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Abstract. This paper will study the oscillatory behavior of third order
nonlinear difference equation with distributed deviating arguments of the
form

∆(a(n)∆ (b(n)∆ (x(n) + p(n)xτ (τ(n))))) +

m
∑

ξ=m0

q(n, ξ)f (x (g(n, ξ))) = 0,

where m0, m (> m0) be integers. We establish some new sufficient conditions
which insure that every solution of this equation either oscillates or converges
to zero. Our results improve and extend some known results in the literature.
Examples are given to illustrate the importance of the results.
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1. Introduction. By a Riccati transformation technique, we present
some new oscillation criteria for the nonlinear difference equation with distributed
deviating arguments of the form

(1.1) ∆ (a(n)∆ (b(n)∆ (x(n) + p(n)x(τ(n)))))

+

m
∑

ξ=m0

q(n, ξ)f(x(g(n, ξ))) = 0, n ≥ n0,

where n0 ∈ N is a fixed integer,∆ denotes the forward difference operator defined
by ∆x(n) = x(n+1)−x(n) and ∆ix(n) = ∆

(

∆i−1x(n)
)

. Throughout this paper,
we will assume the following hypotheses:

(A1) a(n), b(n) > 0 for n ∈ N(n0), where N(n0) = {n0, n0 + 1, . . .} .

(A2) {pn}
∞

n=n0
is positive, 0 ≤ pn ≤ p < 1 and τ : N → N satisfies n ≥ τ(n) and

lim
n→∞

τ(n) = ∞.

(A3) q(n, ξ) > 0 on N(n0) ×N(m0,m) and g : N(n0)× N(m0,m) → N satisfies
n ≥ g(n, ξ) for ξ ∈ N(m0,m) and lim

n→∞

min g(n, ξ) = ∞, where N(m0,m) =

{m0,m0 + 1, . . . ,m} and m > m0.

(A4) f ∈ C(R,R) such that xf(x) > 0 for all x 6= 0 and f is nondecreasing.

In addition, we will make use of the following conditions:

(S1) f(u)/u ≥ K > 0, K is a real constant, u > 0.

(S2) there exists a real valued function B such that f(u(n))−f(v(n)) = B(u(n),
v(n)) (u(n) + p(n)u(τ(n))) − (v(n) + p(n)v(τ(n))) for all u(n), v(n) 6= 0,
pn ≥ 0, n > τ(n) > 0 and B(u(n), v(n)) ≥ µ > 0 ∈ R.

By a solution of equation (1.1) we mean a nontrivial sequence x(n) defined
on N(n0), which satisfies equation (1.1) for all n ≥ n0. A solution x(n) of equation
(1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative and nonoscillatory otherwise. Equation (1.1) is called oscillatory if all
its solutions are oscillatory. In recent years, there has been an increasing interest
in the study of the problem of determining the oscillation and non-oscillation
of solutions of difference equations of the form (1.1) and its special cases. For
further results concerning the oscillatory and asymptotic behavior of third order
difference equation we refer to the books [1, 4, 8–10] and the papers [2, 3, 5–7,
11–19]. The main aim of this paper is to establish some sufficient conditions
which guarantee that the equation (1.1) has oscillatory solutions or the solutions
tend to zero as n → ∞. In this paper, the details of the proofs of results for
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nonoscillatory solutions will be carried out only for eventually positive solutions,
since the arguments are similar for eventually negative solutions. Our results
improve and expand some known results, for example, the results obtained by
Graef et al. [6], Schmeidel [19], Grace et al. [5], Selvaraj et al. [16, 18], Saker et
al. [14] and Thandapani et al. [13] and the references cited therein. See Section
4 below for details. The paper is organized as follows: In Section 2, we state and
prove some useful lemmas that will be used in the proofs of the main results. In
Section 3, we consider the oscillation of equation (1.1) subject to the conditions
(S1) or (S2) and (3.1) or (3.2) or (3.3) hold. In this section, we consider the delay
cases when n ≥ g(n, ξ) ≥ τ(n) ≥ G(n) and when n ≥ g(n, ξ) ≥ G(n) ≥ τ(n). In
Section 5, we provide some examples to illustrate the main results.

2. Some preliminary lemmas. In this section, we state and prove
some useful lemmas, which will be used in the proofs of the main results. We set
z(n) = x(n) + p(n)x(τ(n)).

Lemma 2.1. Let x(n) be an eventually positive solution of (1.1) and

suppose that z(n) satisfies

∆z(n) > 0, ∆(b(n)∆z(n)) > 0, ∆(a(n)∆(b(n)∆z(n))) ≤ 0, for all n ≥ n1.

Then there exists n2 ≥ n1 such that

(2.1) ∆z(n) ≥ b−1(n) (a(n)∆(b(n)∆z(n)))

n−1
∑

s=n2

a−1(s), for n ≥ n2.

P r o o f. Since ∆(a(n)∆(b(n)∆z(n))) ≤ 0, we have a(n)∆(b(n)∆z(n)) is
non-increasing. Then we obtain,

b(n)∆z(n) = b(n2)∆z(n2) +

n−1
∑

s=n2

a−1(s)a(s)∆ (b(s)∆z(s))

≥ a(n)∆(b(n)∆z(n))

n−1
∑

s=n2

a−1(s).

The proof is complete. �

Lemma 2.2. Assume that

∞
∑

n=n0

a−1(n) =

∞
∑

n=n0

b−1(n) = ∞.
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Let x(n) be an eventually positive solution of equation (1.1). Then for sufficiently

large n, there are only two possible cases:

(I): ∆z(n) > 0, ∆ (b(n)∆(z(n))) > 0, or

(II): ∆z(n) < 0, ∆ (b(n)∆(z(n))) > 0.

P r o o f. The proof can be found in [3, Lemma 2.2]. �

Lemma 2.3. Assume that (S1) holds. Let x(n) be an eventually positive

solution of equation (1.1) and suppose that (II) of Lemma 2.2 holds. If

(2.2)

∞
∑

v=n0



b−1(v)





v−1
∑

u=n0

a−1(u)





u−1
∑

s=n0

m
∑

ξ=m0

q(s, ξ)











 = ∞,

then x(n) → 0 as n → ∞.

P r o o f. Pick n1 ≥ n0 such that x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0,
for n ≥ n1. Since {x(n)} is a positive decreasing solution of equation (1.1). Then
lim

n→∞

x(n) = b ≥ 0. Now we claim that b = 0. If b > 0 then x(g(n, ξ)) ≥ b for

n ≥ n2 ≥ n1. Therefore from (S1) and (1.1), we have

∆ (a(n)∆(b(n)∆z(n))) + Kb

m
∑

ξ=m0

q(n, ξ) ≤ 0, n ≥ n2.

Define the sequence u(n) = a(n)∆ (b(n) (∆z(n))) for n ≥ n2. Then ∆u(n) ≤

−A

m
∑

ξ=m0

q(n, ξ), where A = Kb > 0. Summing the above inequality from n2 to

n − 1, we obtain

u(n) ≤ u(n2) − A
n−1
∑

s=n2

m
∑

ξ=m0

q(s, ξ).

