


Serdica Math. J. 42 (2016), 27–42 Serdica
Mathematical Journal

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

TYPE II FAMILY OF BIVARIATE INFLATED-PARAMETER

GENERALIZED POWER SERIES DISTRIBUTIONS*

Krasimira Y. Kostadinova, Leda D. Minkova

Communicated by S. T. Rachev

Abstract. The family of Inflated–parameter Generalized Power Series dis-
tributions (IGPSD) was introduced by Minkova in 2002 as a compound
Generalized Power Series distributions (GPSD) with geometric compound-
ing distribution. In this paper we introduce a family of compound GPSDs
with bivariate geometric compounding distribution. The probability mass
function, recursion formulas, conditional distributions and some properties
are given. A member of this family is a Type II bivariate Pólya-Aeppli
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1. Introduction. The probability generating function (PGF) of the
Generalized Power Series Distributions (GPSD) with a parameter θ > 0, is given
by the following relation

(1) ψ(s) =
g(θs)

g(θ)
,

where g(θ) is a finite, differentiable function with positive derivatives in the form

(2) g(θ) =

∞
∑

m=0

a(m)θm,

where

a(m) =
g(m)(θ)

m!
|θ=0

The binomial, negative binomial (NB), logarithmic series and Poisson
distributions belong to this class, see Patil [10]. In the binomial and NB cases,
the corresponding additional parameters n and r are given positive integer valued.

For a given parameter π ∈ (0, 1), the particular cases of the functions
a(m) and g(θ) and the parameter θ, are given in the following table.

X ∼ Bi(n, θ): a(m) =

(

n

m

)

g(θ) = (1 + θ)n θ =
π

1− π

X ∼ NB(r, θ) : a(m) =

(

m+ r − 1

m

)

g(θ) = (1− θ)−r θ = 1− π;

X ∼ Po(θ) : a(m) =
1

m!
g(θ) = eθ θ = λ;

X ∼ LS(θ) : a(m) =
1

m
g(θ) = −ln(1− θ) θ = 1− π

The Inflated-parameter generalized power series distributions (IGPSD)
was introduced in Minkova [8] as a compound GPSDs. The random variables
have the form N = X1+ · · ·+XZ , where Z has the GPSD, and the compounding
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random variables X1,X2, . . . are distributed geometrically as the r.v. X with
PMF

(3) P (X = i) = (1− ρ)ρi−1, i = 1, 2, . . .

and PGF

(4) ψ1(s) = EsX =
(1− ρ)s

1− ρs
.

The PGF of the IGPSDs is given by

(5) ψ(s) =
g(θψ1(s))

g(θ)
,

where g(θ) is the series function, with particular cases given in the table, and
ψ1(s) is given in (4). The lack-of-memory property of the geometric distribution
leads to some nice properties of the distributions and closed form of the PMFs;
see Minkova [8].

In the case of g(θ) = eθ and θ = λ, the compound Poisson distribution
with geometric compounding distribution coincides with the Pólya-Aeppli distri-
bution; see Johnson et al. [2]. The Pólya-Aeppli distribution was applied as a
counting distribution in a risk model by Minkova [9]. The corresponding Pólya-
Aeppli process was characterized by Chukova and Minkova [1]. The process is
very closed to the Poisson process. This motivated us to define two types of
bivariate Pólya-Aeppli distributions; see Minkova and Balakrishnan [6] and [7].

In this paper we define a family of bivariate IGPSDs, which member is the
Type II bivariate Pólya-Aeppli distribution, given by Minkova and Balakrishnan
[7]. The definition of the family with joint probability mass function is given
in the next Section 2. In Section 3 we derive the conditional distributions and
conditional moments. As examples, in Section 4 we consider additionally three
members of the defined family of distributions: bivariate Inflated-parameter bi-
nomial distribution, bivariate Inflated-parameter negative binomial distribution
and bivariate Inflated-parameter logarithmic series distribution.

