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ABSTRACT. We give a nonassociative version of Martindale’s lemma, and as
a consequence, we obtain a semiprime GPI-theorem: if A is a multiplicatively
semiprime algebra, M (A) is its multiplication algebra and C' is its extended
centroid, then the following are equavalent: (1) CM(A) has a finite rank
operator over C; (2) M (A) is GPI; (3) there are F;, G;, H;j, K; € CM(A) and

pi,q; € A with F;XG;Y (p;) # 0 for some ¢, and such that Z FXG)Y (pi) =
i=1
ZHjYKjX(qj) (for all X,Y € M(A)); (4) there exists F' € M(A) and

j=1

a € A such that the FMc(Q)F (a)) is C-finitely generated.

Introduction. In this paper, we will deal with semiprimes algebras
which are not necessarily associative over a fixed field K of zero characteristic.
Recall that an algebra B is said to be semiprime (respectively prime) if I # 0
(resp. IJ # 0) for every nonzero ideal I (respectively all nonzero ideals I,.J)
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of B. Given a semiprime associative algebra A, the so called symmetric algebra
of quotients @Q(A) of A is probably the most confortable algebra of quotients
of A. The centre C 4 of Q4(.A) is a unital semiprime commutative associative
algebra extension of K, called the extended centroid of A, and the C 4-subalgebra
Q4 of Qs(A) generated by A is called the central closure of A. Both C4 and
Q4 play a fundamental role in GPI-theories. In this framework, the standard
definition of a generalized polynomial identity (GPI) requires the introduction of
an appropriate generalization of a free algebra, which provides a suitable setting
for “generalized polynomial”. Roughly speaking, for a multilinear generalized
polynomial identity of A, we mean an identity of the form

No
_ § : § : o o o o
(19(1‘1, T2, ... ,xn) = aoixa(l)alil‘a@) e a(n—l)ixff(”)ani’
0€Sn 1=1

where a;,; are fixed elements in Q4(A). A is said to be GPI if there is a nonzero
GPI @ such that ®(ay,as9,...,a,) = 0 for all a; € A. For a comprehensive
treatment and for references to the extensive literature on Q4(.A) we refer to the
books [4] and [3]. W. S. Martindale proved in [20, Theorem 1] (often referred as
Martindale ’s lemma) that if A is a prime algebra and p,q € Qs(A) satisfy that
L,R, = LsR,, then there is A € C4 such p = Ag. It was extended to semiprime
context in [3, Theorem 2.3.11]. As a result in [3, §6.3] it is obtained a semiprime
GPI theorem: If A is a semiprime associative algebra, then A is GPI if and only if
there is an abelian idempotent E of C'A such that EC AFE is C-finitely generated.
These results are a cornerstone of GPI-theory. The goal of the present paper is
to give a nonassociative version of Martindale’s lemma and, as a consequence,
to obtain a semiprime GPI-theorem, which may serve in the construction of a
GPI-theory for nonassociative algebras.

In the general nonassociative setting, the absence of algebras of quotients
complicates the presentation of the extended centroid and the central closure,
which were introduced and developed by T. S. Erickson, W. S. Martindale, and
J. M. Osborn [18] in the prime context, and by W. E. Baxter and W. S. Martindale
[2] in the semiprime context (see also [16]). Later, another approaches to these
concepts have appeared in the literature: see the books by Y. P. Razmyslov [21,
§3] and R. Wisbauer [22, §32]. For a recent treatment we refer the reader to [11,
§2.1]. As it is made clear below, the multiplicatively semiprime algebras turn
out to be the appropriate framework for translating to nonassociative setting the
semiprime associative results. Given an algebra B, for a € B, we will denote by
L, and R, the operators of, respectively, left and right multiplication by a on
B. The multiplication algebra M(B) of B is defined as the subalgebra of L(B)



On Martindale’s lemma for nonassociative algebras 3

generated by the identity operator Idp and the set {L,, R, : a € B}. We say
that an algebra B is multiplicatively semiprime (in short m.s.p.) whenever both
B and M (B) are semiprime algebras.

The need for such extensions is justified for the breadth of the class of
m.s.p. algebras. Of course, associative semiprime algebras are multiplicatively
semiprime algebras [15, Section 4]), and a similar result holds for many nearly
associative algebras (see the papers [5, 7, 10, 17]). Algebras with a semiprime
multiplication algebra were first studied by N. Jacobson [19] and A. A. Albert [1]
in a finite dimensional context. Without any restriction on the dimension, the
study of m.s.p. algebras was initiated in [5].

We shall assume throughout this paper that A is an m.s.p. algebra and
we will denote its central closure Q4 simply by @ and its extended centroid C'4
simply by C.

1. Preliminaries. In this section we fix the relevant material on the
extended centroid for an m.s.p. algebra. The starting point of this path relies
on the possibility of associating an idempotent of the extended centroid to each
subset of central closure. This result is well-known in an associative context (cf.
[3, Theorem 2.3.9 and Lemma 2.3.10]) and it was established in [9] in a general
context.