From equation (2.2), it is possible to choose an integer n3 sufficiently large such
that

u(n) ≤ −
A

2

n−1
∑

s=n2

m
∑

ξ=m0

q(s, ξ),

for all n ≥ n3. Hence

∆(b(n)∆z(n)) ≤ −
A

2a(n)

n−1
∑

s=n2

m
∑

ξ=m0

q(s, ξ).
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Summing the above inequality from n3 to n − 1, we find

b(n)∆z(n) ≤ b (n3) z (n3) −
A

2





n−1
∑

u=n3

a−1(u)





u−1
∑

s=n2

m
∑

ξ=m0

q(s, ξ)







 .

Since ∆z(n) < 0 for n ≥ n0, the last inequality implies that

∆z(n) ≤ −
A

2b(n)





n−1
∑

u=n3

a−1(u)





u−1
∑

s=n2

m
∑

ξ=m0

q(s, ξ)







 .

Summing from n4 to n − 1, we find

z(n) ≤ z(n4) −
A

2

n−1
∑

l=n4

b−1 (l)





l−1
∑

u=n3

a−1(u)





u−1
∑

s=n2

m
∑

ξ=m0

q(s, ξ)







 .

Condition (2.2) implies that z(n) → −∞ as n → ∞ which is contradiction with
the fact that z(n) > 0. Then b = 0, i.e. lim

n→∞

z(n) = 0. Since 0 < x(n) ≤ z(n)

then lim
n→∞

x(n) = 0. The proof is complete. �

3. Main results. In this section, we establish some new oscillation
criteria for the equation (1.1) under the following conditions:

(3.1)

∞
∑

n=n0

a−1(n) = ∞,

∞
∑

n=n0

b−1(n) = ∞.

(3.2)
∞
∑

n=n0

a−1(n) < ∞,
∞
∑

n=n0

b−1(n) = ∞.

(3.3)

∞
∑

n=n0

a−1(n) < ∞,

∞
∑

n=n0

b−1(n) < ∞.

In the following results, we shall use the following notations:

Q(n, ξ) := min {q(n, ξ), q ((n, ξ) − τ)} ,
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ϕ(n) :=
ρ(n)

ρ2(n + 1)b(G(n))

G(n)−1
∑

s=n2

a−1(s), δ(n) :=

∞
∑

v=n

1

a(v)
,

Θ(n) :=
ρ(n)

ρ2(n + 1)b(τ(n))

τ(n)−1
∑

s=n2

a−1(s), ϑ(m,n) :=

(

∆ρ(n)

ρ(n + 1)
−

h(m,n)
√

H(m,n)

)

.

We assume that there exists a double sequence {H(m,n) | m ≥ n ≥ 0} and h(m,n)
such that

(i) H (m,m) = 0 for m ≥ 0,

(ii) H(m,n) > 0 for m > n > 0,

(iii) ∆2H(m,n) = H (m,n + 1) − H(m,n) ≤ 0 for m > n ≥ 0,

(iv) h(m,n) = −
∆2H(m,n)
√

H(m,n)
.

Next, we state and prove the main theorems.

First, we establish an oscillation criterion for (1.1) when n ≥ g(n, ξ) ≥
τ(n) ≥ G(n) and (S1) holds.

Theorem 3.1. Assume that (2.2) and (3.1) hold. Further, assume that

there exists a positive nondecreasing sequence {ρ(n)}, such that

(3.4) lim
n→∞

sup
n−1
∑

s=n0



ρ(s)K
m
∑

ξ=m0

Q(s, ξ) −
(1 + p)

4

(∆ρ(s))2

(ρ(s + 1))2ϕ(s)



 = ∞.

Then every solution of equation (1.1) either oscillates or tends to zero.

P r o o f. Assume that equation (1.1) has a non-oscillatory solution, say
x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0 for all n ≥ n0. From equation (1.1), we
see that z(n) > x(n) > 0, and

(3.5) ∆(a(n)∆(b(n)∆z(n))) = −

m
∑

ξ=m0

q(n, ξ)f(x(g(n, ξ))) ≤ 0.

Then, a(n)∆(b(n)∆z(n)) is non-increasing sequence and thus ∆z(n) and
∆(b(n)∆z(n)) are eventually of one sign. By Lemma 2.2, there exist two possible
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cases (I) and (II). Assume that (I) holds. From equation (1.1), (S1) and the
definition of z(n), we have

(3.6) [∆(a(n)∆(b(n)∆z(n))) + p (∆ (a(τ(n))∆ (b(τ(n))∆z(τ(n)))))]

+ K

m
∑

ξ=m0

Q(n, ξ)z(g(n, ξ)) ≤ 0.

Further, it is clear from (A3)

(3.7) g(n, ξ) ≥ min {g (n,m0) , g(n,m)} ≡ G(n), ξ ∈ N(m0,m).

Thus

(3.8) [∆(a(n)∆(b(n)∆z(n))) + p (∆ (a(τ(n))∆ (b(τ(n))∆z(τ(n)))))]

+ Kz(G(n))

m
∑

ξ=m0

Q(n, ξ) ≤ 0.

Define a Riccati substitution

(3.9) ω(n) := ρ(n)
a(n)∆(b(n)∆z(n))

z(G(n))
.

Then ω(n) > 0. From (3.9), we have

(3.10) ∆ω(n) = ∆ρ(n)
a(n + 1) (∆ (b(n + 1)∆z(n + 1)))

z(G(n + 1))

+ ρ(n)
∆ (a(n) (∆(b(n)∆z(n))))

z(G(n))

− ρ(n)
a(n + 1) (∆ (b(n + 1)∆z(n + 1))) ∆(z(G(n)))

z(G(n + 1))z(G(n))
.

From Lemma 2.1, ∆ (a(n) (∆(b(n)∆z(n)))) ≤ 0 and G(n) < n , we get

(3.11) ∆z(G(n))

≥ b−1(G(n)) (a(n + 1) (∆ (b(n + 1)∆z(n + 1))))

G(n)−1
∑

s=n2

a−1(s).
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From (3.9) and (3.11), we obtain

(3.12) ∆ω(n) ≤
∆ρ(n)

ρ(n + 1)
ω(n + 1)

+ ρ(n)
∆(a(n)∆(b(n)∆z(n)))

z(G(n))
− ϕ(n)ω2(n + 1).

Similarly, define another sequence v(n) by

(3.13) v(n) := ρ(n)
a(τ(n))∆ (b(τ(n))∆z(τ(n)))

z(G(n))
.

Then v(n) > 0. From (3.13), we have

(3.14) ∆v(n) =
∆ρ(n)

ρ(n + 1)
v(n + 1) + ρ(n)

∆ (a(τ(n))∆ (b(τ(n))∆z(τ(n))))

z(G(n))

− ρ(n)
a(τ(n + 1)) (∆ (b(τ(n + 1))∆z(τ(n + 1))))∆z(G(n))

z(G(n + 1))z(G(n))
.

From Lemma 2.1, and G(n) < τ(n) , we get

∆z(G(n))

≥ (a(τ(n + 1)) (∆ (b(τ(n + 1))∆z(τ(n + 1))))) b−1(G(n))

G(n)−1
∑

s=n2

a−1(s).

