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ABSTRACT. This paper discusses the problem of boundedness and com-
pactness for weighted composition operators defined on a Miintz subspace
of L*([0,1]). We compute the essential norm of such operators when the
symbol ¢ of the composition operator satisfies a special condition (condi-
tion (B)). As a corollary, we obtain the exact values of essential norms of
composition and multiplication operators. This completes the correspond-

ing results of the first named author in the framework of Miintz subspaces
of C([0,1]).

1. Introduction and notations. Throughout the paper, L' =
L'([0,1]) denotes the Banach space of complex-valued measurable functions on

1
[0,1] with the norm || f||; = / |f(z)|dz < oco. In the whole paper ¢ denotes a
0

measurable self-map of [0,1], we set E, = ¢~ ({1}). The composition operator
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Cy, is defined by Cy,(f) = f o . Given 9 € L*([0,1]), we shall also consider the
multiplication operator 7y, defined by 7y, (f) = f - 1.

The essential norm of an operator T is its distance to the space of compact
operators and is denoted by: ||T'||¢ = inf||T" — S|| where S runs over the class of
compact operators.

Let A be an increasing sequence of positive numbers satisfying Z 1/A <

AEA
oo and consider the closed space M /{, spanned by the monomials 1 and z*, where
X € A. By the famous theorem of Miintz, M} is not all of L'. Except in Prop.2.1.
stating Miintz’s theorem, we shall assume that the condition Z 1/A < oo is

AEA
fulfilled.

In this paper, we show that for functions ¢ satisfying some specific condi-
tions (for instance condition (B), see definition below), the composition operator
C, from M} to L' is well-defined. Under that condition, our main result gives
a precise estimate of the essential norm of 7, o C,, acting on M 1{ in terms of the
values of ¢ and . As a corollary we deduce the exact value of the essential norm
of C, acting on M A, and that the essential norm of Ty (associated to a function
1, continuous at point 1) acting on M} is [1(1)].

To know more on the geometry of Miintz spaces, see the monographs of
Gurariy and Lusky [9], P. Borwein and T. Erdélyi [4] (see also [1, 2]).

The present work extends some results of the first named author [3].
Several papers appeared recently related to this topic: let us mention [2], [5],
[8] and more recently [13]. It is worth mentioning especially the results of [5]:
the authors obtain there some interesting and sharp results in the framework of
L', but in a slightly different direction (they study Carleson’s type embeddings).
Hence these results are rather distinct from ours, although some of the results of
[3] are partially recovered in [5].

2. Preliminary results. In this section we recall some properties of the
geometry of Miintz spaces, which we shall use later. We list them as propositions.
The Miintz spaces have appeared naturally posterior to Miintz’s theorem in 1914
(see [12]) which characterizes a sequence A = (), so that the closed span MR°
of the monomials 1, *, where A € A, is not all of C([0,1]). The next proposition
is an L' version of the Miintz Theorem.

Proposition 2.1 ([9, p.180]). Let A = (Ag)jey, where 0 = Xy <
A1 < ---, be an increasing sequence of nonnegative real numbers.
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Then the Miintz space M(A) = span{z™ : k =0,1,...}, associated to A,
is a dense subset of L' if and only if

=1
— = Q.

oo
Moreover, zfz 1/\; < oo and if X ¢ A, then z* ¢ M}.
k=1

Thanks to this result and since our framework is Miintz proper subspaces
of L', we shall assume in the sequel of the paper that the condition Z 1/A <

AeA\{0}
oo is fulfilled.

The next proposition due to Clarkson and Erdds [6] (see also [9], p.81)
and Schwartz [15, 16], gives us a characterization of Miintz spaces which reveals
both the originality and richness of these spaces, see also [7] for the full version
of this proposition.

