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Abstract. In this paper we prove the existence of isolated eigenvalues of
finite multiplicity below the essential spectrum of a straight waveguide with
a curved potential window in the three dimensional space. We give also
some asymptotic results for these eigenvalues and their counting function.
We illustrate our results by some numerical computations.

1. Introduction. The motion of an electron confined to a quantum
waveguide is described by the Hamiltonian corresponding to the Schrödinger
equation. If we consider a non-interacting electron then the associated operator
is the free Laplacian with some boundary conditions. The physical properties
of this system, namely the existence of localized states, can be described by the
spectral properties of the operator −∆ acting on some Hilbert space and subject
to some boundary conditions.

In this paper we focus on the Hamiltonian of a free quantum particle
moving in a non trivial subset Ω of the three dimensional space R3. The considered
set is Ω = R

2 × [0, d], where d > 0 is the width of the waveguide. We suppose
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that the waveguide has an opened window K on one of its two sides R
2 × {0} or

R
2 × {d}. The set K is a potential window and we take it a compact connected

subset of R2 and we make only the condition that its boundary is a piecewise C1

curve in R
2. So it has an arbitrary shape.

The spectral properties of quantum waveguides coupled through potential
windows was considered in a large set of papers. The main aim is to prove the
existence of localized states, resonant states and embedded eigenvalues. Many
situations were considered, depending namely on the geometry of the waveguide
(see [13, 7, 12, 5, 11]), on the form of the windows (see [3, 2, 14, 16])and on the
boundary conditions (see [8, 9, 1]).

The problem of a three dimensional quantum waveguide with a window
was studied in the case of a circular one, so K is a disc, see [12]. In that paper,
the authors proved the existence of localized states below the essential spectrum.
Our aim here is to give a similar result for a general shape of the potential
window K. Namely we prove that for the operator −∆ with Dirichlet conditions
on one side of the waveguide and Neumann conditions on the boundary of the
window, there exist isolated eigenvalues of finite multiplicities below the essential
spectrum. We prove also that the counting function of these eigenvalues has an
asymptotic expansion with respect to the waveguide width. As a consequence,
we find that for d small enough, there exist only one localized state.

In the last section, we consider the case of a square window and construct
approximate eigenfunctions associated to an isolated eigenvalue. The result can
be used for numerical computation in order to illustrate the theoretical results
given in the previous sections.

The paper is organized as follows: In the first section, the problem is
stated. The second section is devoted to main results. In the third section, we
prove the theorem on the existence of bound states. In the fourth section, we give
the asymptotics of the number of eigenvalues and in the last section we compute
the approximate eigenfunctions by the mode matching technique.

2. Notations and main results. In the three dimensional space
R

3, we consider the domain Ω = R
2 × [0, d] where d is a positive number. The

domain Ω stands for the waveguide of a free quantum particle. Let K be a
compact connected submanifold of R2 with boundary γ. We suppose that γ is a
piecewise C1 curve in R

2. The set K stands for the curved potential window. See
Figure 1.

Now let Γ = ∂Ω \ K. The Hamiltonian of the free quantum particle
confined to the waveguide is constructed by means of quadratic forms in the
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Neumann conditions
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Fig. 1. The waveguide and the curved window

following way. We consider the quadratic form

q0(f, g) =

∫

Ω
∇f.∇gdxdydz

with domain

Q(q0) = {f ∈ H1(Ω); f⌈Γ = 0}.

The spaceH1(Ω) is the classical Sobolev space. The form q0 is symmetric, positive
and closed with a dense domain. So there is an associated self adjoint operator
H which has the domain

D(Ω) =

®
f ∈ H1(Ω); −∆f ∈ L2(Ω), f⌈Γ = 0,

∂f

∂n ⌈K
= 0

´
.