Then from (3.13) and (3.14) and the above inequality, we have

(3.15) ∆v(n) ≤ ρ(n)
∆ (a(τ(n))∆ (b(τ(n))∆z(τ(n))))

z(G(n))

+
∆ρ(n)

ρ(n + 1)
v(n + 1) − ϕ(n)v2(n + 1)

From (3.12) and (3.15), we obtain

∆ω(n) + p∆v(n)

≤ ρ(n)
∆ [(a(n)∆(b(n)∆z(n))) + p∆ (a(τ(n))∆ (b(τ(n))∆z(τ(n))))]

z(G(n))

+
∆ρ(n)

ρ(n + 1)
ω(n + 1) − ϕ(n)ω2(n + 1)

+ p

[

∆ρ(n)

ρ(n + 1)
v(n + 1) − ϕ(n)v2(n + 1)

]

.
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From (3.8), we have

(3.16) ∆ω(n) + p∆v(n)

≤ −ρ(n)K

m
∑

ξ=m0

Q(n, ξ) +
∆ρ(n)

ρ(n + 1)
ω(n + 1) − ϕ(n)ω2(n + 1)

+ p

[

∆ρ(n)

ρ(n + 1)
v(n + 1) − ϕ(n)v2(n + 1)

]

.

Using (3.16) and the inequality

(3.17) Bu − Au2 ≤
B2

4A
,A > 0,

we have

∆ω(n) + p∆v(n)

≤ −ρ(n)K
m
∑

ξ=m0

Q(n, ξ) +
1

4

(∆ρ(n))2

(ρ(n + 1))2ϕ(n)
+

p

4

(∆ρ(n))2

(ρ(n + 1))2ϕ(n)
.

Summing the last inequality from n2 to n − 1, we obtain

n−1
∑

s=n2



ρ(s)K
m
∑

ξ=m0

Q(s, ξ) −
(1 + p)

4

(∆ρ(s))2

(ρ(s + 1))2ϕ(s)



 ≤ ω(n2) + pv(n2),

which yields

n−1
∑

s=n2



ρ(s)K

m
∑

ξ=m0

Q(s, ξ) −
(1 + p)

4

(∆ρ(s))2

(ρ(s + 1))2ϕ(s)



 ≤ c1,

where c1 > 0 is a finite constant. But, this contradicts (3.4). Next we assume
that (II) holds. We are then back to the proof of Lemma 2.3 to show that
lim

n→∞

x(n) = 0. The proof is complete. �

Theorem 3.2. Assume that (2.2), (3.2) and (3.4) hold. Further, assume

that there exists a positive nondecreasing sequence ρ(n). If
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(3.18) lim sup
n→∞

n−1
∑

s=n0

















K
m
∑

ξ=m0

Q(s, ξ)

G(s)−1
∑

u=n2

u−1P
v=n1

1
a(v)

b(u)

s
∑

v=n1

1
a(v)

δ(s + 1)

−
1 + p

4

1

a(s)δ(s + 1)

















= ∞,

then every solution of equation (1.1) either oscillates or tends to zero.

P r o o f. Assume that equation (1.1) has a non-oscillatory solution, say
x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0 for all n ≥ n0. Based on condition
(3.2), there exist three possible cases (I), (II) (as those of Theorem 3.1), and

(III): ∆z(n) > 0, ∆(b(n)∆z(n)) < 0 for all large n.

Assume that (I) holds. Then we are back to the proof of Theorem 3.1
to get contradiction by (3.4). Assume that (II) holds. Then we are back to the
proof of Lemma 2.3 to show that lim

n→∞

x(n) = 0. Assume that (III) holds. Define

the sequence ω(n) by

(3.19) ω(n) :=
a(n)∆(b(n)∆z(n))

b(n)∆z(n)
.

Then ω(n) < 0 for n ≥ n1. Noting that a(n)∆(b(n)∆z(n)) is non-increasing
sequence. Thus, we get

(3.20) a(s)∆ (b(s)∆z(s)) ≤ a(n)∆(b(n)∆z(n)), s ≥ n ≥ n1.

Dividing the last inequality by a(s) and summing it from n to l − 1, we find

b (l)∆z (l) ≤ b(n)∆z(n) + a(n)∆(b(n)∆z(n))

l−1
∑

u=n

a−1(u).

Letting l → ∞, we have

(3.21) 0 ≤ b(n)∆z(n) + a(n)∆(b(n)∆z(n))δ(n).
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Which yields

(3.22) −
a(n)∆(b(n)∆z(n))

b(n)∆z(n)
δ(n) ≤ 1.

Therefore, form (3.19), we have

(3.23) −1 ≤ ω(n)δ(n) ≤ 0, n ≥ n2.

Similarly, we define the sequence v(n) by

(3.24) v(n) :=
a(τ(n))∆ (b(τ(n))∆z(τ(n)))

b(n)∆z(n)
, n ≥ n2.

Clearly, v(n) < 0 for n ≥ n2. Noting that a(n)∆(b(n)∆z(n)) is non-increasing
sequence and τ(n) ≤ n, we get

a(τ(n))∆ (b(τ(n))∆z(τ(n))) ≥ a(n)∆(b(n)∆z(n)).

Then v(n) ≥ ω(n). Thus, by (3.23), we have

(3.25) −1 ≤ v(n)δ(n) ≤ 0, n ≥ n2.

From (3.19), we obtain

(3.26) ∆ω(n) =
∆(a(n)∆(b(n)∆z(n)))

b(n + 1)∆z(n + 1)

−
a(n)∆(b(n)∆z(n))a(n)∆(b(n)∆z(n))

a(n)b(n)∆z(n) (b(n + 1)∆z(n + 1))
.

Since ∆(b(n)∆z(n)) ≤ 0, we get

b(n + 1)∆z(n + 1) ≤ b(n)∆z(n).

From (3.26) and the above inequality, we obtain

(3.27) ∆ω(n) ≤
∆(a(n)∆(b(n)∆z(n)))

b(n + 1)∆z(n + 1)
−

ω2(n)

a(n)
.

From (3.24), we obtain

(3.28) ∆v(n) ≤
∆ (a(τ(n))∆ (b(τ(n))∆z(τ(n))))

b(n + 1)∆z(n + 1)
−

v2(n)

a(n)
.
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Combining (3.27) and (3.28), we have

(3.29) ∆ω(n) + p∆v(n) ≤
∆(a(n)∆(b(n)∆z(n)))

b(n + 1)∆z(n + 1)
−

ω2(n)

a(n)

+ p
∆ (a(τ(n))∆ (b(τ(n))∆z(τ(n))))

b(n + 1)∆z(n + 1)
− p

v2(n)

a(n)
.

From (3.8) and (3.29), we obtain

(3.30) ∆ω(n) + p∆v(n)

≤ −K
z(G(n))

b(G(n))∆z(G(n))

b(G(n))∆z(G(n))

b(n + 1)∆z(n + 1)

m
∑

ξ=m0

Q(n, ξ) −
ω2(n)

a(n)
− p

v2(n)

a(n)
.

Since

(3.31) b(n)∆z(n) ≥ b(n)∆z(n) − b (n1) ∆z (n1)

=

n−1
∑

s=n1

a(s)∆ (b(s)∆z(s))

a(s)
≥ a(n)∆(b(n)∆z(n))

n−1
∑

s=n1

1

a(s)

we have that

∆











b(n)z(n)
n−1
∑

s=n1

1
a(s)











≤ 0.

Thus

(3.32) z(n) = z(n2) +

n−1
∑

s=n2

b(s)∆z(s)
s−1
∑

u=n1

1
a(u)

s−1
∑

u=n1

1
a(u)

b(s)
≥

b(n)∆z(n)
n−1
∑

u=n1

1
a(u)

n−1
∑

s=n2

s−1
∑

u=n1

1
a(u)

b(s)
.