2. Bivariate inflated-parameter generalized power series dis-

tributions. Let us consider the sequence (Xi, Yi), i = 1, 2, . . . of independent
and identically distributed random variables, distributed as (X,Y ). Define

N1 = X1 + · · ·+XZ and N2 = Y1 + · · ·+ YZ ,
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where Z is independent of (X,Y ) and has a GPSD with PGF, given by (1).
Suppose that (X,Y ) has a bivariate geometric distribution with PGF

(6) ψ1(s1, s2) =
γ

1− αs1 − βs2
,

where 0 < α, β < 1 and γ = 1 − α − β 6= 0; see Kocherlakota and Kocherlakota
[4]. Then, the joint PGF of (N1, N2) is given by

(7) Ψ(s1, s2) =
g(θψ1(s1, s2))

g(θ)
,

where ψ1(s1, s2) is the PGF of the compounding distribution in (6).

Definition 2.1. The probability distribution of (N1, N2), corresponding to

(7), is referred to as a Type II family of Bivariate Inflated-parameter generalized

power series distributions (BIGPSDII).

The marginal compounding distributions are geometric with PGFs

(8) ψ1(s1) = ψ1(s1, 1) =
γ

1− β − αs1
and ψ1(s2) = ψ1(1, s2) =

γ

1− α− βs2
.

The random variable X has a geometric distribution starting at zero, with prob-

ability of success
γ

1− β
, i.e, X ∼ Ge0(

γ

1− β
). We define the parameter ρ1 of

the random variable X as ρ1 =
α

1− β
. Analogously, Y has a geometric distri-

bution with parameter
γ

1− α
and Y ∼ Ge0(

γ

1− α
). Denote by ρ2 =

β

1− α
the

parameter of Y. In the terms of ρ1 and ρ2, the marginal PGFs in (8) have the
form

(9) ψ1(s1) =
1− ρ1

1− ρ1s1
and ψ1(s2) =

1− ρ2

1− ρ2s2
.

Then, from (7) we obtain the corresponding marginal PGFs of N1 and N2

ΨN1
(s1) = Ψ(s1, 1) =

g(θψ1(s1))

g(θ)
and ΨN2

(s2) = Ψ(1, s2) =
g(θψ1(s2))

g(θ)
,

from which it follows that N1 and N2 belong to the family of univariate IGPSDs.
From (2), it follows that

g(θψ1(s1, s2)) =
∞
∑

m=0

a(m)θm[ψ1(s1, s2)]
m.
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Then for the PGF we obtain

(10) Ψ(s1, s2) =
1

g(θ)

∞
∑

m=0

a(m)θm
γm

(1− αs1 − βs2)m
.

Differentiation in (6) leads to the following derivatives

ψ
(i,j)
1 (s1, s2) = γ

(i+ j)!αiβj

(1− αs1 − βs2)i+j+1
,

where ψ
(i,j)
1 (s1, s2) =

∂i+jψ1(s1, s2)

∂si1∂s
j
2

, for i, j = 0, 1, . . . . Then, for the correspond-

ing derivatives of Ψ(s1, s2) in (10) we obtain

(11) Ψ(i,j)(s1, s2)=
(i+ j)!

g(θ)

∞
∑

m=1

a(m)(θγ)m
(

m+ i+ j − 1

m− 1

)

αiβj

(1− αs1 − βs2)m+i+j
.

Upon setting s1 = s2 = 1 in (11), we obtain the (i, j) factorial moments
of (N1, N2)

E[N1(N1 − 1) . . . (N1 − i+ 1)N2(N2 − 1) . . . (N2 − j + 1)

=
(i+ j)!

g(θ)

∞
∑

m=1

a(m)θm
(

m+ i+ j − 1

m− 1

)

αiβj

γi+j
.

Upon setting i = 1, j = 0 and i = 0, j = 1 in (11) we obtain

E(N1) =
α

γg(θ)

∞
∑

m=1

ma(m)θm and E(N2) =
β

γg(θ)

∞
∑

m=1

ma(m)θm.

2.1. Joint probability mass function. The probability mass function
of the joint distribution of (N1, N2) is given by expanding the PGF Ψ(s1, s2) in
powers of s1 and s2. Denote by f(i, j) = P (N1 = i,N2 = j), i, j = 0, 1, 2, . . . , the
joint probability mass function of (N1, N2). On the other hand, from Johnson et
al. [3], it is known that

(12) f(i, j) =
Ψ(i,j)(s1, s2)

i!j!

