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LIMIT OF THREE-POINT GREEN FUNCTIONS:

THE DEGENERATE CASE
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Abstract. We investigate the limits of the ideals of holomorphic functions
vanishing on three points in C

2 when all three points tend to the origin,
and what happens to the associated pluricomplex Green functions. This
is a continuation of the work of Magnusson, Rashkovskii, Sigurdsson and
Thomas, where those questions were settled in a generic case.

1. Introduction. Let Ω be a hyperconvex bounded domain in C
n

containing the origin 0 and let O(Ω) denote the space of holomorphic functions,
respectively PSH−(Ω) the space of nonpositive plurisubharmonic functions on Ω.
For every subset S of Ω we let I(S) denote the ideal of all holomorphic functions
vanishing on S. We consider ideals I such that their zero locus V (I) := {z ∈
Ω : f(z) = 0,∀f ∈ I} is a finite set. Since the domain is pseudoconvex, there are
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finitely many global generators ψj ∈ O(Ω) such that for any f ∈ I, there exists

hj ∈ O(Ω) such that f =
∑

j

hjψj , see e.g. [2, Theorem 7.2.9, p. 190].

Definition 1.1 [6]. Let I be an ideal of Ω, and ψj its generators. Then

GΩ
I (z) := sup

{
u(z) : u ∈ PSH−(Ω), u ≤ max

j
log |ψj | +O(1)

}
.

Note that the condition is meaningful only near a ∈ V (I). In the special
case when S is a finite set in Ω and I = I(S), we write GI(S) = GS . This case
reduces to Pluricomplex Green functions with logarithmic singularities, already
studied by many authors, e.g. Demailly [1], [8], Lelong [3], and Rashkovskii and
Sigurdsson [6].

Following the lead of [4], we want to study the limit of GSε
when Sε is a

set of points tending to the origin, and relate that to the limit of the ideals I(Sε)
(in a sense to be specified below, see [4] for more details).

Definition 1.2. Let I be an ideal such that its zero locus is a finite set.

Then I is called a complete intersection ideal if it admits a set of n generators,

where n is the dimension of the ambient space.

The main result of [4], Theorem 1.11, states:

Theorem 1.3. Let Iε = I(Sε), where Sε is a set of N points all tending

to 0 and assume that lim
ε→0

Iε = I. Then (GIε
) converges to GI locally uniformly

on Ω \ {0} if and only if I is a complete intersection ideal.

Furthermore, [4, Theorem 1.12, (i)] works out the limits of Green func-
tions when N = 3 and the dimension is 2.

We need a notion of convergence of ideals, inspired by Hausdorff conver-
gence. This is taken from [4].

Let Ω be a bounded pseudoconvex domain in C
n. Let E ⊂ C \ {0} such

that Ē ∋ 0 be the set of parameters along which we take limits. Convergence of
holomorphic functions is always understood uniformly on compacta.

Definition 1.4. If (Iε)ε∈E are ideals in O(Ω), we define

lim inf
E∋ε→0

Iε := {f ∈ O(Ω) : ∀ε ∈ E,∃fε ∈ Iε, lim
E∋ε→0

fε = f}.

Likewise lim sup
E∋ε→0

Iε is the vector space generated by

{f ∈O(Ω) : ∃E′ ⊂ E, 0 ∈ E′ and ∀ε ∈ E′, fε ∈ Iε : lim
E′∋ε→0

fε = f}.
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Note that a typical example of such an E′ is a sequence tending to 0.
We say that (Iε)ε∈E converges to I if lim inf

E∋ε→0
Iε = lim sup

E∋ε→0
Iε = I, and

write lim
E∋ε→0

Iε = I.

Of course lim inf
E∋ε→0

Iε ⊂ lim sup
E∋ε→0

Iε, and they are both ideals.

Let Sε := {aε
1, a

ε
2, a

ε
3}. For each pair of distinct indices, i, j, let [aε

i −a
ε
j ] =

vε
k ∈ CP

1 where {i, j, k} = {1, 2, 3}. The cases which are studied in [4] are those
where there exist i 6= j such that lim

E∋ε→0
vε
i and lim

E∋ε→0
vε
j exist and are distinct. In

those cases lim
E∋ε→0

I(Sε) = M
2
0 (the square of the maximal ideal at zero, i.e. the

set of functions vanishing at zero together with all their first derivatives), which
is not a complete intersection ideal.