From (3.30), (3.31) and (3.32), we obtain

(3.33) ∆ω(n) + p∆v(n) ≤ −
ω2(n)

a(n)
− p

v2(n)

a(n)
−K

m
∑

ξ=m0

Q(n, ξ)

G(n)−1
∑

s=n2

s−1P
u=n1

1
a(u)

b(s)

n
∑

u=n1

1
a(u)

.
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Multiplying (3.33) by δ(n + 1) and summing it from n2 to n − 1, we find

(3.34) ω(n)δ(n) − ω(n2)δ(n2) +

n−1
∑

s=n2

ω(s)

a(s)

+
n−1
∑

s=n2

δ(s + 1)
ω2(s)

a(s)
+ pv(n)δ(n) − pv(n2)δ(n2)

+ p

n−1
∑

s=n2

v(s)

a(s)
+ p

n−1
∑

s=n2

δ(s + 1)
v2(s)

a(s)

+

n−1
∑

s=n2

K

m
∑

ξ=m0

Q(s, ξ)

G(s)−1
∑

u=n2

u−1P
v=n1

1
a(v)

b(u)

s
∑

v=n1

1
a(v)

δ(s + 1) ≤ 0.

It follows from (3.17) and (3.34), that

(3.35) ω(n)δ(n) − ω(n2)δ(n2) + pv(n)δ(n)

− pv(n2)δ(n2) −
1 + p

4

n−1
∑

s=n2

1

a(s)δ(s + 1)

+

n−1
∑

s=n2

K

m
∑

ξ=m0

Q(s, ξ)

G(s)−1
∑

u=n2

u−1P
v=n1

1
a(v)

b(u)

s
∑

v=n1

1
a(v)

δ(s + 1) ≤ 0.

Therefore,

(3.36) ω(n)δ(n) + pv(n)δ(n)

+

n−1
∑

s=n2

















K

m
∑

ξ=m0

Q(s, ξ)

G(s)−1
∑

u=n2

u−1P
v=n1

1
a(v)

b(u)

s
∑

v=n1

1
a(v)

δ(s + 1) −
1 + p

4

1

a(s)δ(s + 1)

















≤ ω(n2)δ(n2) + pv(n2)δ(n2).
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From (3.18) and the above inequality, we obtain a contradiction to (3.23) and
(3.25). This completes the proof of Theorem 3.2. �

Theorem 3.3. Assume that (2.2), (3.3), (3.4) and (3.18) hold. If

(3.37)
∞
∑

u=n0

(

b−1(u)

(

u−1
∑

s=n1

a−1(s)

))

= ∞,

then every solution of equation (1.1) either oscillates or tends to zero.

P r o o f. Assume that equation (1.1) has a non-oscillatory solution, say
x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0 for all n ≥ n0. Based on condition
(3.3), there exist four possible cases: (I), (II), (III) (as those of Theorem 3.1, 3.2)
and

(IV): ∆z(n) < 0, ∆(b(n)∆z(n)) < 0 for all large n.

Assume that (I) holds. Then we are back to the proof of Theorem 3.1
to get contradiction to (3.4). Assume that (II) holds. Then we are back to the
proof of Lemma 2.3 to show that lim

n→∞

x(n) = 0. Assume that (III) holds. Then

we are back to the proof of Theorem 3.2 to get contradiction by (3.18). Assume
that (IV) holds. Since a(n)∆(b(n)∆z(n)) is non-increasing sequence there exists
a negative constant K1 and n2 ≥ n1 such that

a(n)∆(b(n)∆z(n)) ≥ K1 for n ≥ n2.

Dividing by a(n) and summing the last inequality from n1 to n − 1, we obtain

∆z(n) ≤ b−1(n)K1

(

n−1
∑

s=n1

a−1(s)

)

.

Summing the last inequality from n1 to n − 1, we obtain

z(n) ≤ z(n1) + K1

n−1
∑

u=n1

(

b−1(u)

(

u−1
∑

s=n1

a−1(s)

))

.

Letting n → ∞ then, by (3.37) we deduce that z(n) → −∞, which is contradic-
tion to the fact that z(n) > 0. This completes the proof of Theorem 3.3. �

Theorem 3.4. Assume that (3.1) and (2.2) hold. Let {ρ(n)} be a

positive sequence. Furthermore, we assume that there exists a double sequence
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{H(m,n)| ≥ n ≥ 0}. If

(3.38) lim sup
m→∞

1

H(m, 0)

m−1
∑

n=0



H(m,n)Kρ(n)

m
∑

ξ=m0

Q(n, ξ)

− (1 + p)
ϑ2(m,n)H(m,n)

4ϕ(n)



 = ∞,

then every solution of equation (1.1) either oscillates or tends to zero.

P r o o f. Proceeding as in Theorems 3.1, we assume that equation (1.1)
has a non-oscillatory solution, say x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0 for
all n ≥ n0. From the proof of Theorem 3.1, there are two possible cases. If (I)
holds, from the proof of Theorem 3.1, we find that (3.16) holds for all n ≥ n2.
From(3.16), we have

(3.39) ρ(n)K

m
∑

ξ=m0

Q(n, ξ) ≤ −∆ω(n) − p∆v(n)

+
∆ρ(n)

ρ(n + 1)
ω(n + 1)− ϕ(n)ω2(n + 1) + p

[

∆ρ(n)

ρ(n + 1)
v(n + 1) − ϕ(n)v2(n + 1)

]

.

Therefore, we have

m−1
∑

n=k

H(m,n)Kρ(n)

m
∑

ξ=m0

Q(n, ξ) ≤ −

m−1
∑

n=k

H(m,n)∆ω(n)

− p

m−1
∑

n=k

H(m,n)∆v(n) +

m−1
∑

n=k

H(m,n)
∆ρ(n)

ρ(n + 1)
ω(n + 1)

−
m−1
∑

n=k

H(m,n)ϕ(n)ω2(n + 1) + p
m−1
∑

n=k

(m,n)
∆ρ(n)

ρ(n + 1)
v(n + 1)

− p
m−1
∑

n=k

H(m,n)ϕ(n)v2(n + 1),
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which yields after summing by parts

m−1
∑

n=k

H(m,n)Kρ(n)

m
∑

ξ=m0

Q(n, ξ) ≤ H(m,k)ω(k)+

m−1
∑

n=k

ϑ(m,n)H(m,n)ω(n+1)

−

m−1
∑

n=k

H(m,n)ϕ(n)ω2(n + 1) + pH(m,k)v(k)

+ p

m−1
∑

n=k

ϑ(m,n)H(m,n)v(n + 1) − p

m−1
∑

n=k

H(m,n)ϕ(n)v2(n + 1).

From (3.17), we have

(3.40)
m−1
∑

n=k

H(m,n)Kρ(n)
m
∑

ξ=m0

Q(n, ξ) ≤ H(m,k)ω(k)

+
m−1
∑

n=k

ϑ2(m,n)H(m,n)

4ϕ(n)
+ pH(m,k)v(k) + p

m−1
∑

n=k

ϑ2(m,n)H(m,n)

4ϕ(n)
.