1.1. Notation. First of all, we establish the notation used. Let B be an
algebra. For any subspaces S of B and N of M(B), the subsets S*" of M(B)
and Nyun of B are defined by

S ={F e M(B) : F(S)=0} and Napny = {a € B : N(a)=0}.

It is well-known that an ideal of M (B) is essential if and only if Py, = 0. The
set (S*™™")anng is called the e-closure of the subspace S of B, and will be denoted
by either SB or SMB. A subspace S of B is said to be a dense subspace of B
if B = SP, that is to say whenever S®™ = 0. The e-closure enjoys a relevant
property, namely the so-called property of continuity [5, Proposition 1.8]: If
F € M(B), and if S is a subspace of B, then F(S"8) C F(S)"5.

Note that B has a natural structure of left M (B)-module for the valuation
action. In fact, if B is a dense subalgebra of an algebra ), then () also has a
natural structure of left M (B)-module. Indeed, for each F' € M (B), there exists
a unique F' € M(Q) such that F’(a) = F(a) for every a € B. Moreover, the map
F — F' becomes a canonical algebra embedding M (B) < M(Q). Thus, Q has
a natural structure of left M (B)-module given by

F.-q:=F'(q) forall Fe M(B)andqE€ Q.
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By abuse of notation, we will write F'(q) instead of F - q.

Let us introduce the concepts of extended centroid and central closure.

If C' is a semiprime commutative associative unital algebra and @ is a
C-algebra then, for a subset S of @), we will denote by CS the C-subspace of @
generated by S. Of course, if () = C'B then B is dense in Q).

Between the different approaches to the concepts of extended centroid
and central closure for a semiprime algebra we prefer to take advantage of the
characterization given in [11, Theorem 2.4]: The extended centroid Cp and the
central closure Qp of B are determined by the following properties:

(P1) Cp is a unital semiprime commutative associative algebra, Qg is an algebra
extension of B, and @)p is generated by B as a Cp-algebra.

(P2) For each ¢ € @p, there exists an essential ideal D of B (that is, DN I # 0
for any nonzero ideal I of B) such that DM (B)(q) + M(B)(q)D C B.

(P3) If ¢ € @Qp satisfies either DM (B)(q) = 0 or M(B)(q)D = 0 for some
essential ideal D of B, then ¢ = 0.

(P4) For each essentially defined centralizer f : D — B, there exists a unique
element A\ € Cp such that f(z) = Az for every z € D.

Obviously @p = C'B and it is easy to prove that C'g is von Neumann regular (c.f.
[3, Theorem 2.3.9.(iii)]) and that Qg is semiprime (see [11, Proposition 2.1]). B
is said to be a centrally closed algebra whenever B = Qp. Of course, (p is a
centrally closed algebra (see [2, Theorem 2.15.(c)]).

Recall that the set Z¢, of all idempotents in Cp has a partial order given
by e < f if and only if e = ef. Moreover, Z¢, is a Boolean algebra for the
operations

eNf=ef, eVf=e+f—ef, and e =1-—e.

Proposition 1.1 (][9], Proposition 1.6). Let B be a semiprime algebra
and let S be a nonempty subset of Qp. Then

(1) There exists a unique e(s) in Zcy, such that

{)\ eCp : AS = 0} = (1 - 6[5])03;

(2) egip=p for everyp € S and for any e € Loy, ees) = €€|g)-
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On the other hand, it is well known that Qs(Cp) = Cp, and so
(1) Ccp = CB.
In particular, by [3, Theorem 2.3.9], given a nonempty subset S of Cp:

1) There exists a unique ejg in Z¢g, such that
(5] B

{)\ S C; AS = 0} = (1 — 6[3})03;

(2) esgA = A for every A € S and for any e € Zcy, efes) = e€|s)-

In this paper, frequently use is made of these properties, often without
explicit mention. It is obvious that S = {0} if and only if ejg) = 0. For each
element x in @ or C, we will denote by e[, the idempotent associated to {x}.

Next let us prove an elemental fact.

Corollary 1.2. Let B be a semiprime algebra and let A be in Cg. Then,
A is invertible if and only if e[y = 1. As a consequence, A+ (1— e[)\]) 1s invertible

forall e C.

Proof. Suppose that there exists p € C such that pA = 1. It is
clear that 1 = e\ < epy. For the converse, suppose that e,y = 1. Since C
is von Neumann regular, there exists u € C' such that pyA is an idempotent and
pAXN = A. Hence puA = plep) = ey = ey = 1. Finally, fix A € C and
consider pt = A + (1 — epy). It is clear that pepy = A and p(1 —epy) = (1 — epy))-
In particular e, (1 —epy) = (1 —epy)) and ey ey = epy), and therefore ¢
ejuep + e (1 —epy) = 1, as required. O

1

Let B be a semiprime algebra. The algebra Mc(Qp) of Qp over Cp is
defined as the subalgebra of the algebra Lo, (Qp) (operators on @Qp) generated
by the identity operator Idg, and the set {L,, R, : ¢ € Qp}. It is clear that

Mc(@p) = M(@B) + Cpldg,.
A second result allows us to relate the idempotent of an element and the
idempotent of the ideal generated by itself.