The operator H acts as Hf = −∆f, for all f ∈ D(Ω).
If we denote by H0 the operator H in the case of a closed potential window, that
is K = ∅, we may consider H as a compact perturbation of H0. Therefore, the
essential spectrum of H coincides with the one for H0. It is not difficult to see
that H0 decomposes as

H0 = (−∆R2 ⊗ I)) ⊕
Ä
I ⊗ (−∆[0,d])

ä

on the space L2(R2) ⊗ L2([0, d]). This may be used to compute the spectrum of
H0 and it is a straightforward calculus that gives

σ(H0) = σess(H0) =

ñÅ
π

d

ã2

,+∞
ñ
.



46 Rachid Assel, Mounir Ben Salah

We are firstly interested in the existence of isolated eigenvalues of finite
multiplicity below the essential spectrum. So these eigenvalues will be smaller

than the threshold

Å
π

d

ã2

. The main idea is to approximate the compact K by

two particular sets, a disc contained in K and a square containing K. Let a be
a positive number and consider the square

C(a) = {(x, y, 0); |x| ≤ a, |y| ≤ a} .
We assume that K ⊂ C(a), so C(a) may be viewed as a squared potential window
larger than K.

We also suppose that there exists η > 0 such that the disc

D(ηa) = {(x, y, 0);x2 + y2 < (ηa)2}
is contained in K. This is also a potential window smaller than K with has a
circular shape. The Figure 2 illustrates this configuration.

The curved window K is therefore switched between two particular po-
tential windows: the square C(a) and the disc D(ηa), so

D(ηa) ⊂ K ⊂ C(a).

The first result is the following.

Theorem 1. For all a > 0 as above and d > 0, the operator H has at

least one isolated eigenvalue of finite multiplicity in the interval

ñ
π2

(2d)2
,
π2

d2

ô
.

2a

C a( )

x

y

K

YD ´a( )

Fig. 2. The curved window switched between a disc and a square
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Next we look for the number of the eigenvalues given in the previous
theorem.

Theorem 2. For
a

d
large enough, the number N(a, d) of eigenvalues of

H below its essential spectrum has the following asymptotics:

N(a, d) =
3π

16

a2

d2
+O

Å
a

d

ã
.

Theorem 3. For fixed d > 0, there exists a∗ > 0 such that for all a ≤ a∗,

the operator H has exactly one isolated eigenvalue less than
π2

d2
.

And as a consequence of this theorem we have the following:

Corollary 1. Let δ(K) = sup
x,y∈K

‖x − y‖ be the diameter of K. For fixed

d, there exists a∗ > 0 such that if δ(K) < a∗, the operator H has exactly one

isolated eigenvalue less than
π2

d2
.

3. Existence of bounded states eigenvalues. To prove that the
operator H has bounded states (Theorem 1) the main idea is based on the con-
struction of a test function ϕ having the following property

(1) q(ϕ) := q0(ϕ) − π2

d2
‖ϕ‖2

2 < 0.

We recall that ‖.‖2 is the L2 norm of ϕ and q0(ϕ) = ‖∇ϕ‖2
2.

The proof may be done in two steps. Firstly let χ be the transverse mode
defined by:

χ(z) =





 
2

d
sin

Å
π

d
z

ã
if z ∈ (0, d)

0 if z 6∈ (0, d)

It’s clear that ‖χ‖2 = 1.

We consider a function ϕ in the Schwartz space S(R) and we put

Φ(x, y, z) = ϕ(x2 + y2)χ(z), for (x, y, z) ∈ R
3.

Lemma 1. For the function Φ defined as above we have

q(Φ) = 4π‖ϕ′‖L2([0,+∞[,sds).
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P r o o f. Let’s compute the quadratic form q0 for Φ.

q0(Φ) =

∫∫∫

R3
∇Φ(x, y, z)∇Φ(x, y, z)dxdydz

=

∫∫∫

R3

î
4(x2 + y2)(ϕ′(x2 + y2))2χ2(z) + (ϕ(x2 + y2))2|χ′(z)|2

ó
dxdydz

=

∫∫

R2

Ä
4(x2 + y2)(ϕ′(x2 + y2))2dxdy

ä ∫
R

χ2(z)dz +

+

∫∫

R2
(ϕ(x2 + y2))2dxdy

∫

R

|χ′(z)|2dz

= 2π

∫ +∞

0
4r2(ϕ′(r2))2rdr + 2π

∫ +∞

0
(ϕ(r2))2rdr.