Proposition 2.2 ([6, 15, 16]). Assume the gap condition inf{ 11 — A :

k € N} > 0 holds. Then, for every function f € L' we have:
The function f belongs to M} if and only if there exists a sequence (ak)keN
oo

such that, for every x € [0,1), we have f(x) = Zakx’\’“.
k=0

If the gap condition does not hold, then every function f € L belonging
to the closure of span{zA’“;k =0,1,...} can still be represented as an analytic
function on {z € C\ (—00,0] : |z| < 1} restricted to (0,1).

Note that the preceding two propositions are still valid for M° (respec-
tively M%, 1 < p < o0) the closure of M(A) in C[0,1] (respectively LF[0,1]) and
were first proved for the case of Mg°.

In the sequel, we shall write ||p||x = sup |p(t)|, where K C [0,1) is com-

teK

pact.

Proposition 2.3 (See [4, p. 185, E.8.a]). For every e € (0,1), there is a
constant y(e,A) depending only on € and (\;)j=q such that

1
Ipllo1_q < A A) / ip(a)|dx

1—e

for every p € span{:r’\o, ™ML }.
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Proposition 2.3 (Bounded Bernstein-Type Inequality. See [4, p.178,
E.3.d.]). For every e € (0,1), there is a constant c. depending only on &, and
(Ni)izo (but not on the number of terms in p) such that

1P lfo,1-2) < cellpllLy

for every p € span{z® M, ...},
Actually the version given in [4] uses a majorization with ||p||z,. Never-
theless, it is easy to adapt the proof to obtain the version given above.
Combining Proposition 2.3 and the Arzela-Ascoli theorem (see, for exam-
ple, [14]), we deduce the next useful corollary.

Corollary 2.5. Given a sequence (fn)n>1 in the unit ball of M}, there is
a subsequence of (fn)oey uniformly converging on every compact subset of [0,1).

Proof. Let (f,)%, C span{z, 2z ...} such that ||f.|1 < 1. Let
e > 0. By the preceding proposition, (fy), is bounded and equicontinuous on
[0,1 —¢]. Then by the Arzela-Ascoli theorem, it has a uniformly convergent
subsequence on [0,1 — €.
By induction, we construct infinite sets .S,, of integers, N D S1 D Sy D -+, such

1
that (fy), converges uniformly on [0, 1-— —l when n — oo in S;. Now using the

diagonal process, we obtain an infinite set S such that (f,,), converges uniformly
on every compact subset of [0, 1[ when n — ocoin S. O

Corollary 2.6. Let (f,)5%, C M} be a convergent sequence to f, then
(fn)n converges uniformly to f on every compact subset of [0, 1].

3. Bounded operators. In this section, we consider the composition
operators defined on Miintz spaces M}. Recently (see [2]), the first named author
studied these operators acting on M{° and gave a precise estimate of the essential
norm of weighted composition operators acting on Mg° in terms of the values of
¢ and 9 (see Theorem 5.1, [2]). A wide literature is interested in these opera-
tors. They were studied in the case of Banach spaces like Hardy spaces, Bergman
spaces, Bergman-Orlicz spaces and Hardy-Orlicz spaces studied in [10],[11]. We
are interested in the continuity, compactness and the computation of essential
norm of these operators.

In general a composition operator does not map a Miintz space into itself
(actually, except in very special cases, it nearly never happens). For this reason
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we shall consider operators from Miintz spaces to the whole space L'([0,1]). Tt
turns out that a Miintz space is mapped (via a composition operator) into another
Miintz space. This phenomenon is specified in [2] (see Lemma 3.1, 3.2, 3.3 and
Theorem 3.4). These results were proved for Miintz spaces Mz~ but are still valid
on Mj.

We first give some simple examples of smooth functions ¢ with various

behavior.

Example 3.1. If ¢ is C'-diffeomorphism from [0,1] (onto itself), the
operator C,, is bounded and satisfies:

A1
1"l oo

ICo(Nh <11/l and  [[Co(H)l1 =

Clearly C, is not a compact operator.