The main goal of this note is to investigate the asymptotic behavior of
ideals and Green functions in the remaining (and most singular) case, when there
exists v ∈ C

2, with ‖v‖ = 1, such that

(1.1) lim
E∋ε→0

vε
i = [v] for 1 ≤ i ≤ 3.

We use the notation z · w̄ := z1w̄1 + z2w̄2 for z,w ∈ C
2, and ‖z‖2 := z · z̄.

The notions we study do not depend on the order of the points in Sε, nor
does (1.1). We may number the three points so that for each ε,

||aε
1 − aε

2|| ≥ ||aε
3 − aε

2|| ≥ ||aε
1 − aε

3||.

We perform a translation so that aε
1 = (0, 0). Since the distance from aε

1

to the origin tends to 0 by hypothesis, this does not change any of the limits we
are studying, and we shall make this assumption henceforth.

Let θ be the (acute) angle between the complex lines directed by aε
2 and

aε
3, i.e. θ := cos−1

(
|aε

2 · ā
ε
3|

‖aε
2‖‖a

ε
3‖

)
. Geometrically, this is the smallest possible angle

between the real lines directed by eit1aε
2 and eit2aε

3 for any real numbers t1, t2.

Theorem 1.5. With the above normalizations, lim
E∋ε→0

I(Sε) = M
2
0 if and

only if lim
E∋ε→0

‖aε
2‖

θ
= 0, or equivalently

(1.2) lim
E∋ε→0

‖aε
2‖

|det(
aε

2
‖aε

2‖
,

aε

3
‖aε

3‖
)|

= 0,

where the determinant is taken with respect to an orthonormal basis.
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Theorem 1.6. (1) Suppose that lim
E∋ε→0

vε
j = [e1] := [1 : 0], for 1 ≤ j ≤ 3,

and that lim
E∋ε→0

M(ε) = m ∈ C, where

(1.3) M(ε) :=
det(

aε

2
‖aε

2‖
,

aε

3
‖aε

3‖
)
(
e1 ·

āε

2
‖aε

2‖

)3

(
aε

3·ā
ε

2
‖aε

2‖
− ‖aε

2‖
)

(aε

3·ā
ε

2)
‖aε

3‖‖a
ε

2‖

,

then

(1.4) lim
E∋ε−→0

Iε =
〈
z2 −mz2

1 , z
3
1

〉
.

(2) Conversely, if (1.4) holds for some m ∈ C, then lim
E∋ε→0

vε
j = [e1] :=

[1 : 0], for 1 ≤ j ≤ 3 and (1.3) holds.

Of course the same result holds with any other unit vector instead of e1.
Note that, unlike the situation of Theorem 1.5, when the limit ideal is known, the
limits of the directions vε

j are determined. Notice also that when (1.2) is verified,
then |M(ε)| → ∞. This will be made clear after equation (2.7).

Using some of the results of [4] and [7], we now draw consequences about
the limits of the Green functions. The case not covered in [4, Theorem 1.12, (i)]
is when lim

E∋ε→0
vε
j = [e1] := [1 : 0], for 1 ≤ j ≤ 3, so we make that hypothesis.

Theorem 1.7. (1) If condition (1.2) is satisfied, then

lim
E∋ε→0

GIε
= max(2 log |z1|,

3

2
log |z2|) +O(1).

(2) If lim
E∋ε→0

M(ε) = m ∈ C, then

lim
E∋ε→0

GIε
= max(3 log |z1|, log |z2 −mz2

1 |) +O(1).

Notice that although in case (1) the limit ideal does not depend on the
common value of lim

E∋ε→0
vε
j , 1 ≤ j ≤ 3, the limit of the Green functions does.
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2. Proofs of Theorems 1.5 and 1.6.

2.1. Preliminary facts. Denote the Taylor expansion and Taylor poly-
nomial of a holomorphic function f by

f(z) = f(z1, z2) =
∞∑

j,k=0

ajkz
j
1z

k
2 ; Pm(f)(z) :=

∑

j,k
j+k6m

ajkz
j
1z

k
2 .