Then,

m−1
∑

n=k



H(m,n)Kρ(n)

m
∑

ξ=m0

Q(n, ξ) − (1 + p)
ϑ2(m,n)H(m,n)

4ϕ(n)





≤ H(m,k)ω(k) + pH(m,k)v(k),

which implies

m−1
∑

n=k



H(m,n)Kρ(n)

m
∑

ξ=m0

Q(n, ξ) − (1 + p)
ϑ2(m,n)H(m,n)

4ϕ(n)





≤ H(m, 0)|ω(k)| + pH(m, 0)|v(k)|.

Hence,

m−1
∑

n=0



H(m,n)Kρ(n)
m
∑

ξ=m0

Q(n, ξ) − (1 + p)
ϑ2(m,n)H(m,n)

4ϕ(n)





≤ H(m, 0)







k−1
∑

n=0

∣

∣

∣

∣

∣

∣

Kρ(n)

m
∑

ξ=m0

Q(n, ξ)

∣

∣

∣

∣

∣

∣

+ |ω(k)| + p|v(k)|







.
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Hence,

lim sup
m→∞

1

H(m, 0)

m−1
∑

n=0



H(m,n)Kρ(n)
m
∑

ξ=m0

Q(n, ξ) − (1 + p)
ϑ2(m,n)H(m,n)

4ϕ(n)





≤







k−1
∑

n=0

∣

∣

∣

∣

∣

∣

Kρ(n)

m
∑

ξ=m0

Q(n, ξ)

∣

∣

∣

∣

∣

∣

+ |ω(k)| + p|v(k)|







< ∞,

which is contrary to (3.38). If (II) holds, then we are back to the proof of Lemma
2.3 to show that lim

n→∞

x(n) = 0. This completes the proof of Theorem 3.4. �

Theorem 3.5. Assume that (2.2), (3.2) and (3.18) hold. Let {ρ(n)} be

a positive sequence. Furthermore, we assume that there exists a double sequence

{H(m,n) | m ≥ n ≥ 0}. If (3.38) holds, then every solution of equation (1.1)
either oscillates or tends to zero.

P r o o f. Proceeding as in Theorems 3.1, we assume that equation (1.1)
has a non-oscillatory solution, say x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0 for
all n ≥ n0. From the proof of Theorem 3.2 there are three possible cases. If
(I) holds, then we are back to the proof of Theorem 3.4 to get contradiction by
(3.38). If (II) holds, then we are back to the proof of Lemma 2.3 to show that
lim

n→∞

x(n) = 0. If (III) holds, then we are back to the proof of Theorem 3.2 to

get contradiction by (3.18). This completes the proof of Theorem 3.5. �

Theorem 3.6. Assume that (2.2), (3.3), (3.18) and (3.37) hold. Let

{ρ(n)} be a positive sequence. Furthermore, we assume that there exists a double

sequence {H(m,n) | m ≥ n ≥ 0}. If (3.38) holds, then every solution of equation

(1.1) either oscillates or tends to zero.

P r o o f. Proceeding as in Theorems 3.1 we assume that equation (1.1)
has a non-oscillatory solution, say x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0 for
all n ≥ n0. From the proof of Theorem 3.3, there are four possible cases. If (I),
(III) and (IV) hold, then we are back to the proof of Theorems 3.4, 3.2 and 3.3
respectively to get contradiction by (3.38), (3.18) and (3.37) respectively. If (II)
holds, then we are back to the proof of Lemma 2.3 to show that lim

n→∞

x(n) = 0.

This completes the proof of Theorem 3.6. �

Next, we establish an oscillation criterion for (1.1) when n ≥ g(n, ξ) ≥
G(n) ≥ τ(n) and (S1) holds.
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Theorem 3.7. Assume that (2.2) and (3.1) hold. If

(3.41) lim sup
n→∞

n−1
∑

s=n0



ρ(s)K

m
∑

ξ=m0

Q(s, ξ) −
(1 + p)

4

(∆ρ(s))2

(ρ(s + 1))2Θ(s)



 = ∞,

then every solution of equation (1.1) either oscillates or tends to zero.

P r o o f. To the contrary assume that (1.1) has a non-oscillatory solution.
Then, without loss of generality, there is a n1 ≥ n0 such that x(n) > 0, x(τ(n)) >
0 and x(g(n, ξ)) > 0. From the proof of Theorem 3.1, there are two possible cases.
Assume that (I) holds. Define the sequence ω(n) by

(3.42) ω(n) := ρ(n)
a(n)∆(b(n)∆z(n))

z(τ(n))
.

Then ω(n) > 0. From (3.42), we have

(3.43) ∆ω(n) = ∆ρ(n)
a(n + 1)(∆(b(n + 1)∆z(n + 1)))

z(τ(n + 1))

+ ρ(n)
∆(a(n)∆((b(n)∆z(n))))

z(τ(n))

− ρ(n)
a(n + 1)(∆(b(n + 1)∆z(n + 1)))∆(z(τ(n)))

z(τ(n + 1))z(τ(n))
.

From Lemma 2.1, and τ(n) ≤ n , we get

∆z(τ(n)) ≥ b−1(τ(n))(a(n + 1)(∆(b(n + 1)∆z(n + 1))))

τ(n)−1
∑

s=n2

a−1(s).

It follows that from(3.42) , (3.43) and the above inequality, we obtain

(3.44)

∆ω(n) ≤
∆ρ(n)

ρ(n + 1)
ω(n + 1) + ρ(n)

∆ (a(n)∆(b(n)∆z(n)))

z(τ(n))
− Θ(n)ω2(n + 1).

Similarly, define another sequence v(n) by

(3.45) v(n) := ρ(n)
a(τ(n))∆ (b(τ(n))∆z(τ(n)))

z (τ(n))
.
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Then v(n) > 0. From (3.45), we have

∆v(n) =
∆ρ(n)

ρ(n + 1)
v(n + 1) + ρ(n)

∆(a(τ(n))∆(b(τ(n))∆z(τ(n))))

z(τ(n))

− ρ(n)
a(τ(n + 1))(∆(b(τ(n + 1))∆z(τ(n + 1))))∆(z(τ(n)))

z(τ(n + 1))z(τ(n))
.

From Lemma 2.1, and τ(n) ≤ n , we get

∆z(τ(n)) ≥ b−1(τ(n)) (a(τ(n + 1))(∆(b(τ(n + 1))∆z(τ(n + 1)))))

τ(n)−1
∑

s=n2

a−1(s).

Thus

(3.46) ∆v(n) ≤ ρ(n)
∆(a(τ(n))∆(b(τ(n))∆z(τ(n))))

z(τ(n))

+
∆ρ(n)

ρ(n + 1)
v(n + 1) − Θ(n)v2(n + 1).

From (3.44) and (3.46), we obtain

(3.47) ∆ω(n) + p∆v(n)

≤ ρ(n)
[∆(a(n)∆(b(n)∆z(n))) + p∆(a(τ(n))∆(b(τ(n))∆z(τ(n))))]

z(τ(n))

+
∆ρ(n)

ρ(n + 1)
ω(n + 1) − Θ(n)ω2(n + 1)

+ p

[

∆ρ(n)

ρ(n + 1)
v(n + 1) − Θ(n)v2(n + 1)

]

.

From (I), (3.8), (3.47) and G(n) ≥ τ(n), we have

(3.48) ∆ω(n) + p∆v(n) ≤ −ρ(n)K
m
∑

ξ=m0

Q(n, ξ) +
∆ρ(n)

ρ(n + 1)
ω(n + 1)

− Θ(n)ω2(n + 1) + p

[

∆ρ(n)

ρ(n + 1)
v(n + 1) − Θ(n)v2(n + 1)

]

.