Corollary 1.3. Let B a semiprime algebra and let S be a subset of Qp.
Then ero(Qp)(s) = €ls)-
Proof. Since S C Mc(Qp)(S) we have e[s] < €Me(Qp)(s)- On the
other hand, ejg)Mc(Q5)(S) = Mc(Q)(es)S) = Mc(Qp)(S), so,
€[Mc(QB)(S)] = ClesiMc(QB)(S)] = €[SI€[Mc(QB)(S)]

thus e[n(@p)(s) < €s)- U
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Given a Cg-submodule N of Qp, we will say that N is Cp-finitely gen-
n

erated if there exist q1,qo2,...,q, € @p such that N C ZCqu. Note that if

p,q € Qp then it may happen that p € Cpq but q ¢ C’sz.l Borrowing the def-

inition given in [13], we will say that n nonzero elements ¢1,q2,...,q, of @p

are linearly C-independent (or that the set S := {q1,q2,...,qn} is linearly Cp-

independent) if, for all A, Ao, ..., A\, € Cp, Z Aig; = 0 implies A;q; = 0 for all

i€ {1,...,n}, or equivalently, if the C-linear envelope N of the subset S satisfies
n

that: N = @Cqu.

=1
A careful reading of the proof of [13, Corollary 1.3 and Corollary 1.4]
allows us to assure that the next result remains true for semiprime nonassociative
algebras.

Corollary 1.4. Let B a semiprime algebra and let M be a Cp-finitely
generated Cp-submodule of B. If N ; M is a Cp-submodule of B, then there

k m
are pi1,p2,...,Pm € Qp such that N = @CBpi and M = N & @ Cpp;.
i=1 i=k+1
Given a nonzero finitely generated C-submodule M, we will say that
dimz, (M) = n whenever

k
n = min {k: e N: Jp;,pa,...,px € Q\{0} such that M C ZCBZ%} .
i=1
1.2. Semiprime associative algebras. In this subsection we give a
slight extension of Martindale’s lemma (see [3, Theorem 2.3.11]). This one is
essentially known (see [3, Sections 2.3 and 6.3], but we will include its proof by
the difficulty of giving a specific reference and by highlight the kinds of ideas that
are handled.

Lemma 1.5. Let A be a semiprime associative algebra and let py, ...,
DPrs q1s -5 qn € Qs(A). Assume that {p1,...,pn} or {q1,q2,...,qn} are lin-
n

early C-independent sets. Then sz‘fb‘% = 0 for every x € A if and only if
€pi)€lq;) = 0 for all 1 =1,2,... ,n. Zjl%s a consequence, gien ri,...,Tn, € Qa, then
Zn:pi:vqiym = 0 for all x,y € A if and only if e, €4 €] = 0 (or equivalently,
é[:qi]e[ri]pi =0, or epp, (g7 = 0) for all i.
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Proof. Assume that q1,qo,...,q, € @ are linearly C-independent. It is
n

clear that if e[, e(,) =0 for all i € {1,...,n}, then Y pizg; =0 for all 2 € A.
i=1

In order to prove the converse, assume that Z pixq; = 0 for all z € A and

=1
there is j such that €[p;1€lq; ] # 0. For simplicity we can suppose that e, e, # 0.

Therefore ep,,191, g2, - - - ,qn are linearly C-independent. By [3, Theorem 2.3.3]

there exist s;,t; € A such that G € M(A) defined by G(z Z sjxt; verifies
7j=1

that G(ep,)q1) # 0 and G(g;) = 0 for all i € {2,...,n}. Put ¢y = G(ep,1q1) # 0,

and note that, for every z € A, we have:

= Pirs;qi | tj = PiTSs;qit; pizG(ep,)qi) = P12d).
> (X S (Smennts) = 3o notieym) =
J=1 \i=

7=1 \:i=1 =1

That is, 0 = p1zq]; = p12G(q1) for all # € A, which is a contradiction because
G(epyq1) # 0 (see [3, Corollary 2.3.10]).

n
Finally, if we assume that Zpixqiym = 0 for all z,y € A then by the
i=1
first assertion ep,q,1€r,) = 0, for all i and for every z € A. Therefore, again
by [3, Corollary 2.3.10] we deduce that e, e[ €] = 0. The converse is also
obvious. O

Thus, we obtain the first extension:

Proposition 1.6. Let A be a semiprime associative algebra and let p;,
gis ¢j, dj € Qs(A) be such that for all x € A

n m
(2) > piwgi =) cjud;.
i=1 j=1

If p1,p2,...,pn are linearly C-independent, then each ep,q; is a C-linear com-
bination of di,da, ... ,dm. Similarly, if q1,qo, ..., q, are linearly C-independent,
then each ejq,p; is a C-linear combination of c1,ca,. .., Cm.