∣

∣

∣

∣

∣

s1=s2=0.

Now we use the PGF of (10) and the derivatives in (11) and have the following
theorem.
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Theorem 2.1. The probability mass function of BIGPSII distributions

is given by

(13)

f(0, 0) =
g(θγ)

g(θ)
,

f(i, j) =

(

i+j
i

)

αiβj

g(θ)

∞
∑

m=1

a(m)

(

i+ j +m− 1

m− 1

)

(θγ)m,

i, j = 0, 1, . . . , (i, j) 6= (0, 0).

P r o o f. The initial value follows from the PGF Ψ(0, 0) = f(0, 0). Next,
the expression (13) follows from (11) and (12). ✷

3. Conditional distributions and properties. Let ΨN2|(N1=k)(s2),
k = 0, 1, . . . , be the conditional PGF of N2, given N1. From Johnson et al. [3], it
is known that

(14) ΨN2|(N1=k)(s2) =
Ψ(k,0)(0, s2)

Ψ(k,0)(0, 1)
,

where Ψ(k,0)(s1, s2) =
∂kΨ(s1, s2)

∂sk1
. This leads to the following theorem.

Theorem 3.1. The PGF of N2, conditioned on N1, is given by

(15) ΨN2|(N1=0)(s2) =
1

g( θγ
1−β

)

∞
∑

m=0

a(m)(θγ)m
1

(1− βs2)m

and for k = 1, 2, . . . , we have

(16) ΨN2|(N1=k)(s2) =

∑∞
m=1 a(m)(θγ)m

(

m+k−1
m−1

)

1
(1−βs2)m+k

∑∞
m=1 a(m)(θγ)m

(

m+k−1
m−1

)

1
(1−β)m+k

.

P r o o f. For the initial value, corresponding to k = 0, we get

ΨN2|(N1=0)(s2) =
Ψ(0, s2)

Ψ(0, 1)
=

1

g( θγ
1−β

)

∞
∑

m=0

a(m)(θγ)m
1

(1− βs2)m
,

as given in (15). Upon substituting (i, j) = (k, 0), k = 1, 2, . . . , and s1 = 0 in
(11), we obtain

(17) Ψ(k,0)(0, s2) =
k!

g(θ)

∞
∑

m=1

a(m)(θγ)m
(

m+ k − 1

m− 1

)

αk

(1− βs2)m+k
, k = 1, 2, . . . .
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Now, (16) is obtained from (14) and (17). ✷

Differentiation of (15) and (16) leads to the conditional mean

E[N2|N1 = 0] =
β

(1− β)g( θγ
1−β

)

∞
∑

m=0

a(m)m

(

θγ

1− β

)m

and for k = 1, 2, . . . ,

E[N2|N1 = k] =
(k + 1)β

1− β

∑∞
m=1 a(m)

(

m+k
m−1

)

(

θγ
1−β

)m

∑∞
m=1 a(m)

(

m+k−1
m−1

)

(

θγ
1−β

)m .

The PGF of N1+N2 is obtained from Ψ(s1, s2) in (10), when s1 = s2 = s

and is given by

(18) Ψ(s) = Ψ(s, s) =
g
(

θγ
1−(α+β)s

)

g(θ)
.

Since ψ(s) =
γ

1− (α+ β)s
is a PGF of geometric distribution with param-

eter γ, from (18) it follows that N1+N2 is a compound GPSD with compounding
random variable X + Y ∼ Ge(γ).

4. Examples. As a first example we have to mention the Type II
Bivariate Pólya-Aeppli distribution, introduced by Minkova and Balakrishnan

(2014), [7]. It is obtained in the case of g(θ) = eθ and θ = λ. Then a(m) =
1

m!
.

In the same paper, the following definition is given:

Definition 4.1. We define

(19) FI2(N1, N2) =

[

V ar(N1)

E(N1)
+
V ar(N2)

E(N2)
− 2R

Cov(N1, N2)
√

E(N1)
√

E(N2)

]

(1−R2)−1,

where R = Corr(N1, N2), as a bivariate Fisher index of dispersion.