From (3.48) and (3.17), we have

∆ω(n) + p∆v(n)

≤ −ρ(n)K
m
∑

ξ=m0

Q(n, ξ) +
(∆ρ(n))2

4(ρ(n + 1))2Θ(n)
+ p

(∆ρ(n))2

4(ρ(n + 1))2Θ(n)
.
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Summing the last inequality from n2 to n − 1, we obtain

n−1
∑

s=n2



ρ(s)K

m
∑

ξ=m0

Q(s, ξ) −
(1 + p)

4

(∆ρ(s))2

(ρ(s + 1))2Θ(s)



 ≤ ω(n2) + pv(n2),

which yields

n−1
∑

s=n2



ρ(s)K
m
∑

ξ=m0

Q(s, ξ) −
(1 + p)

4

(∆ρ(s))2

(ρ(s + 1))2Θ(s)



 ≤ c1,

where c1 > 0 is a finite constant. But, this contradicts (3.41). If (II) holds,
then we are back to the proof of Lemma 2.3 to show that lim

n→∞

x(n) = 0. This

completes the proof of Theorem 3.7. �

Theorem 3.8. Assume that (2.2), (3.2) and (3.41) hold. If

(3.49) lim sup
n→∞

n−1
∑

s=n0



Kδ(s + 1)
m
∑

ξ=m0

q(s, ξ)(1 − p(g(s, ξ)))

G(s)−1
∑

v=n3

1

b(v)
−

1

4a(s)δ(s + 1)



 = ∞,

then every solution of equation (1.1) either oscillates or tends to zero.

P r o o f. To the contrary assume that (1.1) has a non-oscillatory solution.
Then, without loss of generality, there is a n1 ≥ n0 such that x(n) > 0, x(τ(n)) >
0 and x(g(n, ξ)) > 0. From the proof of Theorem 3.2, there are three possible
cases. Assume that (I) holds. Then we are back to the proof of Theorem 3.7 to
get contradiction by (3.41). Assume that (II) holds. Then we are back to the
proof of Lemma 2.3 to show that lim

n→∞

x(n) = 0. Assume that (III) holds, since

x(n) ≤ z(n), we see that

(3.50) x(g(n, ξ)−τ) ≤ z(g(n, ξ)−τ) ≤ z(g(n, ξ)), n ∈ N(n2), ξ ∈ N(m0,m)

Form (3.7), we have

z(g(n, ξ)) ≥ z(G(n)), n ∈ N(n3), ξ ∈ N(m0,m) for some n3 ≥ n2.
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Using the above inequality together with (3.50) and (S1) in equation (1.1) for
n ≥ n3, we get

(3.51) 0 ≥ ∆(a(n)∆(b(n)∆z(n))) + Kz(G(n))

m
∑

ξ=m0

q(n, ξ)(1 − p(g(n, ξ))).

Define ω(n) by (3.19). Proceeding as in the proof of Theorem 3.1, we obtain
(3.23) and (3.26). From (3.26) and (3.51), we have

(3.52) ∆ω(n) ≤ −K
z(G(n))

b(n + 1)∆z(n + 1)

m
∑

ξ=m0

q(n, ξ)(1 − p(g(n, ξ)))

−
a(n)∆(b(n)∆z(n))a(n)∆(b(n)∆z(n))

a(n)b(n)∆z(n)(b(n + 1)∆z(n + 1))
.

Since

(3.53) z(n) ≥ z(n) − z(n3) =

n−1
∑

s=n3

b(s)∆z(s)

b(s)
≥ b(n)∆z(n)

n−1
∑

s=n3

1

b(s)
,

we have that

∆











z(n)
n−1
∑

s=n3

1
b(s)











≤ 0.

Which implies that

(3.54)
z(G(n))

b(n + 1)∆z(n + 1)
≥

b(G(n))∆z(G(n))
G(n)−1
∑

s=n3

1
b(s)

b(n + 1)∆z(n + 1)
≥

G(n)−1
∑

s=n3

1

b(s)
.

From (3.52) and (3.54), we get

(3.55) ∆ω(n) ≤ −K

m
∑

ξ=m0

q(n, ξ)(1 − p(g(n, ξ)))

G(n)−1
∑

s=n3

1

b(s)
−

ω2(n)

a(n)
.
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Multiplying (3.55) by δ(n + 1) and summing it from n4 to n − 1, we find

(3.56) ω(n)δ(n) − ω(n4)δ(n4) +
n−1
∑

s=n4

ω(s)

a(s)
+

n−1
∑

s=n4

δ(s + 1)
ω2(s)

a(s)

+

n−1
∑

s=n4

Kδ(s + 1)

m
∑

ξ=m0

q(s, ξ)(1 − p(g(s, ξ)))

G(s)−1
∑

v=n3

1

b(v)
≤ 0.

It follows from (3.17) and (3.56), that

ω(n)δ(n) − ω(n4)δ(n4) −

n−1
∑

s=n4

1

4a(s)δ(s + 1)

+
n−1
∑

s=n4

Kδ(s + 1)
m
∑

ξ=m0

q(s, ξ)(1 − p(g(s, ξ)))

G(s)−1
∑

v=n3

1

b(v)
≤ 0.

From (3.23), we get

n−1
∑

s=n4



Kδ(s + 1)

m
∑

ξ=m0

q(s, ξ)(1 − p(g(s, ξ)))

G(s)−1
∑

v=n3

1

b(v)
−

1

4a(s)δ(s + 1)





≤ 1 + ω(n4)δ(n4).

But this contradicts (3.49). This completes the proof of Theorem 3.8. �

Theorem 3.9. Assume that (2.2), (3.3), (3.37) and (3.49) hold. Let

{ρ(n)} be a positive sequence, such that (3.41) holds. Then every solution of

equation (1.1) either oscillates or tends to zero.

P r o o f. Proceeding as in Theorems 3.1, we assume that equation (1.1)
has a non-oscillatory solution, say x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0 for
all n ≥ n0. From the proof of Theorem 3.3, there are four possible cases. Assume
that (I) holds. Then we are back to the proof of Theorem 3.7 to get contradiction
by (3.41). Assume that (II) holds. Then we are back to the proof of Lemma 2.3
to show that lim

n→∞

x(n) = 0. Assume that (III) holds. Then we are back to the

proof of Theorem 3.8 to get contradiction by (3.49). Assume that (IV) holds.
Then we are back to the proof of Theorem 3.3 to get contradiction by (3.37).
This completes the proof of Theorem 3.9. �
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Next, we establish an oscillation criterion for (1.1) when n ≥ g(n, ξ) ≥
G(n) and (S2) holds.

Theorem 3.10. Let condition (2.2) and (3.1) hold. Assume that there

exists a positive nondecreasing sequence {ρ(n)}. Furthermore, we assume that

there exists a double sequence {H(m,n) | m ≥ n ≥ 0} and h(m,n) such that

(i)−(iv) hold. If

(3.57) lim sup
m→∞

1

H(m, 0)

m−1
∑

n=0











H(m,n)ρ(n)

m
∑

ξ=m0

q(n, ξ)

−
ϑ2(m,n)H(m,n)ρ2(n + 1)b(G(n))

4µρ(n)
G(n)−1
∑

s=n2

a−1(s)











= ∞,

then every solution of equation (1.1) either oscillates or tends to zero.