Example 3.2. Let ¢g(t) =1 —t. Then C,, is an isometry. Indeed:

1 1
||C<,00(f)||1:/0 !f(l—t)ldt=/0 |f (w)ldu = || f]lx

(we could also observe that this follows from the preceding remark as well).

Proposition 3.3. If C, : M), — L' is well defined on MAl, then
my({1}) = 0, where my, is the pull back measure of the Lebesque measure m
associated to .

oo
Proof. Consider the function f(z) = Zx’\". Thanks to the Miintz

n=1
condition on A, we have

9] [e'S) 1
A, —

Sl = 3 iy <

n=1 n=1

hence f € My.
Suppose that C, : My — L', then ||C,(f)|l1 < co. On the other hand,

we have
oo

IO 2 [ 3 pla) e = comy((1)
n=1

This requires that m,({1}) =0. O
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Generally, the condition my({1}) = 0 is not sufficient. In fact, even the
condition card ¢ ({1}) < oo is not sufficient to get that C,, is well-defined: this
follows from Example 3.7 and Lemma 3.6.

Lemma 3.4. Let ¢ : [0,1] — [0,1] be measurable and Cy, : My — L,
then Cy, is bounded as soon as C, is defined.

Proof. We shall prove that the graph of C,, is closed.
Let (f,h) belonging to the closure of the graph of C,,. There exists a sequence
(fj); € My such that (f;); converges to f and (Cy(fj)); converges to h. Ac-
cording to the Corollary 2.6, (f;); converges uniformly to f on every compact
subset of [0, 1[, which implies that (Cy,(f;)(x)); converges to Cy,(f)(x) for every
z € ¢ 1([0,1[). From the above (Proposition 3.3), m(¢~'{1}) = 0, hence (f;0¢);
converges to f o ¢ almost everywhere on [0, 1]. Therefore h = f o ¢ (in the space
L') and the graph of O, is closed. O

Lemma 3.5. Let ¢ :[0,1] — [0,1] be measurable.
Let us assume that ||¢|leo < 1. Then Cy, : My — L>=([0,1]) < L'([0,1])
s nuclear.

Proof. The crucial point is the following. Thanks to the Clarkson-Erdos
theorem, every function f € M, /{ admits a Taylor expansion

fla) =Y an(flat

n>0

where z € [0,1) and «,(f) is uniquely defined.

Let us fix n € N. The functional a,, : f € Mp — a,,(f) € C is bounded:
for instance, thanks to the heart of the proof of the Clarkson-Erdos theorem, for
each t € [0,1), there exists some Cy > 0 such that |y, (f)[t* < Cy||f||1 for every
n € N and every f € M}. In particular, fixing t € (Illlocs 1), there exists C > 0
such that for every n € N: |a,, (f)| < C|| f|lit~ .

Now, we can write: Cy(f) = Z an(f)e™ with

n>0

leplloo \
Z Han”(M}\)*HW\"Hoo < Z C (T < 00. a

n>0 n>0
Lemma 3.6. Let ¢ : [0,1] — [0, 1] such that the composition operator
Cy, maps My to L. Assume that ¢(a) = 1 where a € [0, 1].
1—¢(t)

a. If « € ]0,1) then limsup > 0.

t—a

t>a
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1—p(t
b. If a € (0,1] then limsup 7('055) > 0.
t—a o —
t<a

c. In particular o is differentiable at no point of ¢~ *({1}) N (0,1).

Proof. We only have to prove the first item (the second is similar and
the last one easily follows from a. and b.).

Assume that the conclusion does not hold: for every ¢ € (0, 1) there exists
a € (a,1) such that

Vt € (a,a) 1—o(t) <e(t—a).

Then for every integer j > 1, we have

a

1
ICo = [ O+ Dle@ de > [0y + 11 el =)V da

«

— l(l — (1 —e(a — a)))‘jﬂ).

