Lemma 2.1 with § = 1. Then n satisfies (2.1)
with 0 = 1. This implies that

b
/n(S)[a(S)—MJdC:O-

Then, from Lemma 2.2, we get, for t € [aq, b1]
b
/ g (t,5) [z (0] dc (s)
b
= [ 20E:5) 1 e g (s)
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- (/abms)ln(%[xu]“) ") s (s)

= o ([Toem [ ) +me @) [ 06w - )
t

~ on( " ()In D ac9) = a.

This together with (3.11) shows that

Y

(312) 2/ (1) < —p (1) a0 ()27 (1) — p (B) d0)" (1) + Pla)=(t) — L
Define
X = 1/(5 7)1. and Y = (’Y w/(B=)

and using the inequality in [11, Lemma 2.1]
X7 4y X#r > 5y B-0/B-0) forall B> > p > 0,

where

§.— (B—p) (B — ,y)(’yfﬁ)/(ﬁfu) (v — M)(u*’v)/(ﬁfu)v
we have
(3.13) Gor? 7 + Gz > 3q(ﬁ—7)/(5—u)q(()’Y*u)/(ﬂfu)_

Substituting (3.13) into (3.12) and using the definition of @), we obtain

1
o
(3.14) J () < —Q(t) + P(t)z (1) — % for t € [ar,b1],
(p () r(t))
where @ (t) is defined by (3.7) with 6 = 1. Multiplying both sides of (3.14) by
|ug (t)]wrl, integrating from aq to by, and using integration by parts, we find that

QW) (O at

by
< [ { (D (0)u (02 () + o (O P(0)200)
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by
< / { ur ()7 [(y +1) [y ()] + [ (D] [P )] |2 (1)]

(3.15) —M 2] }dt.
(p (@) r(t))~
Let A —% Define A and B by
A)\ — ’}/|U1( )|’Y+11 ’Z( ’/\7
(p(t)r(t))~
and

gt OO gy )] ()] 1PO)]

v+1
Using the inequality in [13] we have
(3.16) MBM - AM < (A -1)BY,
ie.,
o (OF [+ 1) o 0] + o 0112 1= 0] — LT
(p(t)r(t)~

= (j (j)f)(ﬁl [(v+ 1) [ )] + e () [PON

which together with (3.15) implies that

b by r 1
Q) |lu (t)wldts/ (jf)l)(jll (v + 1) |uh (®)] + Jua ()] [P@)]" dt.

This leads to a contradiction to (3.5).

(IT) Now, we consider the case where the supremum in (3.5) is assumed
at 0 € (m,1). Then from (3.4), we see that, for t € [a1, b1],

() = —p(t)qo(t)a” 7 (¢)
b
—p () 2" (t) (/ q(t,s) [z ()" "dC¢ (s) — p () \e(t)\x“(t))
(3.17) +P(8)2(t) — W(t)’ i
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Let 77(s) :== 0~ '1(s). Then, from (2.1), we have

a1 [A@ace=1 ma [76bae =0
Hence, for t € [a1, by

/ a(9) o (0 (5) + )] ()
g1y = [ i(6) (7 (90 (19 o (01 + et a(0)) dC 5).
Using the Arithmetic-geometric mean inequality, see [2, Page 17],

ch +dk > "d*, where ¢,d >0, h,k>0and h +k = 1,

with

1

- a(s)—p _
c=n"" () (t,9) [z (), d= 0

le(t)|z #(t), h=0 and k =1 — ¢,

we have that for ¢ € [a1,b1] and s € [a, b)
7 () 1,9) [ (01O 4 (1 0) 1

> [ L] T g,

Substituting this into (3.19) and using Lemma 2.2 and (3.18), we see that,for
te [al, bl] ,

b
[ ats) e @O dc (5) + le(®)] a7 1)

[ 7o ( b 5 = i <t>r§“<s>ﬂ> & <s>)
4]

1-6
q( »S)} L n [%} + [6ax (s) — p] 1111‘@) dg (3)>

Vv
@

"

o]
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It follows from (3.17) and (3.20), that we get, for t € [a1, b1],

) < —pt)qo )PV () — p () ()" () + P(t)z(t) — 2@

(3:21) (323) —Q(t) + P(t)2(t) — M
(p(t)r(t)>

where @ is defined by (3.7) with § € (m,1). The rest of the proof is similar to
Part (I) and hence is omitted. O

Example 3.1. Consider the second order differential equation
(3.22)  ((2+ cos4t) (l’l(t))2)/ —sint (2/(t))? + cost (z(t))?
+ /01 cost ¢ss(x(t))ds = —e cos 2t.
Here we have
(i) a(s)=5s, £(s)=s,v=2,=3, pu=1a=0and b=1,

(ii) r(t) = 2 4 cosdt, p(t) = —sint, qo(t) = q(t,s) = cots, and e(t) =
—e! cos 2t.