Proof. Assume that pi,po,...,p, are linearly C-independent and put
S=A{p1,---,Pn,q1,--.,qn}. By suitably reordering of the summands appearing
in the right hand side of (2) we may assume, by Corollary 1.4, the existence of
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n m n T

r € {1,...,m} such that @Cpi + Zch = @Cpi @ 6}00?C for convenient
i=1 j=1 i=1 k=1

- For each j € {1,...,m} we write

n T
cj = Z alpi + Z 5%02. for suitable o, 5% eC.
i=1 k=1

Then, for each x € A we have

n m m n ) T )
Zpixqi = Z cjzd; = Z (Z alp; + Z 5%02) zdj,
i—1 =1 k=1

j=1 \i=1
and hence
n m ) T m )
S opiw g — | D oddi || =D ca | Y Bld;
=1 j=1 k=1 j=1
Therefore, by Lemma 1.5, e;  «m i .er,1 = 0, for all 7. As a consequence,
[i—>"7 o dj] “Ipi]
m
€] = Ze[pi]agdj for all 4. (|
j=1

1.3. M.s.p. algebras. We begin this subsection with an essentially
known result.

Proposition 1.7. Let B be a semiprime algebra. Then B is an m.s.p.
algebra if and only if Qp is.

Proof. Suppose that B is an m.s.p. algebra. Combining [12, Corollary
4.4] and [8, Proposition 4.4], we obtain that @ p is also m.s.p. Now suppose that
Q@ p is m.s.p. The conclusion is a consequence of [14, Proposition 2.2] since B is
dense in Q. O

Recall that, in what follows, A will be an m.s.p. algebra and we will
denote its central closure Q4 simply by @ and its extended centroid C4 simply
by C.

Corollary 1.8. Let g € Q. Then
(3) Q= (Mc(Q)(q) + (1 - e)Q N Q)"

Proof. Set J:= Mc(Q)(q). It is clear that J is an ideal of ). Taking
in mind Proposition 1.7 and [9, Theorem 1.8] (c.f. [12, Corollary 1.6]), by [5,
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Theorem 2.6], we have that Q = (J + (1 —e(;))@ N Q)"?. Therefore, to conclude
it is enough to apply that e[;; = e[y in virtue of Corollary 1.3. O

Recall that the extended centroids of A and M (A) are isomorphic.
Theorem 1.9 ([11], Theorem 4.3).

Quray = Mc(Q)  and Cypa) = C,

and, as a consequence,
Io = ICM( nE

Regarding M (A) as a subalgebra of M(Q), and so, of M¢c(Q), it is im-
mediate to verify that

(4) Mc(Q) = CM(A).
As a consequence we have a nonassociative version of [3, Theorem 2.3.3].

n
Corollary 1.10. Let q1,q2,...,q, € Q and suppose that q1 ¢ Zqu.
=2

Then there exists F € M(A) such that F(q1) # 0 and F(g;) = 0, for all i =
2,...,n.

Proof. A careful reading of the proof of [18, Theorem 3.1] shows
that the primeness of B is not essential, and so, we can assert that there is
G € M(Q) such that G(¢1) # 0 and G(g;) = 0, for all i = 2,...,n. Taking in
mind Theorem 1.9, by property (P2), there exists an essential ideal P of M (A)
such that PM(M(A))(G) € M(A)). In particular Pan, = 0 (see [5, Theorem
2.4]) and PG C M(A). If PG(q1) = 0, then G(q1) € Pann = 0, which is a
contradiction. Hence, there exists T € P such that TG(q1) # 0. Therefore
F:=TG € M(A) satisfies F((q2) =--- = F(¢n) =0 and F(q1) #0. O

The above statement allows us to prove the following

Corollary 1.11. If S is a finitely generated C-submodule of Q) contained
in A, then S is an e-closed subspace of A.

Proof. By Corollary 1.4, there are {q1,q2,...,¢n} such that § =

@qu. Take a € A\ S. By Corollary 1.10 there exists F' € M(A) such tat
i=1

F(q) =+ =F(qu) =0 (so F' € 5™) and F(a) # 0. Therefore, a ¢ 54, that
is, S4=5. O
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2. Martindale’s lemma for nonassociative algebras. In this
section we will present an extension of Martindale’s lemma for nonassociative
algebras.

Recall that if I is an ideal of A we denote by [ : A] the ideal of M(A)
defined by

[I:Al:={FeM(A) : F(A) CI}.