If (Y1, Y2) is a bivariate Poisson random vector, then for the bivariate
Fisher index of dispersion we have FI2(Y1, Y2) = 2. For the Type II bivariate
Pólya-Aeppli distribution, in the case of ρ1 = ρ2 = ρ, Fisher index of dispersion
is equal to

FI2(N1, N2) = 2
1 + ρ

1− ρ

(1 + ρ)2 − 4ρ2

(1 + ρ)2 − 4ρ2
= 2

1 + ρ

1− ρ
.
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Then, we can say that the bivariate distribution is over-dispersed (equi-
dispersed, under-dispersed) if FI2 > 2 (FI2 = 2, F I2 < 2).

Related to this measure of variability, the Type II bivariate Pólya-Aeppli
distribution is over-dispersed with respect to bivariate Poisson distribution. The
distributions of the family of BIGPSII can be compare with the bivariate Pólya-
Aeppli distributions.

According to (19), if the marginal distributions are over-dispersed related

to Poisson distribution, i.e.
V ar(N1)

E(N1)
> 1 and

V ar(N2)

E(N2)
> 1, then FI2(N1, N2) >

2. In this case (N1, N2) is over-dispersed related to bivariate Poisson distribution.
In the general case, if

(20)
V ar(N1)

E(N1)

V ar(N2)

E(N2)
> 1,

then FI2(N1, N2) > 2. For comparing with bivariate Pólya-Aeppli distribution we

have to check
V ar(N1)

E(N1)
>

1 + ρ

1− ρ
and

V ar(N2)

E(N2)
>

1 + ρ

1− ρ
. In this case FI2(N1, N2) >

2
1 + ρ

1− ρ
and (N1, N2) is overdispersed related to bivariate Pólya-Aeppli distribu-

tion. In the general case, if
V ar(N1)

E(N1)

V ar(N2)

E(N2)
>

(

1 + ρ

1− ρ

)2

, then FI2(N1, N2) >

2
1 + ρ

1− ρ
.

4.1. Bivariate inflated-parameter binomial distribution. In the

case of g(θ) = (1 + θ)n, for n > 0, θ =
π

1− π
and a(m) =

(

n

m

)

, we have the

bivariate Inflated-parameter binomial distribution with parameters n, α, β and
π, (BIBiII(n, α, β, π)) and PGF given by

(21) Ψ(s1, s2) = (1− π)n
(

1 +
πγ

(1− π)(1 − αs1 − βs2)

)n

.

In this case we have the following corollary of the Theorem 2.1

Corollary 4.1. The PMF of the BIBiII(n, α, β, π) distribution is given

by

(22) f(i, j) =

(

i+ j

i

)

αiβj
n
∑

m=1

(

n

m

)(

m+ i+ j − 1

m− 1

)

(πγ)m(1− π)n−m,

for i, j = 0, 1, . . . , (i, j) 6= (0, 0) and f(0, 0) = [1−π(1−γ)]n, where γ = 1−α−β.
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The following proposition gives a recursion formulas for the PMF.

Proposition 4.1. The PMF of the BIBiII(n, α, β, π)) distribution sat-

isfies the following recursions:

(1 + θγ)f(i, 0) = α

[

2 + θγ +
(n− 1)θγ − 2

i

]

f(i− 1, 0)

−α2

(

1−
2

i

)

f(i− 2, 0), i = 1, 2, . . . ,

(1 + θγ)f(0, j) = β

[

2 + θγ +
(n− 1)θγ − 2

j

]

f(0, j − 1)

−β2
(

1−
2

j

)

f(0, j − 2), j = 1, 2, . . . ,

with f(−1, 0) = f(0,−1) = 0. In addition

(1 + θγ)[f(i+ 1, j) − βf(i+ 1, j − 1)] = β[f(i+ 1, j − 1)− βf(i+ 1, j − 2)]

+2α

(

1−
1

i+ 1

)

[f(i, j) − βf(i, j − 1)] + αθγ

(

1 +
n− 1

i+ 1

)

f(i, j)

−α2

(

1−
2

i+ 1

)

f(i− 1, j), i, j = 1, 2, . . .