Note that

For any 0 € <ln V5, 1} , we set

2—5s
555—17

n@%=56_1

then (2.1) is satisfied. For any T € R, we choose n € N so large that 2nm > T
and let

T T
ay = 2nm, a2:b1:2n7r+z, b2:2n7r+§.

Let p (t) = 2 + cos4t, and for i = 1,2 let u; (t) = sin4¢.Then
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/Z (M (v 4 1) |uf (8)| + |ui (1) ‘P(t)”’YJrl) i@t
0

v+ 1)’Y+1

™

1 3
= 4/4 (2 + cos 4t)% cos® dtdt = PE
0

Therefore, it is easy to see that (3.5) is satisfied and hence Eq. (3.22) is oscillatory
if

us

1 3
sup /4 2(2 + cos 4t)y/cost §(t)sin® 4tdt > 2™
0

5€(ln \4/5,1]

0= [ e (Lo 35 )

Following Philos [27|, Kong [22], and Kong [23], we say that for any a,b €
R such that a < b, a function H; (t,s), ¢ = 1,2, belongs to a function class H(a, b),
denoted by H; € H(a,b), if H; € C (D,R), where D := {(t,s):b>t>s>a},
which satisfies

where

(3.23) H;(t,t)=0, H;(b,s)>0 and H;(s,a) >0 forb>s>a,

[a,b] X [a,b] such that for i = 1,2,

(3.24) 8HZT(Z’S) + P (s)H;(t,s) = (y+ 1) hi1 (¢, 9) HA (t,s)
and
(3.25) 8H%7(St,s) + P (s)H;(t,s) = (y+1) hia (t,s) H+1 (t,s),

where h;1, hia € Lo (D,R). Next, we use the function class H(a,b) to establish
an oscillation criterion for Eq. (1.1) of the Kong-type.

Theorem 3.2. Suppose that for any T > 0 and for i = 1,2, there exist
constants a; and b; with T < a; < b; such that (3.3) and (3.4) hold. Assume fur-
ther that for i = 1,2, there exist ¢; € (a;,b;) and H; € H(a;,b;) and a continuous
positive function p(t) such that

sup {m /C:l [Q (s) H; (s,ai) — p(s)r(s)|hi (s,ai)ﬂﬂ] ds

6e(m,1]
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1

b;
(3.26) +m /cz {Q (s) H; (bi, s) — p(s)r(s) |hiz (b, 5)|’Y+1} ds} > 0,

where P (t) and Q (t) are defined by (3.6) and (3.7), respectively. Then Eq. (3.1)
is oscillatory.

Proof. Assume Eq. (3.1) has an extendible solution z(¢) which is even-
tually positive or negative. Then, without loss of generality, assume z (t) > 0 for
all t > T > 0, where T depends on the solution z (t). Define z(t) by (3.8). From
(3.14) and (3.21), we get that

1

ol
(o (1) (1)

Multiplying both sides of (3.27), with ¢ replaced by s, by H; (b1, s) and integrating
with respect to s from ¢; to b1, we find that

(3.27) 2 () < =Q(t) + P(t)z(1)

by
Q (s) Hy (b1, s)ds

C1

b1 b1
< —/ z’(s)Hl(bl,s)ds+/ P (s)z(s)Hy (b1,s)ds

c1 C1

— /bl MHl (bl,s) ds.
a (p(t)r(t)”

Using integration by parts and from (3.23) and (3.25), we obtain

by
Q (s) Hy (b1, s) ds

C1

by o
z(c1) Hy (b1, c1) +/ [(”y—&— 1) hig (b1, s) H{* (by,8) 2 (s)

C1

IN

_ywm#ﬂ¢wm%
(0 (5) ()7

b1 e
< Z(Cl)Hl(thl)Jr/ {(7+1)!h12(5178)|ﬂf+1 (b1,8) [z (s) |

C1
LJ'_]‘
A 9,

(3.28) X
(p(s)r(s))~




68 E. El-Shobaky, E. M. Elabbasy, T. S. Hassan, B. A. Glalah

1
Let A = % Define A and B by

L |2 (s)]* Hy (b, )
= 1
(p(s)r(s))™

Then, using the inequality (3.16), we get that

and B := (yp(s) r(s)) 7 [hua (b, 5)]