Lemma 2.1. Let I be an ideal of A. Then ef = e, = e[y.4]-

Proof. Fix z € I and a € A, and let us see that ey, xa = e, L;(a) =
L.(a) = za, and so (er,z —x)a = 0. As a consequence, we have (er,x —z)A = 0.
Since A is dense in @), we deduce that ey, x = x. Taking in mind the arbitrariness
of x, wehaveer, I = 1. Thuse; = €er, = €L€I, and hence ey < er,,. On the other
hand, since Ly C [I : A], we have er, < e[;.4. Moreover, for each F' € [I : A]
and for each a € A, we have F(a) C I, and so e;F(a) = F(a) or equivalently
(1 —er)F(a) = 0. In particular, again since A is dense in @), we deduce that
(1 — €[)[I : A] = 0. Therefore, 0= 6(1731)[I:A} = (1 — ej)e[I:A], thus e[I:A] < er.
a

The net result can be seen as a nonassociative version of [3, Lemma 2.3.10].

Lemma 2.2. Let T be a subset of Mc(Q) and let S be a subset of A.
Then the following assertion are equivalent:

1) TP(S) =0 for some essential ideal P of M(A);

[M(A)(S) : A]Mc(Q)T = 0;

(1)
(2)
(3) esT =0;
(4)
()

4) eger =0y

5) erS =0.

Proof. (1) = (2). Suppose that TP(S) = 0, in particular TPM(A)(S) =
0, thus TP[M(A)(S) : A] = 0. Hence the ideal V = [M(A)(S) : A]Mc(Q)TP N
M (A) of M(A) satisfies V? = 0. Since M(A) is semiprime, we have [M(A)(S) :
AlMc(Q)TP N M(A) = 0. By [11, Proposition 2.1] we know that [M(A)(S) :
A|Mc(Q)TP = 0. By [6, Proposition 3.4], P(A) is a dense ideal of A, and so, by
[12, Proposition 2.3], we obtain that [M(A)(S) : A|]Mc(Q)T = 0.

(2) = (3). Taking in mind [9, Theorem 1.8], T C (1—6[M(A)(S):A})M0(Q)ﬁ
Mc(Q). It follows that ejar(a)(s):4)7 = 0, and since S € M(A)(S) € Mc(Q)(S5),
by Lemma 2.1 and Lemma 1.3, ear(4)(s):4] = €s, thus we have es7T = 0.
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(3) = (4). 0 =ecq7 =eger =0.

(4) = (5). erS =egesS = 0.

(5) = Q). TP(S)=erTP(S) =TP(erS)=0. O

Next, we present an operator that performs a similar role to the operator
M, = LqRy in the associative context. For F' € Mc(Q) and ¢ € Q we denote
by Wg,4 the linear operator from Mc(Q) in @ given by

Wr.q(S) = FS(q) forall S € M(Q).

Moreover, for each subset S of Mc(Q), we will denote by W}?,q the restriction of
Wgq to S. We can rewrite Lemma 2.2 as follows.

Proposition 2.3. Let P be an essential ideal of M(A). Let F' € Mc(Q)
and let ¢ € Q. Then the following assertions are equivalent:

(1) WF.q = 0; (2) WF‘-q = 0; (3) e[F}q = 0; (4) €[q}F = 0; (5) e[p}e[q] = 0.

As a first consequence we get two curious results.
Corollary 2.4. Let p € Q and X\ € C. Then e\, = eyj€fy)-

Proof. First, suppose that A is associative. It is obvious that \g(1 —
exp)p = 0 for all ¢ € Q. Therefore, by [3, Lemma 2.3.10], ep(1 — epy) e = 0.
Hence epyjefy) < €[yp)- On the other hand, it is clear that eyjep,epnp) = €[rp], thus
ep] = €[A€[p]- Suppose now that A is nonassociative. It is clear that

W)\qu(l—ep\p])p = WIdQ(l—e[)\p]))\p = WIdQ')\p - WIdQe[Ap])\p = 0.

Since M (Q) is an associative algebra, by the first assertion, we deduce that
€\ Idg] = €[\- Hence, by Proposition 2.3, e[)\]e[p](l—e[,\p}) = 0, thus €[AE[p] < €[Ap]-
The other inequality is obvious as we have seen. O

Corollary 2.5. Let P be an essential ideal of M(A), i = 1,2,...,n,
F; € Mc(Q) and ¢; € Q with some e|pef,) # 0. Then there exist I’ € M(A),
a € A, and e € Zc such that

n

0# FP(a) Ced FP(qgi)

=1

Proof. Suppose for simplicity that e(mjep,) # 0. By Corollary 1.10,
there exists G € M(A) such that G(ejr1q1) # 0 and G(g;) = 0 for all i €
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{2,...,n}. Put ¢} = G(er,q1) and note that for each T' € P, we have

n n
ZFZ‘TG(%‘) = ZFz‘TG(e[Fi]Qi) = [T (q).
i=1 i=1
Thus .
FiPgy € FP(q:).
i=1

On the other hand, since M(A) is an associative algebra and by Theorem 1.9
G € Mc(Q) = Q(M(A)), there exists an essential ideal U of M(A) such that
U CPand iU C M(A). Take S € U such that 1.5 # 0 and e = ep,5(4)- In
particular eq] # 0 (in other case, 0 = €€l = €ms()Cld;) = e[FIS(qﬁ)], which is a
contradiction).