(1 + θγ)[f(i, j + 1)− αf(i− 1, j + 1)] = α[f(i− 1, j + 1)− αf(i− 2, j + 1)]

+2β

(

1−
1

j + 1

)

[f(i, j) − αf(i− 1, j)] + βθγ

[

1 +
n− 1

j + 1

]

f(i, j)

−β2
(

1−
2

j + 1

)

f(i, j − 1), i, j = 1, 2, . . .

P r o o f. Differentiation of (21) with respect to s1 and s2 yields to

(23) (1 + θγ − αs1 − βs2)(1 − αs1 − βs2)
∂Ψ(s1, s2)

∂s1
= nαθγΨ(s1, s2)

and

(24) (1 + θγ − αs1 − βs2)(1− αs1 − βs2)
∂Ψ(s1, s2)

∂s2
= nβθγΨ(s1, s2),
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where Ψ(s1, s2) =

∞
∑

i=0

∞
∑

j=0

f(i, j)si1s
j
2,
∂Ψ(s1, s2)

∂s1
=

∞
∑

i=0

∞
∑

j=0

(i + 1)f(i + 1, j)si1s
j
2

and
∂Ψ(s1, s2)

∂s2
=

∞
∑

i=0

∞
∑

j=0

(j + 1)f(i, j + 1)si1s
j
2.

The required recursions are obtained by equating the coefficients of si1s
j
2

on both sides of (23) and (24), for fixed i, j = 0, 1, . . . . ✷

For the moments we have

E(N1) = nπ
α

γ
and E(N2) = nπ

β

γ
,

and for the second moments

V ar(N1) = nπ
α

γ

[

1 +
α

γ
(2− π)

]

, V ar(N2) = nπ
β

γ

[

1 +
β

γ
(2− π)

]

and

Cov(N1, N2) = n
αβ

γ2
π(2− π).

In the terms of ρ1 and ρ2

FI(N1) =
V ar(N1)

E(N1)
= 1 +

ρ1

1− ρ1
(2− π) =

1 + ρ1

1− ρ1
− π

ρ1

1− ρ1

and

FI(N2) =
V ar(N2)

E(N2)
= 1 +

ρ2

1− ρ2
(2− π) =

1 + ρ2

1− ρ2
− π

ρ2

1− ρ2
.

In the case of ρ1 = ρ2 = ρ it is easy to check that 2 < FI2(N1, N2) < 2
1 + ρ

1− ρ
.

This means that the BIBiII distribution is under-dispersed related to Type II bi-
varaite Pólya-Aeppli distribution and over-dispersed related to bivariate Poisson
distribution.

4.2. Bivariate inflated-parameter negative binomial distribution.

In the case of g(θ) = (1 − θ)−r, for a given r > 0, θ = 1 − π and a(m) =
(

r +m− 1

m

)

, we have the bivariate Inflated-parameter negative binomial distri-

bution with parameters r, α, β and π, (BINBII(r, α, β, π)) and PGF

(25) Ψ(s1, s2) =

(

π(1− αs1 − βs2)

1− (1− π)γ − αs1 − βs2

)r

.

In this case we have following corollary of the Theorem 2.1
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Corollary 4.2. The PMF of the BINBII(r, α, β, π)) distribution is given

by

(26) f(i, j) = πr
(

i+ j

i

)

αiβj
∞
∑

m=1

(

m+ r − 1

m

)(

m+ i+ j − 1

m− 1

)

((1− π)γ)m,

for i, j = 0, 1, . . . , (i, j) 6= (0, 0) and f(0, 0) =

[

π

1− (1− π)γ

]r

.

