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ABSTRACT. Here we present the most general fractional representation for-
mulae for a function in terms of the most general fractional integral operators
due to S. Kalla, [3], [4], [5]. The last include most of the well-known frac-
tional integrals such as of Riemann-Liouville, Erdélyi-Kober and Saigo, etc.
Based on these we derive very general fractional Ostrowski type inequalities.

1. Introduction. Let f : [a,b] — R be differentiable on [a,b], and
f' : [a,b] — R be integrable on [a,b], then the following Montgomery identity
holds [10]:

b b
(1) f@) =5 [ Fwdes [ P @,
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where P; (z,t) is the Peano kernel

t—a
, a<t<ux,

b—a

@ A@n=4 )
, T<t<b,

b—a

The Riemann-Liouville integral operator of order « > 0 with anchor point a € R
is defined by

®) @)= g [ @0 @

(4) Jof (@)= f(z), x¢€lab].

Properties of the above operator can be found in [9)].

When o = 1, J! reduces to the classical integral.

In [1] we proved the following fractional representation formula of Mont-
gomery identity type.

Theorem 1. Let f : [a,b] — R be differentiable on [a,b], and f': [a,b] —
R be integrable on [a,b], « > 1, x € [a,b). Then

(5) flz)=(b—2)""T(a) {%(ab)

—ﬁ*@mwwwwdﬂau@f@ﬁ.

When o =1 the last (5) reduces to classic Montgomery identity (1).

Motivated by (5), here we establish a very general fractional representa-
tion formula based on the most general fractional integral due to S. Kalla, [3],
[4], [5]. The last integral includes almost all other fractional integrals as special
cases. We then establish a very general fractional Ostrowski type inequality.
We finish with applications.

2. Main results. Here let f: R, — R differentiable with f/: R, — R
be integrable. Let also ® : [0,1] — R4 a general kernel function, which is
differentiable with ®" : [0,1] — Ry being integrable too. For z in (0,1) we
assume ® (z) > 0.
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Let here the parameters v, § be such that v > —1 and § € R. Set ¢ :=
0—vy—1,thatisd =e+~v+ 1.

The most general fractional integral operator was defined by S. Kalla ([3],
[4], [5]), see also [7], as follows:

1
(6) I7°F (x) = x6/ ® (0) 0" f (zo) do,
0
for any z > 0, with I%’af (0) :=0.

Here we consider b > 0 fixed, and 0 < z < b. We operate on [0, ].
By convenient change of variable we can rewrite I%’a f (z) as follows:

(7) ID°f (z) == af /Orc o} <%) w” f (w) dw.
That is
(8) IEf (z) = Ig’df (x), for any z > 0.

We take v > 0 from now on.
We present the following most general fractional representation formula.

Theorem 2. All as above described. Then

P =0 (0 () S 0+ (P ) £ 0)

(9) PR (P (b)) + 137 (P (2,D) S <b>>] -

Proof. We observe that

b w
(10) 137 (P (x.b) ' (B) :bg/0 @ () WPy (w,w) f (w)dw =

| o (5) e )dw+/:<1>(%)wv (“52) £ twyu] =

Bl [/0 q) 7+1f (w )dw+/ ¢<%> (W = bw?) f’(w)dw}
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[ J: lﬁ—i-lf /f q) w7+1

<1><— :ﬂ“ ba) f /f <I> ﬂ ’Y“—buﬂ))}—

(12)

o [ @)m_/;f( b () e (§) o] an-
/: f(w) [%@’ ( ; Wt — b)) + <3> (v+Dw” - bryuﬂ—l)] dw} _
bt [bx'Y(IJ % — _/ f(w q)/ uﬂ“dw—

4 [Crwe (4 wvmu—lé f<w>[g¢’-g (w7 — bu) +

@‘

(13) & (%) (Y + 1w — bfyuﬂ—l)} dw + /x £ (w) [%@’ (%) (@ = buw) +

0

o <%) (v+Dw? - b*yuﬂ_l)} dw} =
bt [bgﬂ@ (%)f(m)—%/obf( )@’(b)uﬂ“dw+/ f () @' (T) wdw-

(v+1 /f uﬂdw—i—b’y/ f(w T;J)wW_ldw—

w s (§)wdn-v [ 1w fﬁﬂwﬂ:w.

We notice that

——/f <1>’ uﬂ“dw——[/f @’(b)bwmw
(15) /f o' ( wvdw+/ flw (I)/(b>wﬁydw}:
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/ f(w <I>’ P1 (z,w) wldw — / f(w (I>’<b>w7dw

/ f(w CIJ’ w7dw

Furthermore we have

— / f (w uﬂdw——v[ / f (w Lt du+

b
(16) / fw e (¥ W=b) - 1dw+b/ f(w Z)uﬂ_ldw} -
—bv/ f(w P1 (z,w) w tdw — bv/ f(w (Z)w’yfldw
—&-b*y/ f(w w7 Ldw.
Putting together (10), (14 ), (16) we obtain

3" (Pr(2,b) f' (b)) = () =

(17) [b:ﬂ@ / f(w <I>/ P1 (z,w) wdw—

[0 () o= [ 1018 (2) P acwy -] -

b [byﬂ@ (%) f(z) - bl—glg’f (Py (x,b) f (b))

(18) RO = WL (R ) S )] -

a0 (T) () = 315 (P (,0) £ (0) = S I35F (6) = 713 (Py (2,0) 1 (0)).
That is z
13 (Pu(a,b) ' (0) = b2 () £ (@) =
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1
b

Solving the last (19) for f (z) we get

(19) I (P b) £ (8) — I35 (0) =13 (Pr (2,) £ (1)

P =va (2 (5) GRS R P o)+

1

(20) ,

)7 (P (z,b) f (b)) + 137 (P (z,b) f (b))} ,

proving the claim. O
Next we establish a very general fractional Ostrowski type inequality.