3

1

For j large enough we get ||C,| > % which contradicts the hypothesis of bound-
€

edness of C,. O

Example 3.7. The following remark shows that some simple smooth
maps ¢ do not necessarily define a bounded operator Cy, on M/{ For instance,
the operator associated to the symbol p(x) = 1 — (1 — x)* does not induce a
bounded operator: ¢ “touches” the “delicate” end point 1 only when x =1 (but
too smoothly since /(1) = 0).

Remark 3.8. Let ¢ : [0,1] — [0,1] be a differentiable function.
Assume that Cy, : M + — L' is bounded. Then

P ({1}) € {0,1} with [p(z0) =1 = ¢'(x0) # 0].

Indeed, since C, is a bounded operator and 1 belongs to the range of ¢,
the first conclusion follows from Lemma 3.6.

In the sequel, we concentrate our attention on weighted composition op-
erators with a specific condition which shall ensure the boundedness of the asso-
ciated composition operators.

Let us precise our framework. In the sequel, for convenience, we recall
that we denote » *({1}) by E,. The following condition on ¢ is a smoothness
condition.
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Definition 3.9. Let ¢ : [0,1] — [0,1] be a measurable function. We
say that ¢ satisfies condition (R), if

e For every x € ¢ ' ({1}), the (restricted) functions Pllz,1) and Pjo,.a] are ct
at the point x, with py(z) >0 and ¢.(z) <0

o sup p(K) < 1 for every closed subset K of [0,1] \ E,, where K = [0,1] \ Q,
U}ZthQ: U ($_8m7x+8m)7
p(z)=1

where .(x) and )(x) stand for the right and left derivative of ¢ at the point x.

The first condition implies that the set E is a discrete subset of the com-
pact [0, 1], hence is at most countable (finite when ¢ is continuous). A fortiori, it
has zero Lebesgue measure, which is a necessary condition to ensure boundedness
(recall Proposition 3.3).

On the other hand, when ¢ is continuous the second condition is clearly
irrelevant.

The next Theorem gives a characterization (under condition (R)) to ob-
tain a bounded weighted composition operators on Miintz subspaces of L. We
shall use the following function, associated to ¢, verifying

( 1

1
+ if x € E,N]0,1
@ @) N0,
L(z) ! ifz=1¢E
€T) = I r =
@y (1) ’
1 if 0eF
I xr= .
WEA0] ’

Theorem 3.10. Let ¢ : [0,1] — [0,1] satisfying condition (R) and
€ L™ which is continuous at each point of E,. Then
©

TyoCyp: My — L' is bounded if and only if Z |t(z)|L(x) converges.
€k,

Proof. Let us first assume the boundedness of 7, o C,. The sequence
(A +1)2*),, belongs to the unit ball of M}. For each z € E,N(0,1), according
to condition (R), and the continuity of ¢ at x, there exists €, > 0 such that
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0 < ¢(t) < 2p,(z) for every t € [z —e,,7] ; 0 < |¢'(t)] < 2|p..(z)| for every
1
t € [x,x +e;] and |P(t)] > 5\1/}(:1:)] for every t € [ — &4, + £;]. Moreover, we

can assume that the intervals [x — e,,x + ;] are (pairewise) disjoint.
Fix a finite subset E of E, N (0,1). Then we have

Ttey

1 + Do >Z/ (on + Dot [6(1) d

er T—Eg

T+eg
>3 L r/ (o + 1 ()t

meE

> a;eZE |vh()| (W /x_am(kn + () (t)dt
1 T+Eqx Ny
s Qe De®e <t>dt>

>3 e r( (1t —a™ )

zel l
1
—1-7(1 — oz + 6$))‘"+1) :
T\~

Letting n going to the infinity, we obtain

1T 0 Cell 2 3 10(@) (490;1(@ N 4r¢;1<z>|>'

zelR

Since E is arbitrary, we have the conclusion.

Now, we suppose that Z |t)(z)|L(x) converges. By assumption, for
z€E,
every x € E,, there exists e, € (0,1/2) such that

Vit e (x —ez,x)N0,1],

and
e (z)
2

Vt € (z,x +¢e,)N[0,1], > ¢ (t) > 2¢)(x).