Proposition 4.2. The PMF of the BINBII(r, α, β, π)) distribution sat-

isfies the following recursions:

(1− θγ)f(i, 0) = α

[

2− θγ +
(r + 1)θγ − 2

i

]

f(i− 1, 0)

−α2

(

1−
2

i

)

f(i− 2, 0), i = 1, 2, . . . ,

(1− θγ)f(0, j) = β

[

2− θγ +
(r + 1)θγ − 2

j

]

f(0, j − 1)

−β2
(

1−
2

j

)

f(0, j − 2), j = 1, 2, . . . ,

with f(−1, 0) = f(0,−1) = 0. In addition

(1− θγ)[f(i+ 1, j) − βf(i+ 1, j − 1)] = β[f(i+ 1, j − 1)− βf(i+ 1, j − 2)]

+2α

(

1−
1

i+ 1

)

[f(i, j) − βf(i, j − 1)] − αθγ

[

1−
r + 1

i+ 1

]

f(i, j)

−α2

(

1−
2

i+ 1

)

f(i− 1, j), i, j = 1, 2, . . .

(1− θγ)[f(i, j + 1)− αf(i− 1, j + 1)] = α[f(i− 1, j + 1)− αf(i− 2, j + 1)]

+2β

(

1−
1

j + 1

)

[f(i, j) − αf(i− 1, j)] − βθγ

[

1−
r + 1

j + 1

)

f(i, j)

−β2
(

1−
2

j + 1

)

f(i, j − 1), i, j = 1, 2, . . .

P r o o f. Differentiation of (25) with respect to s1 and s2 leads to

(27) (1− θγ − αs1 − βs2)(1− αs1 − βs2)
∂Ψ(s1, s2)

∂s1
= rαθγΨ(s1, s2)
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and

(28) (1− θγ − αs1 − βs2)(1− αs1 − βs2)
∂Ψ(s1, s2)

∂s2
= rβθγΨ(s1, s2),

where Ψ(s1, s2) =
∞
∑

i=0

∞
∑

j=0

f(i, j)si1s
j
2,
∂Ψ(s1, s2)

∂s1
=

∞
∑

i=0

∞
∑

j=0

(i+1)f(i+1, j)si1s
j
2 and

∂Ψ(s1, s2)

∂s2
=

∞
∑

i=0

∞
∑

j=0

(j + 1)f(i, j + 1)si1s
j
2. The required recursions are obtained

by equating the coefficients of si1s
j
2 on both sides of (27) and (28), for fixed

i, j = 0, 1, . . . . ✷

For the moments we have

E(N1) = r
α(1 − π)

γπ
and E(N2) = r

β(1 − π)

γπ
,

and for the second moments

V ar(N1) = r
α(1 − π)

γπ

[

1 +
α(1 + π)

γπ

]

, V ar(N2) = r
β(1 − π)

γπ

[

1 +
β(1 + π)

γπ

]

,

and

Cov(N1, N2) = r
αβ(1 − π)

γπ2
.

Again, in terms of ρ1 and ρ2 we obtain the marginal Fisher indexes

FI(N1) =
1 + ρ1

1− ρ1
+
ρ1(1− π)

(1− ρ1)π

and

FI(N2) =
1 + ρ2

1− ρ2
+
ρ2(1− π)

(1− ρ2)π
.

Now, in the case of ρ1 = ρ2 = ρ, for the bivariate Fisher index of dispersion

we obtain FI2(N1, N2) > 2
1 + ρ

1− ρ
, i.e., the BINBII distribution is over-dispersed

related to Type II bivariate Pólya-Aeppli distribution.

4.3. Bivariate inflated-parameter logarithmic series distribution.

In the case of g(θ) = − log(1 − θ), θ = 1 − π and a(m) =
1

m
, we have the

Bivariate Inflated-parameter logarithmic series distribution with parameters α, β
and π, (BILSII(α, β, π)) and PGF

(29) Ψ(s1, s2) =
1

ln(π)
ln

(

1−
(1− π)γ

1− αs1 − βs2

)

.
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In this case we have the following corollary of the Theorem 2.1

Corollary 4.3. The PMF of the BILSII(α, β, π)) distribution is given

by

(30) f(i, j) = −
αiβj

log(π)

(

i+ j

i

) ∞
∑

m=1

(

m+ i+ j − 1

m− 1

)

((1− π)γ)m

m
,

for i, j = 0, 1, . . . , (i, j) 6= (0, 0) and f(0, 0) =
log(1− (1− π)γ)

log(π)
.