It follows from the Cauchy formula on the distinguished boundary of D
2

that

Lemma 2.1. Let m ∈ N
∗, U a bidisk centered at (0, 0), relatively compact

in D
2. There exists C = C(m,U) such that for any f ∈ O(D2) with sup

D2

||f || 6 1,

there exist holomorphic functions rj,k ∈ O(D2) satisfying : for j + k = m + 1,
sup
U

|rj,k| 6 C, 0 6 j 6 m+ 1 and for z = (z1, z2) ∈ U , then

f(z) = Pm(f)(z) +Rm+1(z) = Pm(f)(z) +
m+1∑

j=0

rj,m+1−j(z)z
j
1z

m+1−j
2 .

We also recall that given x, y ∈ C
2, we always have |det(x, y)|2 + |x · ȳ|2 =

‖x‖2‖y‖2, so with our notations
∣∣∣∣det(

aε
2

‖aε
2‖
,
aε

3

‖aε
3‖

)

∣∣∣∣ = sin θ,

and this proves the equivalence of (1.2) with lim
ε→0

‖aε
2‖

θ
= 0.

2.2. Proof of the sufficiency in Theorem 1.5. Under the hypothesis
(1.2), we will prove that lim sup

ε
Iε ⊂ M

2
0 ⊂ lim inf

ε
Iε.

Suppose that f ∈ lim sup
ε

Iε, then f =
N∑

i=1

fi, where for each i there exists

Ei ⊂ E such that 0 ∈ Ei and a family of holomorphic functions {f ε
i , ε ∈ Ei},

with f ε
i ∈ Iε, ε ∈ Ei, converging to fi uniformly on a fixed neighborhood U of

the origin. It will be enough to show that each fi ∈ M
2
0. We do this, dropping

the index i from the notation henceforth and write fi = f , Ei = E′.
Observe that all the Taylor coefficients of f ε will have to converge. Since

f ε(aε
1) = 0, aε

0,0 = 0 for any ε. Applying Lemma 2.1 for m = 1, if U ⋐ U ′
⋐ Ω,

f ε(z1, z2) = aε
1,0z1 + aε

0,1z2 +R2(z1, z2)
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with |R2(z1, z2)| ≤ C‖z‖2, where C only depends on U , U ′ and sup
U ′

|f ε|.

Applying this to z = aε
i , dividing by ‖aε

i‖ and writing ∇f ε(0) := (aε
1,0, a

ε
0,1),

we find
aε

i

‖aε
i ‖

· ∇f ε(0) = O(‖aε
i‖), i = 2, 3.

Write M for the 2 × 2 matrix with rows given by the coordinates of
aε

2

‖aε
2‖

and

aε
3

‖aε
3‖

. Then ‖M‖ = O(1) and ‖M−1‖ = O

(
|det(

aε
2

‖aε
2‖
,
aε

3

‖aε
3‖

)|−1

)
. Since by our

choice of numbering, ‖aε
3‖ ≤ ‖aε

2‖, we have

∇f ε(0) = O(‖M−1‖‖aε
2‖),

so that if condition (1.2) is met, then lim
E′∋ε→0

∇f ε(0) = 0, thus f ∈ M
2
0. We have

proved that condition (1.2) implies that lim sup
ε

Iε ⊂ M
2
0.

To prove the inclusion M
2
0 ⊂ lim inf

ε
Iε, it will be easier to take suitable

coordinates. We choose a new (varying) basis Bε, with eε1 :=
aε

2

‖aε
2‖

, and eε2 = ẽε1,

where for any z = (z1, z2) we write z̃ := (−z̄2, z̄1). Let

(2.1) zε
1 = z · ēε1, z

ε
2 = z · ēε2

be the coordinates of a point z in this new basis. Note that x · ¯̃y = − det(x, y).
In Bε,

(2.2) aε
2 = (ε′, 0), aε

3 = (ρ, δρ).

Then
aε

3 · ā
ε
2

‖aε
2‖‖a

ε
3‖

=
ρ

|ρ|(1 + |δ|2)1/2
,

so θ = tan−1 |δ| and (1.2) is now equivalent to lim
E∋ε→0

ε′

δ
= 0. Note that by our

numbering of the points,

(2.3) |ρ|(1 + |δ|2)1/2 ≤ |ε′|.