Theorem 3. Here all as in Theorem 2. Then

f - (o (D)) [t o

_ 1
I (P 0) £ ) + 313 (P ) £ 0) | <
(21)
o T -1 , (21.7+2_bv+2) b(b7+1_x’y+1)
17 (0 (5)) " 10 W [ Bt L.
Proof. We observe that
(22) 137 (P (2,0) £ )| = 137 (P () £/ (1) =
b b
b / @ () wPi (o) £ (w) du| < b° / @ () w 1Py (@, w)| | (w)]dw <
0 0
b
(23) b (@] 10,15 Hf/\|oo7[07b]/0 w | Py (z,w)|dw =
10 o [N o (2 [ 0w+ 2 [ w7 b= w) dw] =
00,[0,1] 00,[0,8] | p 0 b .
c—1 / 22742 b Y+l oyl b+
@) B | o | g g O - = T
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That is we derived
137 (P (2,6) ' )| <

(2x7+2 _ bv+2) b (b7+1 _ x’erl)

+
v+2 v+1

(25) TR o oy 11 oo o [

The claim is proved. O

3. Applications. We mention

Definition 4. Let o > 0, 8,1 € R, then the Saigo fractional integral
Ig‘”f’n of order « for f € C (Ry) is defined by ([12], see also [6, p. 19], [11]):

t—o—B

@) BP0 = [0 ok (0 kbt = D) F )

where the function oFy in (26) is the Gaussian hypergeometric function defined
by

[e.o]

(27) 2F1 CL b C; t Z

n=0 n

and (a),, is the Pochhammer symbol (a),, = a(a+1)...(a+n—1), (a), = 1;
where ¢ £ 0,—1,-2,... .

’VL

Note 5. Given that a+b < ¢, oF} converges on [—1,1], see [2].
Furthermore we have

d oFy (a,bycit) (ab

(28) o —) o1 (a+1,b+1;¢+ 15t),

c

which converges on [—1,1] when 1 +a+b < c. So when 1 +a+b < ¢, then
both (27) and (28) converge on [—1,1]. Therefore when n > 1+ [ we get that
both o F1 <a + 3, —n;a;1 — %) and its derivative with respect to T : (M)

ta
o F <a+ﬂ+ 1,—n+La+1;1— %), converge on [0, 1]; notice here 0 < 1—% <
1,¢>0.
Remark 6. The integral operator I ;55 "I includes both the Riemann-
Liouville and the Erdélyi-Kober fractional integral operators given by

(29) J@{f(x)}:f&;‘“"{f(w}:ﬁ /0 (t—m)° f(r)dr (a>0),
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and
(30)
« _ 70,0,m _ e ¢ a—1
I @)} =T, @)} = T (o) /O t—7)" " 7"f(r)dr (a>0,n€eR).
Remark 7. By a simple change of variable <w = %) we get
(31) Io"ﬁ’"{f(t)} = i/1 (1 —w)‘“1 Fi(a+ 8, —n;051 —w) f (tw) dw
0,t T (a) 0 2471 , =15 Q4 .
Similarly we find
a 1
(32) TS O = o [ (1= f ()
and
1
(33) PO} = g [ (=) e () do.

Remark 8 ([8]). The above Saigo fractional integral (26) and its special
cases of Riemann-Liouville and Erdélyi-Kober fractional integrals (29), (30), are
all examples of the S. Kalla ([5]) generalized fractional integral in the reduced
form

(34) Klf(x) =271 /Ow o (E) w f (w) dw = /01 ® (o) 0" f (z0) do,

X

where > 0, v > —1 and ® continuous arbitrary Kernel function.
Notice that (by (6) and (34))

(35) I°f (x) = 2 K3 f (x),

for any = > 0, where v > —1 and ¢ € R.
So for b > 0 we get

(36) I7°F () = K] f (b).

Next we restrict ourselves to v > 0. By Theorem 2 and (36) we obtain
the following general fractional representation formula
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Theorem 9. It holds

f (@) =710 (@ (%))*1 VLKL F (8) + 0 KT (P () £ (6) +
(37) VLK, (P (2,0) £ () + W KG (P (2,0) ' ()] -

We finish the following very general fractional Ostrowski type inequality,
a direct application of (21) and (36).

Theorem 10. All as in Theorem 3. Then

T

(39) rw) - (o (5)) o
WKL (P (,6) () + 07 KG (P () £ ()] <

-1, — AN (22772 —7*2) b (7 — a7t
b= a7 <(I> (5» ||‘I)”oo,[0,1] Hf/Hoo,[O,b] [ v+2 + v+1 '

Comment 11. One can apply (37) and (38) for the Riemann-Liouville
and Erdélyi-Kober fractional integrals, as well as many other fractional integrals.
To keep article short we omit this task.
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