Proposition 4.3. The PMF of the BILSII(α, β, π) distribution satisfies

the following recursions:

(1− θγ)[f(i+ 1, j) − βf(i+ 1, j − 1)] = β[f(i+ 1, j − 1)− βf(i+ 1, j − 2)]

+2α

(

1−
1

i+ 1

)

[f(i, j) − βf(i, j − 1)] − αθγ

(

1−
1

i+ 1

)

f(i, j)

−α2

(

1−
2

i+ 1

)

f(i− 1, j), i, j = 1, 2, . . .

and

(1− θγ)[f(i, j + 1)− αf(i− 1, j + 1)] = α[f(i− 1, j + 1)− αf(i− 2, j + 1)]

+2β

(

1−
1

j + 1

)

[f(i, j) − αf(i− 1, j)] − βθγ

(

1−
1

j + 1

)

f(i, j)

−β2
(

1−
2

j + 1

)

f(i, j − 1), i, j = 1, 2, . . .

with initial values

(1− θγ)f(1, 0) = −
αθγ

log(π)
and (1− θγ)f(0, 1) = −

βθγ

log(π)
,

and f(−1, j) = f(i,−1) = 0.

P r o o f. Differentiation of (29) with respect to s1 and s2 leads to

(31) (1− θγ − αs1 − βs2)(1− αs1 − βs2)
∂Ψ(s1, s2)

∂s1
= −

αθγ

log(π)
.
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and

(32) (1− θγ − αs1 − βs2)(1− αs1 − βs2)
∂Ψ(s1, s2)

∂s2
= −

βθγ

log(π)
.

Equating the coefficients of si1s
j
2 on both sides of (31) and (32) we obtain the

required recursions. ✷

For the moments we have

E(N1) = −
α(1− π)

γπ log(π)
and E(N2) = −

β(1− π)

γπ log(π)
,

and for the second moments

V ar(N1) = −
α(1 − π)

γπ2 log(π)

[

π +
α(1 + π)

γ
+
α(1 − π)

γ log(π)

]

and

V ar(N2) = −
β(1− π)

γπ2 log(π)

[

π +
β(1 + π)

γ
+
β(1− π)

γ log(π)

]

.

For the marginal Fisher indexes we obtain

FI(N1) =
V ar(N1)

E(N1)
= 1 +

α

γπ

1− π + (1 + π) log(π)

log(π)

and

FI(N2) =
V ar(N2)

E(N2)
= 1 +

β

γπ

1− π + (1 + π) log(π)

log(π)
.

If the nominator on the right hand side is negative, the marginal variables
are over-dispersed and (N1, N2) is over-dispersed with respect to bivariate Poisson

distribution. In this case − log(π) >
1− π

1 + π
. If − log(π) <

1− π

1 + π
, (N1, N2) is

under-dispersed with respect to bivariate Poisson distribution. For comparing
with bivariate Pólya-Aeppli distribution we rewrite the Fisher indexes in the
following way

FI(N1) =
1 + ρ1

1− ρ1
+

ρ1

1− ρ1

[

1− π + (1 + π) log(π)

π log(π)
− 2

]

and

FI(N2) =
1 + ρ2

1− ρ2
+

ρ2

1− ρ2

[

1− π + (1 + π) log(π)

π log(π)
− 2

]

.
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In the case of ρ1 = ρ2 = ρ, (N1, N2) is over-dispersed related to bivariate
Pólya-Aeppli distribution if − log(π) > 1, and under-dispersed if − log(π) < 1.

5. Concluding remarks. In this paper we have defined a new family of
bivariate discrete distributions. Similar to the univariate case, the compounding
with bivariate geometric distribution results in distributions with closed forms of
PMFs and nice properties. The particular cases are the corresponding bivariate
extensions of the Inflated-parameter generalized power series distributions.

Possible applications of the defined distributions are in queueing theory,
risk theory, reliability. For example, if there are two types of claims to the
insurance company, the counting process in the risk model has to be bivariate.
Kostadinova and Minkova in [5] have defined a risk model with bivariate counting
process, such that the compounding distribution is a bivariate negative binomial
distribution. As a future work we are planning at first to define the counting
processes with distributions introduced in this paper. Then, the defined bivariate
counting processes will be used in analyzing the corresponding risk models with
two types of claims.
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