We fix a summable (countable) family of positive numbers u,,, indexed by
E, and write A, = ug(¢)(z) + |¢;.(z)]) > 0.
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Let Q = U (r—eg, x+€,). We can choose ¢, small enough to ensure that
rEF,
this is a union of disjoint subsets and that the oscillation of ¢ on (v — ey, 2+ £5)
is less than A,. Now, K = [0,1] \ © is a closed set disjoint from F,, hence
M = max ¢(K) < 1. Using Proposition 2.3, we obtain

T+eg
19-CoDll - < ool fllpary + Y (/ !w(t)!-!f(so(t))!dt>

z€E, —Ea

AODIlo 1711+ 3 (%/( Fldy

€k,

@) +A) 1
F T L )‘d>'

Thus 7y o CcP is bounded and

1750 Coll <A blloe +2 3 ib(a) (1) G ,)+2Z%

€, €,

Let us mention that, without any assumption of continuity on v, a suffi-
cient condition for the boundedness of the weighted composition operator is that
1 lies in L™ and the boundedness of Cy, (see the condition below).

Corollary 3.11. Let ¢ : [0,1] — [0, 1] satisfying condition (R). Then

1 1
C,: Mt — L' is bounded if and only if — converges.
ot Ma XE: @ A

Moreover, in this case,

(i) If o~ L({1}) is not empty then there exists some constants ki and ko > 0
such that k1| flli < |Co(F)ll < kol fll1-

(i1) Cy is compact if and only if Cy, is nuclear if and only if ||¢|loo < 1.

Proof. The first part obviously follows from Theorem 3.10.

Now, let us prove (). Let us assume that zq € o' ({1}) with 2o > 0 (else
it is easy to adapt the argument). There exists 6,9 > 0 such that 0 < ¢/(x) <



Essential norms of weighted composition operators. . . 251

for every t € (xg — €9, x0). We have

IS (2 2/% ’f(¢(t))’dt2% T el @ dt
1 [t 1
-1 / o Oy 2 sl

thanks to Proposition 2.3.

The assertion (i7) is clear: if ||p||oo < 1, then Cy is bounded and nuclear,
thanks to Lemma 3.4. If C, is nuclear, it is compact. Finally, if C,, is (bounded
and) compact, it clearly follows from (i) that o~ !({1}) must be empty, hence
©([0,1]) C [0,1], so ¢([0,1]) C [0,a] where o < 1. O

In the rest of the paper, our functions ¢ and v shall satisfy the following
condition, which ensures boundedness of the associated weighted composition
operator (thanks to Theorem 3.10):

Definition 3.12. Let ¢ : [0,1] — [0,1] be a measurable function. We
say that (p,v) satisfies condition (B), if

e o satisfies condition (R).

e ¢ € L™ and is continuous al each point of E,.

) Z | (z)|L(x) converges.

€,

In the sequel, we shall simply say that ¢ satisfies condition (8B) when
(p, I) satisfies condition (B) (i.e. 1 = 1).

4. Compact operators. We characterize the compactness of weighted
composition operators 7y, o C, whose associated symbols satisfy condition (B).

Theorem 4.1. Let (p,) satisfies condition (B).
Then the operator TyoC,, : M}\ — L' is compact if and only if Vg, =0.

By convention ¢¢gy = 0.

Proof. Assume that ¢, = 0.
Let (fn)n C My such that ||f,]1 < 1. By Corollary 2.5, there is a
subsequence (fy,)r that converges to f uniformly on every compact subset of
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[0,1), where f belongs to the unit ball of M4i. Then f o ¢ is defined almost
everywhere on [0, 1], because m(¢ ™1 ({1})) = 0 and f is defined almost everywhere
on [0,1].

Let h = (f o ) - 9. The function h is a well defined measurable function
on [0,1]. We claim that |7y o Cy(fn,) — hlli — 0 when &k — 400, so that
h= klirgo’];/, 0 Cy( fn,) belongs to L' and hence Ty o Cy, is compact.