With those new coordinates, the following polynomials are in Iε:

Qε
1(z) = (zε

1)
2 − ε′zε

1 −
ρ− ε′

δ
zε
2 = (zε

1)
2 + o(1);

Qε
2(z) = zε

2

(
zε
1 − ρ

)
= zε

1z
ε
2 + o(1);

Qε
3(z) = zε

2

(
zε
2 − δρ

)
= (zε

2)
2 + o(1).
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Let αij := eεj · ēi, for 1 6 i, j 6 2, so that

z1 = α11z
ε
1 + α12z

ε
2,(2.4)

z2 = α21z
ε
1 + α22z

ε
2,(2.5)

or in compact notation z = Az(ε). If we let

f ε
1 (z) = α2

11Q
ε
1(z) + 2α11α12Q

ε
2(z) + α2

12Q
ε
3(z),

f ε
2 (z) =

(
α11α22 + α12α21

)
Qε

2(z) + α11α21Q
ε
1(z) + α12α22Q

ε
3(z),

f ε
3 (z) = α2

21Q
ε
1(z) + 2α21α22Q

ε
2(z) + α2

22Q
ε
3(z),

then
z2
1 = lim

ε−→ 0
f ε
1 (z) ∈ lim inf

ε−→ 0
Iε;

z1z2 = lim
ε−→ 0

f ε
2 (z) ∈ lim inf

ε−→ 0
Iε;

z2
2 = lim

ε−→ 0
f ε
3 (z) ∈ lim inf

ε−→ 0
Iε,

which proves that M
2
0 ⊂ lim inf

ε
Iε.

Thus (1.2) is sufficient for the claimed convergence.

2.3. Proof of Theorem 1.6, direct part. We use the notations from
(2.4) above. Recall that all the coefficients αij depend on ε. The hypoth-
esis lim

E∋ε→0
vε
j = [e1] implies lim

E∋ε→0
α12 = lim

E∋ε→0
α21 = 0, and lim

E∋ε→0
|α11| =

lim
E∋ε→0

|α22| = 1, but argα11 = − argα22 doesn’t have to converge.

According to (2.2),

(2.6) ρ =
aε

3 · ā
ε
2

‖aε
2‖

, δ =
1

ρ

det(aε
2, a

ε
3)

‖aε
2‖

=
det(aε

2, a
ε
3)

aε
3 · ā

ε
2

.

From (1.3) we find

(2.7) M(ε) =
δᾱ3

11

ρ− ε′
, thus m = lim

ε

δα22

(ρ− ε′)α2
11

,

and we see thatM(ε) doesn’t admit a finite limit when (1.2) holds, i.e. lim
E∋ε→0

ε′

δ
=

0.
We now prove that

〈
z2 −mz2

1 , z
3
1

〉
⊂ lim inf

E∋ε→0
Iε. Let

g1,ε(z) := (z · ēε1)((z − aε
2) · ē

ε
1)((z − aε

3) · ē
ε
1);
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then g1,ε ∈ Iε for any ε and z3
1 = lim

E∋ε→0
α3

11g1,ε(z), so z3
1 ∈ lim inf

E∋ε→0
Iε.

On the other hand, Iε contains

−α22δ

ρ− ε′
Qε

1(z) = α22z
ε
2 −

α22δ

ρ− ε′
(zε

1)
2 + o(1)

= z2 −
α22δ

(ρ− ε′)α2
11

z2
1 + o(1) = z2 −mz2

1 + o(1),

so z2 −mz2
1 ∈ lim inf

E∋ε→0
Iε.

To see that lim sup
E∋ε→0

Iε ⊂
〈
z2 −mz2

1 , z
3
1

〉
, we decompose any function f ∈

lim sup
E∋ε→0

Iε in the same way as at the beginning of the proof of Theorem 1.5, and

so we may work with an f = lim
E′∋ε→0

f ε, f ε ∈ Iε.

Given any function f expressed in the (z1, z2)-coordinates, we denote

f̂(z) = f(Az), so that f̂(z(ε)) = f(z). Therefore f ε ∈ Iε means that f̂ ε(0, 0) =

f̂ ε(ε′, 0) = f̂ ε(ρ, δρ) = 0.