By properties (P2) and (P3) there exists an essential ideal D of A, such
that 0 # DM(A)(qy)) C A. Setting F = FiS and 0 # a € DM(A)(eq}) =
eDM(A)(q}), we have

FP(a) = F1SP(a) € F1SPDM(A)(eq) € FiP(eqi) C ey FP(pi).
i=1
Finally, let us see that ejpja = a. Indeed, there exist € D and H €
M (A) such that a = 2H (eq)) and since epje = e, we have e[pja = a. In particular
€[F|€la) = €[q] # 0. Thus, by Proposition 2.3, 0 # F'P(a). O

For an arbitrary sum we have

Corollary 2.6. Let q1,...,q, € Q and Fy,...,F, € Mc(Q) and let P be
an essential ideal of M(A). If q1,...,qn or F1, ..., F, are linearly C-independent,

then Z qui = 0 if and only if e[, e[q,) = 0 for all i € {1,...,n}.
i=1

n
Proof. Suppose that Z WE, q; = 0. Assume that ¢1, ..., g, are linearly
i=1
C-independent. In order to obtain a contradiction, we assume that there exists
i such that ejp e, # 0. For simplicity we can suppose that e[p e, # 0. By
Corollary 1.10, there exists G € M(A) such that G(e;r1q1) # 0 and G(g;) = 0
for all i € {2,...,n}. Put ¢§ = G(er q1) and note that for each T € Mc(Q) we
have

0= ZFiTG(qz‘) = [ TG(ep 1) = F1T(qy)-
=1
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Thus, by Proposition 2.3 we have 0 = €[F1]q/1 = ¢}, which is a contradiction.
If we assume that Fi,...,F, are linearly C-independent then, accord-
ing to [3, Theorem 2.3.3], we can follows a similar argument Take Hj, K; €

M(A) such that H € M(M(A)) defined by H(H ZH H K verifies that
7j=1

Helg, ) F1) # 0 and H(F;) = 0 for all i € {2,...,n}. Put Fj = H(ep, q1) # 0,

and note that, for every H € M(A), we have:

m

O_ZH <ZFKH) %) ZH = F{H(q).

Thus, by Proposition 2.3 we have 0 = e[ql]F{, which is a contradiction.
In both cases, the converse is obvious since

Z Fuer) el Z WEq- =

Remark 2.7. Taking in mind Corollary 1.4, it is easy to prove that for
every Fi,...,F, € Mc(Q), ¢1,---,9, € Q, and for every essential ideal P of
M(A):

> WE =0 ifandonlyif Y Wrg =0.
i=1 1=1

Our next result is an m.s.p. version of Proposition 1.6, which can be
considered as an m.s.p. version of Matindale’s lemma.

Theorem 2.8. Let p;j,q; € Q and F;,Gj € Mc(Q) (1 <i<n,1<j<
m), and let P be an essential ideal of M(A) satisfying

n m
(5) ZFiX(pi) = Z G X(q;) for every X € P.
i=1 j=1
If p1,...,pp are linearly C-independent, then each ey, I; is a C-linear combination

of Gi,...,Gn. If F1,..., F, are linearly C-independent, then each er,p; is a C-
linear combination of q1,. .., qm-

Proof. Assume that pi,po,...,p, are linearly C-independent. By a
similar argument to that used in the proof of Proposition 1.6, we deduce that,
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for each X € P,

Y FX(p) =) GiX(g)=> GX <Z olpi + Zﬁi%) )
X j=1 =1 k=1

for suitable r € N, ag,ﬁi € C and q;, € Q such that py,pa, - ,Pns ¢1, G5, 5.
are linearly C-independent. Hence

n m T m
Do\ F- D 0lGi | Xm) =) | D_BIG | X(ap)-
i=1 j=1 k=1 \j=1
Therefore, by Corollary 2.6, e[FFZ;,L:IQg G,)lpil = 0, for all i. As a consequence,
m
elpiFr = D e G-
j=1

Assume that Fi, Iy, ..., F, are linearly C-independent. Taking in mind
Theorem 1.9 and Corollary 1.4, by a similar argument, we can write, for each

jed{l,...,m}
n m ) T m )
D EX (pi=) odg | =D CiX | D B |
=1 j=1 k=1 j=1

for suitable r € N, ag,ﬁi € C and G, € Mc(Q) such that Fy, Fy, ..., F,

!/

1,Gh, ..., G\ are linearly C-independent. Therefore, again by Corollary 2.6,
m

, _ : o I
€ i ™ ol ;] CIF] = 0, for all 4. As a consequence, e[, p; = Zle[pi}ai gj.- O
]:

From Theorem 2.8 we find an m.s.p.-version of [3, Theorem 2.3.11].