P r o o f. Proceeding as in Theorems 3.1, we assume that equation (1.1)
has a non-oscillatory solution, say x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0 for
all n ≥ n0. From the proof of Theorem 3.1, there are two possible cases. If (I)
holds, from equation (1.1) and (3.7), we have

(3.58) 0 ≥ ∆(a(n)∆(b(n)∆(z(n)))) + f(x(G(n)))
m
∑

ξ=m0

q(n, ξ).

Define

(3.59) ω(n) := ρ(n)
a(n)∆(b(n)∆z(n))

f(x(G(n)))
.

Then ω(n) > 0. From (3.58), (3.59) and (S2), we have
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(3.60) ∆ω(n)

= ∆ρ(n)
a(n + 1)∆(b(n + 1)(∆z(n + 1)))

f(x(G(n + 1)))
+ ρ(n)

∆(a(n)∆(b(n)(∆z(n))))

f(x(G(n)))

− ρ(n)
a(n + 1)∆(b(n + 1)(∆z(n + 1)))

f(x(G(n + 1)))f(x(G(n)))
B(x(G(n + 1)), x(G(n)))

× [x(G(n + 1)) + p(G(n + 1))x(G(τ(n + 1)))]

− [x(G(n)) + p(G(n))x(G(τ(n)))]

= ∆ρ(n)
a(n + 1)∆(b(n + 1)(∆z(n + 1)))

f(x(G(n + 1)))
+ ρ(n)

∆(a(n)∆(b(n)(∆z(n))))

f(x(G(n)))

− ρ(n)
a(n + 1)∆(b(n + 1)(∆z(n + 1)))

f(x(G(n + 1)))f(x(G(n)))
B(x(G(n + 1)), x(G(n)))∆(z(G(n))).

From (3.11), (3.60) and (S2), we obtain

(3.61) ∆ω(n)

≤ ∆ρ(n)
a(n + 1)∆(b(n + 1)(∆z(n + 1)))

f(x(G(n + 1)))
+ ρ(n)

∆(a(n)∆(b(n)(∆z(n))))

f(x(G(n)))

− µρ(n)
a(n + 1)∆(b(n + 1)(∆z(n + 1)))(a(n + 1)(∆(b(n + 1)∆z(n + 1))))

f(x(G(n + 1)))f(x(G(n)))b(G(n))

×

G(n)−1
∑

s=n2

a−1(s).

It follows from (3.58) and (3.61) that

(3.62) ∆ω(n) ≤
∆ρ(n)

ρ(n + 1)
ω(n + 1) − ρ(n)

m
∑

ξ=m0

q(n, ξ)

−
µρ(n)

ρ2(n + 1)b(G(n))
ω2(n + 1)

G(n)−1
∑

s=n2

a−1(s).
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Therefore, we have

m−1
∑

n=k

H(m,n)ρ(n)

m
∑

ξ=m0

q(n, ξ)

≤ −

m−1
∑

n=k

H(m,n)∆ω(n) +

m−1
∑

n=k

H(m,n)
∆ρ(n)

ρ(n + 1)
ω(n + 1)

−
m−1
∑

n=k

H(m,n)
µρ(n)

ρ2(n + 1)b(G(n))
ω2(n + 1)

G(n)−1
∑

s=n2

a−1(s),

which yields after summing by parts

m−1
∑

n=k

H(m,n)ρ(n)
m
∑

ξ=m0

q(n, ξ)

≤ H(m,k)ω(k) +
m−1
∑

n=k

ϑ(m,n)H(m,n)ω(n + 1)

−

m−1
∑

n=k

H(m,n)
µρ(n)

ρ2(n + 1)b(G(n))
ω2(n + 1)

G(n)−1
∑

s=n2

a−1(s).

From (3.17), we have

(3.63)

m−1
∑

n=k

H(m,n)ρ(n)

m
∑

ξ=m0

q(n, ξ)

≤ H(m,k)ω(k) +

m−1
∑

n=k

ϑ2(m,n)H(m,n)ρ2(n + 1)b(G(n))

4µρ(n)
G(n)−1
∑

s=n2

a−1(s)

.

Then,

m−1
∑

n=k











H(m,n)ρ(n)
m
∑

ξ=m0

q(n, ξ) −
ϑ2(m,n)H(m,n)ρ2(n + 1)b(G(n))

4µρ(n)
G(n)−1
∑

s=n2

a−1(s)











≤ H(m,k)ω(k) ≤ H(m, 0) |ω(k)| .
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Hence,

m−1
∑

n=0











H(m,n)ρ(n)
m
∑

ξ=m0

q(n, ξ) −
ϑ2(m,n)H(m,n)ρ2(n + 1)b(G(n))

4µρ(n)
G(n)−1
∑

s=n2

a−1(s)











≤

H(m, 0)







k−1
∑

n=0

∣

∣

∣

∣

∣

∣

ρ(n)
m
∑

ξ=m0

q(n, ξ)

∣

∣

∣

∣

∣

∣

+ |ω(k)|







.

Hence,

lim sup
m→∞

1

H(m, 0)

m−1
∑

n=0











H(m,n)ρ(n)

m
∑

ξ=m0

q(n, ξ)

−
ϑ2(m,n)H(m,n)ρ2(n + 1)b(G(n))

4µρ(n)
G(n)−1
∑

s=n2

a−1(s)











≤







k−1
∑

n=0

∣

∣

∣

∣

∣

∣

ρ(n)
m
∑

ξ=m0

q(n, ξ)

∣

∣

∣

∣

∣

∣

+ |ω(k)|







< ∞,

which is contrary to (3.57). If (II) holds, then we are back to the proof of Lemma
2.3 to show that lim

n→∞

x(n) = 0. This completes the proof of Theorem 3.10. �

Theorem 3.11. Let conditions (2.2), (3.2) and (3.18) hold. Further,

assume that there exists a positive nondecreasing sequence {ρ(n)}, such that (3.57)
holds. Then every solution of equation (1.1) either oscillates or tends to zero.

P r o o f. Proceeding as in Theorems 3.1, we assume that equation (1.1)
has a non-oscillatory solution, say x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0
for all n ≥ n0. From the proof of Theorem 3.2, there are three possible cases.
Assume that (I) holds. Then we are back to the proof of Theorem 3.10 to get
contradiction by (3.57). Assume that (II) holds. Then we are back to the proof
of Lemma 2.3 to show that lim

n→∞

x(n) = 0. Assume that (III) holds. Then we are
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back to the proof of Theorem 3.2 to get contradiction by (3.18). This completes
the proof of Theorem 3.11. �

Theorem 3.12. Let conditions (2.2), (3.3), (3.18) and (3.37) hold. Fur-

ther, assume that there exists a positive nondecreasing sequence {ρ(n)}, such that

(3.57) holds. Then every solution of equation (1.1) either oscillates or tends to

zero.

P r o o f. Proceeding as in Theorems 3.1, we assume that equation (1.1)
has a non-oscillatory solution, say x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0
for all n ≥ n0. From the proof of Theorem 3.3, there are four possible cases.
Assume that (I) holds. Then we are back to the proof of Theorem 3.10 to get
contradiction by (3.57). Assume that (II) holds. Then we are back to the proof
of Lemma 2.3 to show that lim

n→∞

x(n) = 0. Assume that (III) holds. Then we are

back to the proof of Theorem 3.2 to get contradiction by (3.18). Assume that
(IV) holds. Then we are back to the proof of Theorem 3.3 to get contradiction
by (3.37). This completes the proof of Theorem 3.12. �

Finally, we establish an oscillation criterion for (1.1) when n ≥ g(n, ξ) ≥
G(n) ≥ τ(n) and (S2) holds.