We write
f̂ ε(zε

1, z
ε
2) =

∑

j,k

âε
ij(z

ε
1)

j(zε
2)

k

(both the function and the coordinates depend on ε).
Applying Lemma 2.1 for m = 2, taking aε

0,0 = 0 into account,

f̂ ε(z1, z2) = âε
1,0z1 + âε

0,1z2 + âε
2,0z

2
1 + âε

0,2z
2
2 + âε

1,1z1z2 +R3(z1, z2)

with |R3(z1, z2)| ≤ C‖z‖3, uniformly in ε ∈ E′ by the convergence hypothesis.

Since f̂ ε(ε′, 0) = 0 we have âε
1,0ε

′ + âε
2,0ε

′2 +R3(ε
′, 0) = 0. Thus

(2.8) âε
1,0 = −âε

2,0ε
′ −

R3(ε
′, 0)

ε′

for any ε ∈ E′.

Thus
∂f̂

∂z1
(0, 0) = lim

E′∋ε→0
âε

1,0ᾱ11 = 0.

Furthermore, from f̂ ε(ρ, δρ) = 0, and (2.8) we deduce

(2.9)

[
− âε

2,0ε
′ −

R3(ε
′, 0)

ε′

]
ρ+ âε

0,1δρ+ âε
2,0ρ

2 + âε
0,2δ

2ρ2

+ âε
1,1δρ

2 +R3(ρ, δρ) = 0,
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and dividing by ρ(ρ− ε′),

âε
2,0 + âε

0,1

δ

ρ− ε′
+ âε

0,2δ
2 ρ

ρ− ε′
+ âε

1,1

δ

ρ− ε′
ρ+

R3(ρ, δρ)

ρ(ρ− ε′)
−
R3(ε

′, 0)

ε(ρ− ε′)
= 0.

We observe that |ρ − ε′| ≍ ε′. From (2.3), we see that |ρ − ε′| ≤ 2ε′.
Conversely, by our choice of numbering, ‖a2‖

2 ≥ ‖a2 − a3‖
2 ≥ ‖a3‖

2, which is
equivalent to ‖a2‖

2 ≥ 2Re(a2 · ā3) ≥ ‖a3‖
2. Therefore

(2.10) |ρ− ε′| ≥ Re(ρ− ε′) = ‖aε
2‖ −

Re(aε
2 · ā

ε
3)

‖aε
2‖

≥
1

2
‖aε

2‖ =
ε′

2
,

q.e.d.

Since R3(ρ, δρ) = O(ρ3), we have lim
E∋ε→0

R3(ρ, δρ)

ρ(ρ− ε′)
= 0,

and âε
2,0 = −âε

0,1

δ

ρ− ε′
+ o(1).

Now f(z) = lim
E′∋ε→0

f̂ ε(z(ε)) and their Taylor coefficients converge as well,

so since

f̂ ε(z(ε)) = âε
0,1

(
ᾱ22z2 −

δ

ρ− ε′
ᾱ2

11z
2
1

)

+ âε
0,2ᾱ

2
22z

2
2 + âε

1,1ᾱ11ᾱ22z1z2 +R3(z
(ε)
1 , z

(ε)
2 ) + o(1),

and m = lim
E∋ε→0

δᾱ2
11

(ρ− ε′)ᾱ22
, the Taylor coefficients of f satisfy a1,0 = 0, a2,0 +

ma0,1 = 0, i.e. f ∈
〈
z2 −mz2

1 , z
3
1

〉
, q.e.d.

2.4. Proof of the necessity in Theorem 1.5. Suppose that (1.2)
doesn’t hold, so there exists E′ ⊂ E with 0 ∈ E′ \E such that

(2.11) inf
ε∈E′

‖aε
2‖

|det(
aε

2
‖aε

2‖
,

aε

3
‖aε

3‖
)|
> 0.

This implies that lim
E′∋ε→0

det(
aε

2

‖aε
2‖
,
aε

3

‖aε
3‖

) = 0. Passing to a subsequence (which

we omit in the notation), we may assume that lim
E′∋ε→0

[aε
2] exists in CP

1. We take

an orthonormal basis (e1, e2) such that lim
E′∋ε→0

[aε
2] = [e1]. Then lim

E′∋ε→0
vj = [e1]
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for j = 2, 3. To study [v1] = [aε
2 − aε

3], we recall that the coordinates of aε
3 − aε

2

are (ρ− ε′, δρ) in Bε (2.2). Then by (2.10) and (2.6)