(7 + 1) [ (b1, )| HT' (b, )| (5)]
2 ()T Hy(b,s)

1
(p(s)r(s))
This together with (3.28) shows that

1
Hy (by,c1)

< p(8)7(s) |z (br, 5)" "

by
/ {Q (s) Hy (b1,8) — p(s)7(s)[h12 (bl»s)wl} ds < z(c1).

C1

(3.29)

Similarly, multiplying both sides of (3.27), with ¢ replaced by s, by H; (s,a;) and
integrating by parts from a; to c¢1, we see that

(3.30)
1

Hiy (c1,a1)
Combining (3.29) and (3.30) we get that

[ (@) i (s.a0) = () I (5,007 ds < =2 ).

al

m/q [Q (s) Hy (s,a1) — p(s)r(s)h];" (5,a1)} s
b1
+ﬁ/ Q) Hi (b1,5) = p(s) r()T5 (b1, 5)| ds < 0.

This contradicts (3.26) with ¢ = 1. This completes the proof. O

4. Oscillation Criteria for (1.1) with g(t, s) # t. In this section
we prove oscillation criteria for Eq. (1.1) with both cases of delay and advanced
types. In the follwoing, we will use the notations:

g« (t) = inf {t,g(t,s)} and g (t) = sup {t,g(t,s)};
s€lab) sclab)

9i (t,s), g(t,s) <t,
v (t,s) :=
Gi(t,s), g(t,s) >t
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with
_R(g(ts),g(ais))
51' (t,S) = R(t,g(ai7s))
and
G (t, 8) — R(g(bi,s),9(t,s))

R(g (biys)7t) 7

Rt 1) = /t 73 (u) du, #(t)

=r ex p(v) v| and §(t,s) := s s)]ee)
=) [oxp [ 20| and 4(0.5) = 0.5) o ()"

3

Theorem 4.1. Suppose that for any T > 0 and for i = 1,2, there exist
constants a;, b; € [T, 00) with a; < b;, such that

(4.1) qo(t) >0 fort € (g« (a;),g" (bi)],

(4.2) q(t,s) =0 for (t,s) € [g« (ai),g" (bi)] x [a,]),
and

(4.3) (1)’ e(t) >0, fort € [gs (a;), 9" (bi)].

Assume further that for i = 1,2, there exist u; € C[as,b;] satisfying u; (a;) =
u; (b)) =0, u; (t) 0 on [a;,b;] and a continuous positive function p(t) such that

bi [ .
sup / [Q(t)\ui(t)pﬂ _ M[(,y D) ()] + Jur (B)] | P[] | de>o,

de(m,1] Jay (7 + 1)’7+1

where P (t) is defined by (3.6) and

(4.4) Q(t) := dp(t) (qo(t)) W/ B=1) (g(4))B=1/B=n)
with

6= (8—p)(B—~) OB (y — )=/ (=)

i) = [ ey ([ om |22 a0

and
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with 1 (s) is defined as in Lemma 2.1 based on §. Here we use the convention that
In0=—o00, e =0, and 0" =1 and (1 —6)""° =1 for 6 = 1. Then Eq. (1.1)
is oscillatory.

Proof. Assume Eq. (1.1) has an extendible solution z(¢) which is even-
tually positive or negative. Then, without loss of generality, we may assume x (t) ,
x(g(t,s)) > 0, for t € [T,00) and s € [a,b]. Define z(¢) by (3.8). From (1.1) and
(3.9), we have for t > T,

() = —pWao ()" (1)

b -~ s a(s)
—p(t) / q(t,s) % d¢ (s) + p (1) e(t)z~7 (t)

(4.5) P )z - LT
(p(t)r(1))

From the assumption, there exist constants a; and b; with a; < b; and
[9x (a1) ,g" (b1)] C [to,00) such that (4.1), (4.2) and (4.3) hold with ¢ = 1. From
(1.1), we get, for ¢ € [g. (a1) ,g* (b))

(F(t)e (2
=[ow [ 22a) (0, @) + [exw [ 2] mitrs, 510
&

0

2=

%

+

)
t v b
— e [ 200 a0 005 0l0) [ (8:5) e oot 9)) 6 (5) 40

o’