Corollary 2.9. Let F,G € Mc(Q) and p,q € Q. Then the following
conditions are equivalent:

(i) WF,p = WG,q;

(ii) There exists p € C invertible such that e, (uF — e;p)G) = 0 and e|g(png —
egp) = 0;

(iii) There exists A € C' such that ep,(F — AG) = 0 and e|g(Ap — q) = 0.

In this case, e[pep] = €G)€[q-
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Proof. (i) = (ii). First of all, note that ejzjep, = e|gefg- In fact

Wr(-eigemp = Wrp = eia1¢1g)Wrp = Wryp — ejgiejq )Wa g = 0.

Therefore, by Proposition 2.3 e[F}(l — e[G]e[q})e[p] = 0, that is, e[Flep] < €[G)€[q-
Applying a similar argument for G and ¢ allows us to conclude the equality. Let
us call e = e[pje,. By Theorem 2.8, there exists A € C such that ey, F' = A\G. It

is clear that eF' = AeG, and taking in mind Corollary 2.4,

€= CleyFl = €G] T CNCGN T ENEGIIC T CINE T Clen:

Take § = eX + (1 —e). By Corollary 1.2, g is invertible and it is clear that
el' = ey, ' = eAG = efG. Therefore,

Waq=Wrp=Werp = WBeG,p = WGﬁep

and by Corollary 2.6, ej)(¢ — Sp) = 0. Finally, multiplying by u = 71 in both
equalities we obtain that 0 = e(q(1g — ep) = e|q(1g — €jqp)-

(ii) = (iii). Multiply by ! in both equalities and take A = p ™ 'e.

(iii) = (i). Suppose that there exists A € C such that ep,(F — AG) =0
and ejg(Ap — q) = 0. It is clear that

Wva = We[p])‘G’p = WG7>\P = WG,@[Q]Q = WG?Q' U

3. Semiprime GPI-theorem. In this section we will give a nonasso-
ciative version of a semiprime GPI-theorem (see [3, section 3]). To this end, we
need to know what happens when the rank of an operator of M(Q) is finite over
the extended centroid.

First of all let us see some sufficient condition that ensures the existence
of finite rank operators.

Proposition 3.1. Let F;,G;,Hj, K; € Mc(Q) and pi,q; be in Q such
that

Y BXGY(p) =) HYK;X(q)).
i=1 j=1

Then there exist F' € Mc(Q) and g € Q such that the operator Wg 4 is nonzero
and has finite rank, whenever e(g, €|, €[p, # 0 for some i.



16 J. C. Cabello

Proof. By Corollary 1.4 and Corollary 2.6 we can assume without
loss of generality that the set {Fy, Fy,...,F,} is linearly C-independent and
e[r]ec; ) 7 O for some i. Fix Y € Mg(Q). By Theorem 2.8, we have
that e;pG;Y (p;) is a C-linear combination of {qi1,q2,...,qn}. Therefore, take
F = e|,G; and ¢ = p; to conclude. O

Now, we see some equivalent conditions.

Proposition 3.2. Then the following assertions are equivalent:
(i) There exists F' be in Mc(Q) \ {0} such that F(Q) is C-finitely generated;

(ii) There exists G in M(A)\{0} such that GMc(Q)G(a) is C-finitely generated
for some a € A such that G(a) # 0.

Proof.

(i) = (ii). Since F' € Mc(Q) \ {0} there exists 0 # p € @ such that
q = F(p) # 0, that is, 0 # ep(p) = erepp) = ereq, and so, by Proposition
2.3, eqF' # 0 and, of course, by assumption FMc(Q)(q) C-finitely generated.
By Corollary 2.5 there is G € M(A) and b € A such that 0 # GM(A)(b) C
FMc(Q)(q). Since 0 # GM(A)(b), there is T € M(A) such that 0 # GT'(b). If
we take a = T'(b), then we have

GMo(Q)G(a) € GMe(Q)(b) € FMo(Q)(q),

and so, GM¢(Q)G(a) is C-finitely generated.

(ii) = (i). Assume that there is @ € A and G € M(A) satisfying that
GMc(Q)G(a) is C-finitely generated and G(a) # 0. Take F' = e|g()G. By
Corollary 1.8,

F(Q) C F(IMc(Q)G(a) + (1 — ejgay)Q@ NQ)"),

and so, by the continuity of the e-closure

F(Q) C [F(Mc(Q)G(a) + (1 = eg(a)))Q N Q)] "2 = [G(Mc(Q)G(a))] 4.

Thus, by Corollary 1.11, F(Q) C G(Mc(Q)G(a))), which asserts that F\(Q) is
C-finitely generated. O

In light of Proposition 3.2, the following result becomes an m.s.p. version
of [3, Lemma 6.1.4] (see also [20, Theorem 2]).