∣∣∣∣
δρ

ρ− ε′

∣∣∣∣ � |δ| =
|det(aε

2, a
ε
3)|

‖aε
2‖

2‖aε
3‖

2 − |det(aε
2, a

ε
3)|

2
≍

∣∣∣∣det(
aε

2

‖aε
2‖
,
aε

3

‖aε
3‖

)

∣∣∣∣ ,

so lim
E′∋ε→0

v1 = [e1] as well: the first hypothesis of Theorem 1.6 is satisfied. To

check the second, observe that

|M(ε)| ≍

∣∣∣∣∣∣

det(
aε

2
‖aε

2‖
,

aε

3
‖aε

3‖
)

aε

3·ā
ε

2
‖aε

2‖
− ‖aε

2‖

∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣

det(
aε

2
‖aε

2‖
,

aε

3
‖aε

3‖
)

‖aε
2‖

∣∣∣∣∣∣

by (2.10). So by (2.11) M(ε) remains bounded along a subsequence. Passing to
a further subsequence E′′, we assume that it converges to m ∈ C. Applying the
direct part of Theorem 1.6, we have lim

E′′∋ε→0
Iε =

〈
z2 −mz2

1 , z
3
1

〉
6= M

2
0. So the

whole limit can’t be M
2
0 either.

2.5. Proof of Theorem 1.6, converse. The reasoning is analogous to
the one immediately preceding. By the sufficiency in Theorem 1.5, (1.2) does
not hold. The proof above shows that there is a subsequence along which all vj

converge, and to the same limit v.

Along this subsequence, M(ε) remains bounded, so there is a further sub-
sequence along which it converges to some m ∈ C, so the direct part of Theorem
1.6 shows that lim

E∋ε→0
Iε =

〈
ẑ2 −mẑ2

1 , ẑ
3
1

〉
, where ẑ1, ẑ2 are the coordinates in an

orthonormal basis ê1, ê2 so that [ê1] = v. But if v 6= [e1], then
〈
ẑ2 −mẑ2

1 , ẑ
3
1

〉
is

not the limit given by the hypothesis, a contradiction. In the same way, if the
quantity in (1.3) didn’t converge to m, it would converge to m′ 6= m along a
subsequence, the ideals would converge to

〈
z2 −m′z2

1 , z
3
1

〉
, which contradicts the

hypothesis.

3. Proof of Theorem 1.7. In case (2), the limit ideal is a complete
intersection ideal and we may apply Theorem 1.3.

In case (1), we refer to [7, Example 5.3]. Since the proof given there refers
to an earlier version of the present paper with some technical imperfections, we
write a slightly more careful proof here.

Given any p ∈ N
∗, define I(p) := lim

ε
Ip

ε , if it exists. Note that I(p) ⊃

(lim
ε

Iε)
p.



Limit of three-point Green functions 109

If I(p) is well defined for all p, [7, Theorem 1.1] shows that the limit G of
the Green functions GIε

exists and is obtained as the regularized upper envelope

of the scaled functions
1

p
GI(p)

, for p ∈ N
∗. Furthermore, its Monge-Ampère mass

at the origin is equal to N . If furthermore the Monge-Ampère mass at the origin

of
1

p
GI(p)

is equal to N for some finite p, then by [7, Theorem 4.10] G =
1

p
GI(p)

.

In our case, I(2) ⊃ (M2
0)

2 = M
4
0 ∋ z4

1 in particular. On the other hand,

(Iε)
2 ∋ −

δα3
22

ρ− ε′

(
Qε

1(z
(ε))Qε

3(z
(ε)) − (Qε

2(z
(ε)))2

)

= α3
22

(
(zε

2)
3 −

δρε′

ρ− ε′
zε
1z

ε
2 + δρ(

ρ

ρ− ε′
− 1)(zε

2)
2

+
δ2ρ

ρ− ε′
(zε

1)
2zε

2 +
δ(ε′ − 2ρ)

ρ− ε′
zε
1(z

ε
2)

2

)

= α3
22(z

ε
2)

3 + o(1) = z3
2 + o(1),

so z3
2 ∈ I(2).

This implies that

1

2
GI(2)

(z) ≥
1

2
max(log |z4

1 |, log |z
3
2 |) +O(1) = max

(
2 log |z1|,

3

2
log |z2|

)
+O(1).

Since the Monge-Ampère mass of this lower bound is 3, G(z) itself is of this form.
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