Indeed, let € > 0. We can find a compact subset K of [0, 1]\ E, such that
|9 e| < €. Then, writing A = sup p(K) < 1:

1
1700 Colfu) — bl = /0 o (@) () — h(x))da
< e = Pl blloo + 21C, ] - sup [(2)
xEKe

which implies that there exists some kg € N such that
1750 Col i) — bl < (14 2] Cyl)e  for every k > ko

and thus [|7y 0 Cy(fpn,) — h|li — 0 when k& — 4o0.

Conversely, assume now that 7, o C,, is compact.
The sequence ((A,+1)z*), belongs to the unit ball of M}, therefore there
exists h € L' and a subsequence ny, such that klim 17 0Cp((Any + 1)) —hl|y =
—00

0. Without loss of generality we may assume that (\,, + 1)@[)@’\"1@ converges to h
almost everywhere (a.e.) on [0,1]. Now, since ¢(x) < 1 a.e. (and v is bounded)
we infer h(z) =0 a.e. and therefore

1
| O Dol p@lde — o
0 —

Let ¢ € E,, so according to condition (B), and the continuity of ¢ at xo, there

1
exists g9 > 0 such that 0 < ¢/(z) < 2¢)(z0) and |[¢(z)] > 5\1/}(:1:0)\ for all

x € [xg — €0, x0] (if £o = 0 we work on the right of xy). Then we have

z0

1
| Ot ptarep@ids = gl [+ Dotaprds

To—¢€0

Vv

W(wo)\ o Ak o (22)da
4} (z0) /3;0—60()\nk + 1D)p(z) @ () d.
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So we obtain,

19 (20)|
4p)(z0)

1
| Ot Do i)l > (1 ol — 20+
0

This imposes ¥ (zg) =0. O

Corollary 4.2. Let ¢ : [0,1] — [0,1] satisfying the condition (B), and
¥ a continuous function. Then we have:

(1) Cy is compact on M} if and only if ||¢|le < 1.

(2) Ty is compact on My if and only ¥(1) = 0.

Proof. Applying Theorem 4.1 with ¢ = 1, we get 7;,0C, = C,, and, C,
is compact if and only if 1), = 0, equivalently E, = () equivalently ||pllc < 1
which gives (1).
We now apply Theorem 4.1 with ¢(x) = = to get 7, 0 C, = T, and then 7y, is
compact if and only if g, = 91y = ¥(1) = 0 which proves (2). O

5. Essential norm. Recall that the essential norm of an operator
T:X —Yis

|T||e = inf {||[T — S| : S is a compact operator from X to Y }.

Clearly an operator is compact if and only if its essential norm vanishes.

The next result gives the exact value of the essential norm of the weighted
composition operator 7y o Cy,. The estimation uses the functions f,(z) =
(An + Dz,

Theorem 5.1. Let (p,v) satisfies condition (B). Then we have

1T 0 Colle = lim [Ty 0 Co(fu)llr = D [9()|L(2).

€k,

Proof. Let ¢ > 0. For every x € E,, there exists ¢, > 0 such that
(of course, if x = 0 or x = 1, we have to replace (z — e;,2 + €;) by (0,g9) or
(1 — &1, 1))
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(i) For every t € (z — e5,x + £), we have |p(z) — P(t)]| < e.
(ii) For every t € (z — €, 2), we have ¢'(t) > 0.
(ii) For every t € (z,x + &,), we have ¢'(t) < 0.
(iv) The intervals (z — 5,2 + €;) (where x runs over E,) are disjoints and

included in [0, 1].

For any zg € E,, we write J,, = (20 — €40, %0 + €2,) N [0,1].
Let Q = U Jzo- This is an open subset of [0,1]. The set K = [0,1]\ 2

o€,
is compact and, thanks to condition (R), we have s = sup p(K) < 1.