Lemma 3.3. If there exists F' € Mc(Q) such that F(Q) is a finitely
generated C-submodule of Q, then FMc(Q)F is a finitely generated C-submodule

of Q.
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Proof. Let F € Mc(Q) be such that F(Q) is a finitely generated C-
submodule of @. By [13, Corollary 1.4] there exist ¢1,¢2,...,q, € @ such that
n

F(Q) = @ Cqi. Let p; € Q be such that F(p;) = ¢;. On the other hand, for
=1

n

each i consider the map ¢; : Q@ — e[;,)C defined by F(q) = ngi(q)qi for all
i=1

q € Q. Note that by assumption on ¢;’s, ¢; is unique. Thus, set

where (¢; ® ¢;)(q) = vi(q)q;, for every ¢ € Q. Then for any G € L¢(Q),
i,7€{l,...,n} and q € Q, we have

(p; ® 4;)G(pi @ 4i)(q) = (vj ® ¢;)G(pi(Q)a) = (v @ 4j)(vi(0)G(gi))

= 0i(@)p;(G(4:))a; = ¢;(G(:)) (v ® g;)(q),

which proves that F'Mc(Q)F is spanned by the rank one operators ¢; ® g;, for
i,7 €{1,...,n}, and therefore is C-finite dimensional. =~ O

Let A be a semiprime associative algebra. Given a non-empty set X of
variables, we can consider the C-algebra Qs(.A)(X)¢ given by the coproduct over
C of the C-algebra QQ5(.A) and the unital free associative algebra C'(X);. The ele-
ments of Q4(A)(X)¢ are called generalized polinomial identities (in short GPT’s).
As usual we write a GPI @ in the form ®(xy, ..., z,) to indicate the variables that
® involves. Given a map s : X — Qs(A), there exists a unique unital C-algebra
homomorphism from Qs(A)(X)c to Qs(A) extending the maps s and Idg, (4)-
Such a homomorphism is also denoted by s and is called a substitution. Given a
GPI & = ®(x1,...,2,) and q1,...,q, € Qs(A), we put ®(q,...,q,) to indicate
the value of s(®) for any substitution s such that s(x;) = ¢; (1 < i < n). The
algebra A is said to be GPI whenever A satisfies a nonzero GPI.

Finally, we obtain the semiprime GPI-theorem in nonassociative context.

Theorem 3.4. Let A be an m.s.p. algebra. Then the following assertions

are equivalent:

(1) There exists a nonzero operator F' € Mc(Q) such that F(Q) is C-finitely
generated;

(2) M(A) is GPI;
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(3) There are Fy, Gy, Hj, Kj € Mc(Q) and p;,q; € Q with1 <i<n,1<j<m
such that

(6) ZFXG Y (pi) ZH YEK;X(g5).

=1 7j=1
for all X,Y € Mc(Q) and ejpeq,ep,) 7 0 for some i;

(4) There exists F € M(A) and a € A such that the 0 # FMc(Q)F(a)) is
C-finitely generated.

Proof. (1) = (2). Suppose that F' € Mc(Q) verifies that F(Q) is
C-finitely generated. By Lemma 3.3, FM¢c(Q)F is also C-finitely generated. By
[13, Theorem 2.1] (see also [3, Remark 6.3.4 and Theorem 6.3.11]) we can assume
without loss of generality that F' is idempotent. Taking in mind Theorem 1.9, if
dimz, (FMc(Q)F) = n and St,,; is the standard polynomial in n + 1 variables,
then

¢ = Stos1(EX1E, EXsE, - ,EXp41E)

is the required a GPI.

(2) =(3). Taking in mind Theorem 1.9, by [3, Theorem 6.3.8] there ex-
ists an idempotent F' € M (Q) such that FMq(Q)F is C-finitely generated.
Let n = dimz,, (FMc(Q)F). I n =1 then FXFYF — FYFXF = 0 for all X
and Y, and so the proof is easily derived. Now, suppose that n > 1. With-
out loss of generality, we assume that there are Fy,...,F, € Mc(Q) such that
Sto(FFIF,... . FF.F) # 0 and 0 = Sty (FXF,FYF,FF}F,...,FF'F,F) for
all X and Y. Rearranging summands, we have

n m
0=> FXGYH -Y JYK;XL
i=1 j=1
for all X,Y € Mc(Q) and for convenient F;, Gy, H;, Jj, K, Lj € Mc(Q). In fact,
by the assumption on F’s, we have el €iq, e, 7 0 for some 7. In particular,
n

by Lemma 1.5 there is p € @ such that 0 # Z F;XG;Y H;(p), and hence for all
i=1
X,Y € Mc(Q)

ZFXGYpZ ZK YLiX(qj),
i=1 7j=1

where p; = H;(p) and q; = M; ().
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(3) = (4). It follows from Proposition 3.1 and Proposition 3.2.
(4) = (1). It follows from Proposition 3.2. O

Acknowledgments. The author is grateful to Antonio Fernandez Lépez
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