Then 7(t)¢ (2'(t)) is nonincreasing on [g. (a1),g" (b1)]. Now we consider the
following two cases:

Case (a): Delay type, ie. g(t,s) < t, for t € [a,b] and s € [a,b]. Since
7(t)¢ (2'(t)) is nonincreasing on [gy (a1),g* (b1)]. Then

z(t) —x(g(ts)) =/ 65 (7(w) sy (2 ()7 ()
g

(t:5)
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where ¢, ' is the inverse function of ¢~, and so
—1 1= / t,
(46) z (1) o5 [Foy(a") (9 (2, 5))]

z(g(ts) ~ (g (t:))
We also see that for ¢ € [a1,g" (b1)]

R(t,g(t,s)) -

g(t,s) 1
p(o(ts) > wlglto) —olglas) = [ 67 0o @) (0)du

> @ﬂvm@v@m@ﬂ/' Y () du
= ¢ [Foy () (9 (t,5)] R(g(t,s), g (ar,s)),
g*

which implies that for ¢ € (a1, g" (b1)]
¢5 ' [Fpy(a') (g (8, 5))]) 1
o PG R0, g )
Therefore, the combination of (4.6) and (4.7) shows that for t € (a1, g* (b1)]
vy, Rg®s) __ Rlg@s) _ 1

z (g (ts)) R(g(t,s),g(a1,s))  R(g(ts),g(ar,s)) O1(ts)
Hence
(4.8) z(g(t,s)) > 01 (t,s)x(t), fortée lar,g*(b1)].

Case (b): advanced type, i.e. g(t,s) > t, for t € [a,b] and s € [a,b]. Since
7(t)¢y (2'(¢)) is nonincreasing on [g. (a1),g" (b1)], we have, for ¢ € [g. (a1) , bi]

g(t,s)
x(g(t,s) —x(t) = /t ¢ (F(w)dn (2" ()7 (u) du

(t,8) 1
> @FV%@U@@@H/Q 7 (u) du

= &' [Fo,(a") (g9 (t,5)] R(g(ts).1),

and so

) S
WO E ST T Gy e

Also, we see that, for t € [g. (a1),b1]

g(bl,s) 1
(g (t5) < x<g<b1,3>>—-x(g(t,s>>::t/“ O (7 () (' (u)))F 7 () s

g(t,s)
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(br,s)
< o o) o)) [ ) du

g(t,s)

= &5 [Foy () (9 (t,5))] R(g(bi,s),9(t,s)),
which implies for ¢ € [g. (a1),b1), that

05! [Py (a') (g (¢, 9))] 1
(410 T age) | RGOne).90e)
Thus, (4.9) and (4.10) imply, for ¢ € [g« (a1),b1)
x(t) <1-— R(g(tvs)vt) _ R(g(blvs)vt) _ 1
1:(9 (t,S)) R(g (blys)vg(t75)) R(g (blys)vg(t75)) Cl (t75)‘
Hence
(4.11) z(g(t,s)) > (i (t,s)x(t), forté€ [gs(ar),b].

From (4.8) and (4.11), we get
x(g(t,s)) > 1 (t,s)x(t), fort € [a,b] and s € [a,b).

Then (4.5) becomes, for two caes (a) and (b),

b
J(t) < —p(t)ao ()27 (1) — p (1) / Q(t8) [z (17D dC (s) + p (1) e(t)z (1)

v+l

vz (@)
(p () r(t))~

where G (t,s) = q(t,s) [t (¢, 5)]*® . The rest of the proof is similar to that of
Theorem 3.1 after (3.11) and hence is omitted. O

+P(t)z(t) —

)

Theorem 4.2. Suppose that for any T > 0 and for i = 1,2, there
exist constants a; and b; with T' < a; < b; such that (4.1), (4.2) and (4.3) hold.
Assume further that for i = 1,2, there exist ¢; € (a;,b;) and H; € H(a;,b;) and a
continuous positive function p(t) such that

sup {m /ac [Q (s) H; (s,a;) — p(s)r(s) |hi1 (Sjai)’%i—l] ds

6€(m,1]

+m /cb’ [Q (s) H; (bi,s) — p(s) r(s) |hi2 (bi,S)’7+1] ds} >0,
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where P (t) and Q (t) are defined by (3.6) and (4.4), respectively. Then Eq. (3.1)
1s oscillatory.
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