Step I. We first claim that lim |70 Cy(fa)lli = > [¥(0)|L(o).

o€,
Indeed
17,0 Cotills = [ 1Fale®ilde+ [ 1faet)otalat
On K, some uniform majorizations give:
J 100 de < st o)

and the right hand side converges to 0.

Next, we claim that
(1) Jm [T Cotllh = 3 lim [ fule)iv)d

o€, JCCO

and that it suffices to show that, for each xy € F,,
(2) lim [fu(e()(t)] dt = [¢(x0)|L(zo).

n—oo J g
z0o

We first give now the details for (2). Let zg € E, \ {0,1} (and the computation
easily adapts when z¢ = 0 or 1): for every t € J,,, we have

(1 =e)(zo)| < [9(B)] < (1 + &)[o(wo)l,
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which implies

(L =e)le(zo)l | [falp@®))]dt S/ [ (8))(2)| dt

Jzg Jzg
< (1+ &)|(ao) /J Fulp(t))] dt.

Making on each (left-right) sub-interval of J,, the (natural) change of
variables, we have

e PO P T
/Jxo |f”(¢(t))’dt_/gy(xo_a)()\"ﬂ) @ (071 (u) /4.0(330+5)()\n+1) (o7 (u)’

“Hu)) < (1 +¢)pj(zg) for every u € [p(xg — §),1], and
—(1+e)¢l (zg) for every u € [p(xg+0d), 1] hence

‘6\
5=
L
g/—\

|/\

1 1 ! A,
/| eoar= 1+5<¢;<x0> [ Ot

1
+%/ (An + Dutdu
’¢r($0)’ p(zo+9)

1 1
- / (An + Dt du
1:0) p(xo—0)

1
+/;/ (An + Dudu
’907"('%0)’ p(x0+0)

Collecting the quantities and letting n — oo, we obtain that for n large
enough

1-2¢

1+

(z0)|L(zo) < / | fn(0(0)10()] dt < 11+ 2¢

0

|1 (w0)|L(z0)

and, since ¢ is chosen arbitrarily small, claim (2) is justified.
Concerning claim (1), let us first point out that

hm |7y 0 Co(fr)ll1 = hm Z / Ja(o(®)|(t)] dt

onE
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Now, it suffices to apply the Lebesgue domination theorem (with respect to the
counting measure). The domination is justified by the previous estimates. Indeed,
for each zg € E,, we have

1 1 1
. Fale@)p @) dt < — (¢;(x0) + \Lp;(xo)y>

which is summable thanks to condition (B).

Step II. We claim now that |7y o Cylle < lim || 7y 0 Cy(fr)|li-
n—oo

There exists a function h, which is continuous at each point zg € E,. and
such that the restricted functions satisty hy g, = 0 and hjx = 1; with h taking
its valued in [0, 1]. Indeed, for instance, define h(t) = |t — xg|/e,, when ¢ belongs
to Jy, and h =1 on K.

Let ¥ = h - 4. We have

170 Co =T 0 Coll = sup | (1= Wlw(a)|f(o(w)lda
Iflli<1/9
flp dx
f1<1x(;3 / Bl et))

< Y sw H@/JHJ;CO/ f(o(x))|d.

z0€E, HfH1<1 Jo

It 2 € Juy, then [z — xo| < &uq 50 [Pl1, = sup [¢(z)] < [ih(x0)] + e

J}GJ:CO
On the other hand, using the computation in step I, we get

[ 15e@)ltr < L@l

Jag

We obtain

Y ([ (o)l +e)Lao).

ro€EFR

1
1Ty 0 Cp = Ty 0 Cll < ——

Now, since (1:)| g = 0 and is continuous at each point of E,, thanks to
Theorem 4.1, we know that 7,,_o C, is compact.