Theorem 3.13. Let conditions (2.2) and (3.1) hold. Assume that there

exists a positive nondecreasing sequence {ρ(n)}. Furthermore, we assume that

there exists a double sequence {H(m,n) | m ≥ n ≥ 0} and h(m,n) such that (i)−
(iv) hold. If

(3.64) lim sup
m→∞

1

H(m, 0)

m−1
∑

n=0











H(m,n)ρ(n)

m
∑

ξ=m0

q(n, ξ)

−
ϑ2(m,n)H(m,n)ρ2(n + 1)b(τ(n))

4µρ(n)
τ(n)−1
∑

s=n2

a−1(s)











= ∞,

then every solution of equation (1.1) either oscillates or tends to zero.

P r o o f. Proceeding as in Theorems 3.1, we assume that equation (1.1)
has a non-oscillatory solution, say x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0 for
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all n ≥ n0. From the proof of Theorem 3.1, there are two possible cases. If (I)
holds, from equation (1.1) and (3.7), we have

(3.65) 0 ≥ ∆(a(n)∆(b(n)∆(z(n)))) + f(x(G(n)))

m
∑

ξ=m0

q(n, ξ).

≥ ∆(a(n)∆(b(n)∆(z(n)))) + f (x(τ(n)))

m
∑

ξ=m0

q(n, ξ).

Define

(3.66) ω(n) := ρ(n)
a(n)∆(b(n)∆z(n))

f (x(τ(n)))
.

The rest of the proof is similar to that of Theorem 3.10 and hence the details are
omitted. �

Theorem 3.14. Let conditions (2.2), (3.2) and (3.49) hold. Further,

assume that there exists a positive nondecreasing sequence {ρ(n)}, such that (3.64)
holds. Then every solution of equation (1.1) either oscillates or tends to zero.

P r o o f. Proceeding as in Theorems 3.1, we assume that equation (1.1)
has a non-oscillatory solution, say x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0
for all n ≥ n0. From the proof of Theorem 3.2, there are there possible cases.
Assume that (I) holds. Then we are back to the proof of Theorem 3.13 to get
contradiction by (3.64). Assume that (II) holds. Then we are back to the proof
of Lemma 2.3 to show that lim

n→∞

x(n) = 0. Assume that (III) holds. Then we are

back to the proof of Theorem 3.8 to get contradiction by (3.49). This completes
the proof of Theorem 3.14. �

Theorem 3.15. Let condition (2.2), (3.3), (3.49) and (3.37) hold. Fur-

ther, assume that there exists a positive nondecreasing sequence {ρ(n)}, such that

(3.64) holds. Then every solution of equation (1.1) either oscillates or tends to

zero.

P r o o f. Proceeding as in Theorems 3.1, we assume that equation (1.1)
has a non-oscillatory solution, say x(n) > 0, x(τ(n)) > 0 and x(g(n, ξ)) > 0
for all n ≥ n0. From the proof of Theorem 3.3, there are four possible cases.
Assume that (I) holds. Then we are back to the proof of Theorem 3.13 to get
contradiction by (3.64). Assume that (II) holds. Then we are back to the proof
of Lemma 2.3 to show that lim

n→∞

x(n) = 0. Assume that (III) holds. Then we are
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back to the proof of Theorem 3.8 to get contradiction by (3.49). Assume that
(IV) holds. Then we are back to the proof of Theorem 3.3 to get contradiction
by (3.37). This completes the proof of Theorem 3.15. �

4. Conclusion. In this paper, we established some new sufficient con-
ditions which insure that every solution of this equation either oscillates or con-
verges to zero. Our results improved and expanded some known results, see e.g.
the following results:

Remark 4.1. If p(n) ≡ 0, q(n, ξ) ≡ q(n) and g(n, ξ) ≡ n + l, then
Theorem 3.1 extended and improved Theorem 3 in [19].

Remark 4.2. If b(n) ≡ 1, p(n) ≡ 0, q(n, ξ) ≡ q(n) and g(n, ξ) ≡ n − σ,
then Theorem 3.1 extended and improved Theorem 1 in [16].

Remark 4.3. If b(n) ≡ 1, q(n, ξ) ≡ q(n), g(n, ξ) ≡ n−τ and f(x) ≡ xα,
then Theorem 3.1 extended and improved Theorem 2.3 in [13].

Remark 4.4. If p(n) ≡ 0, q(n, ξ) ≡ q(n) and g(n, ξ) ≡ n − m + 1, then
Theorem 3.4 extended and improved Theorem 1 in [6].

Remark 4.5. If p(n) ≡ 0, q(n, ξ) ≡ q(n), g(n, ξ) ≡ n − m + 1 and
H(m,n) ≡ 1, then Theorem 3.10 extended and improved Theorem 2 in [6].

Remark 4.6. If b(n) ≡ 1, p(n) ≡ 0, q(n, ξ) ≡ q(n) and g(n, ξ) ≡ n − σ,
then we reduced to Theorem 1 in [18].

Remark 4.7. If b(n) ≡ 1, q(n, ξ) ≡ q(n) and g(n, ξ) ≡ n + 1, then we
reduced to Theorem 3 in [17].

Remark 4.8. If a(n) ≡ b(n) ≡ 1, p(n) ≡ −1, q(n, ξ) ≡ q(n), g(n, ξ) ≡
g(n) and f(x) ≡ xα, then we reduced to Theorems in [7].

5. Examples. In this section, we will show the applications of our oscil-
lation criteria by three examples. We will see that the equation in the examples
is oscillates or tends to zero based on the results in Section 3.

Example 5.1. Consider the third order nonlinear neutral difference
equation

(5.1) δ

(

1

n

(

∆2

(

xn +
3

4
x(n − 2)

)))

+ (n2 + 2)
2
∑

ξ=1

x3(n − ξ)(1 + x2(n − ξ)) = 0, n ≥ 1.
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All the conditions of Theorem 3.1are satisfied (with ρ(n) = n). Hence every solu-
tion of (5.1) either oscillates or tends to zero. We should note that the oscillation
criteria given in [13], [16] and [19] fail to apply for this difference equation.

Example 5.2. Consider the linear delay difference equation

(5.2) ∆3

(

x(n) +
1

3
x(n − λ1)

)

+

(

27

32

) 1
∑

ξ=0

x(n − λ2ξ) = 0, n ≥ 1.

All the conditions of Theorem 3.4 are satisfied (with K = 1, ρ(n) = 1 λ2 ≥ λ1,
H(m,n) = m − n). Hence every solution of (5.2) either oscillates or tends to
zero. We should note that the oscillation criteria given in [6], fail to apply for this
difference equation.

Example 5.3. Consider the linear delay difference equation

(5.3) ∆3

(

x(n) +
1

3
x(n − 2)

)

+
λ

n2

1
∑

ξ=0

x(n − ξ) = 0, n ≥ 1.

All the conditions of Theorem 3.7 are satisfied (with K = 1, ρ(n) = 1). Hence
every solution of (5.3) either oscillates or tends to zero.
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