Hence, |7y 0 Cylle = inf{||Zy 0 C, — S| : S is a compact operator on My }
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IN

17 0 Cp = Ty 0 G|

L ST (o)) + &) L(zo)

1—¢
ro€EE

IN

Since € is arbitrary we get

1Ty 0 Colle < D [tb(xo) | L (o) = Jim ([ 7y 0 Co(fn) -
ro€EE
Step III. It remains to prove |7y o Cy|le > lim || 7y 0 Cu,(fr)||1-

If E, =0, we have [|¢]|oc < 1 and C,, is compact, as well as Ty o Cy,
therefore ||7y, 0 Cyplle = 0= lim ||Zy o Co(fr)1-
n—~oo

We may now assume that E, # 0. Let S : M}\ — L' be a compact
operator.
We want to show that |7y o Cp, — S|| > lim ||7y o Cu(fn)]l1-
n—oo

Since S is compact and || fn|lcc = 1, then there exists a subsequence
{fn,;}j21 and f € L' such that lim [|S(fs,) — f|li = 0.
j—00

We have limsup [[(7y 0 Cp = 5)(fa;) 1 = lim [[Zy 0 Cp(fi)l1-
j—oo
Indeed,
[(Zy 0 Cp — S)(fuj)llh = [Ty 0 Co(fn;) — flln = 1S(fny) — flls
which implies that
limsup |[(Zy o Cp — 5)(fnj)H1 > lim sup |7y o C¢(fnj) — fl-

J—0o0 J—0o0

So it suffices to show that limsup |7y o Cy(fn;) — fli = lim [Ty o

j—o0
Co(fn)ll1-
Let ¢ > 0. Since f € L', there exists 6 > 0 such that / |f(z)ldr < e
U

where U = (E, 4 (—6,6)) N[0, 1], thus
1T 0 Colhn) — flh > / T, 0 Col fo i — /U f(@)|dx
> | 110 Gyl lda ¢

2 1% Cplfa)l = ¥loe sup Jay ) —
€»(10,
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According to step I, the sequence (||7y o Cy(fn)||1)n is convergent. On
the other hand, (f,) is uniformly convergent to 0 on compact subsets of [0, 1).
So letting j — oo, we get

limsup |75 0 Cy(fa,) — £l > lim 1T 0 Colfu)| — <.

Jj—00
Since € is arbitrary, we deduce that

limsup |7, 0 Cy(fa,) — £ > lim 1T 0 Colfu)].

Jj—oo
which proves the last step and completes the proof of the theorem. O

Corollary 5.2. Let ¢ : [0,1] — [0,1] be a function satisfying condition
(B) and ¢ € C([0,1]).

Then,
0 i el < 1
Coulle =
S ICle=1 S e i e =1
€,
)

Remark 5.3. If we denote by ||-||5° (respectively ||-||}) the essential norm
of an operator defined on Mg® (respectively on M} ), we note that |7y ||2° = || 7y ¢,
contrariwise (see [2]) we have

1= |G £ IC L = 3 (ﬁ - ﬁ)

ek,

Corollary 5.4. Let ¢ : [0,1] — [0,1] be a function satisfying condition
(B), such that Cy, is not compact (i.e. 1 € Imyp) and ¢ € C([0,1]). Let Cy, 0 Ty,
from M} to L', then its essential norm is

1 1
vl 2 (%(z) - 904(56))'
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Proof. Let f € My, then C, 0 Ty(f) = (f o) (1 0p) = Tyop 0 Cy(f).
Therefore Cy, 0 7y, = Tyo, 0 O, and hence by the preceding theorem, we have

1 1
Co,oTylle = | Twow © Colle = |¥(1 — . O
” (4 ¢|| ” Poyp <P” | ( )|x§¢ (90;"(13) Cp;(l‘))

Remark 5.5. It is easy to see that most of the results of this paper are
still valid when M} is replaced by a Banach space X satisfying : Mi ¢ X c L'
and each f € X is continuously differentiable on [0,1). Nevertheless the natural
examples of such spaces seem to be only Miintz spaces (i.e. X = M 1{, with
AcCA).
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