π2

d2

= 8π

∫ +∞

0
r3(ϕ′(r2))2dr +

2π3

d2

∫ +∞

0
(ϕ(r2))2rdr.

We make the change of variable s = r2 in the last two integrals so we get

(2) q0(Φ) = 4π‖ϕ′‖2
L2([0,+∞[,sds) +

π3

d2
‖ϕ‖2

L2([0,+∞[,ds).

Now, let’s compute q(Φ).

‖Φ‖2
L2(R3) =

∫

R3
|Φ(x, y, z)|2 dxdydz

=

∫∫∫

R3

∣∣∣ϕ(x2 + y2)
∣∣∣
2
χ2(z)dxdydz

=

∫∫

R2

∣∣∣ϕ(x2 + y2)
∣∣∣
2
dxdy

= 2π

∫ +∞

0
ϕ2(r2)rdr

= π

∫ +∞

0
ϕ2(s)ds = π‖ϕ‖2

L2([0,+∞[,ds).

If we substitute the last identity into q(Φ) we obtain

q(Φ) = 4π‖ϕ′‖L2([0,+∞[,sds) +
π3

d2
‖ϕ‖2

L2([0,+∞[,ds) − π2

d2
π‖ϕ‖2

L2[0,+∞[)

= 4π‖ϕ′‖L2([0,+∞[,sds). ✷

The next step in the proof is the following approximation. Recall that a is
the length of the squared window in the waveguide. We take a number b >

√
2a

and choose ϕ ∈ S(R) such that ϕ = 1 on [0, b]. For z > 0, we put

ϕz(s) =

®
ϕ(s) if s < b

ϕ(b+ z(Log(s) − Log(b))) otherwise.
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It’s clear that ϕz ∈ S(R) ∀z > 0. Indeed, we have

‖ϕ′
z‖2

L2([0,+∞[,sds) =

∫ +∞

b

z2

s2

∣∣ϕ′(b+ z(Log(s) − Log(b)))
∣∣2 sds

=

∫ +∞

b

z2

s2

∣∣ϕ′(t)
∣∣2 s

2

z
dt

= z

∫ +∞

b

∣∣ϕ′(t)
∣∣2 dt

= z‖ϕ′‖L2([0,+∞[,dt).

We are now ready to construct a function Φz,ε that satisfies (1). We let ε > 0,
choose a localization function j ∈ C∞

0 ((0, a)) and define

Φz,ε(x, y, z) = ϕz(x2 + y2)χ(z) + εj2(x2 + y2)ϕz(x2 + y2)χ(z).

This function belongs to the form domain Q0. Precisely, we have

Φz,ε ∈
¶
f ∈ L2(Ω); ∇f ∈ L2(Ω), f⌈Γ = 0

©
.

Φz,ε naturally decomposes as

Φz,ε = χϕ1 + εχϕ2

where ϕ1 = ϕz and ϕ2 = j2ϕz.

Let’s compute q(Φε,z).

q(Φε,z) = q(χϕ1) + ε2q(χϕ2) + 2ε

∫

R3
∇(χϕ1)∇(χϕ2)dxdydz − 2π2

d2
ε〈χϕ1|χϕ2〉

= 4πz‖ϕ′‖L2([0,+∞[) + 4πε2‖2jj′‖2
2 − 2π2

d2
επ‖j2‖L2([0,+∞[)

= 4πz‖ϕ′‖L2([0,+∞[) + 16πε2‖jj′‖2
2 − 2π3

d2
ε‖j2‖L2([0,+∞[).

The last two terms are independent of z. Moreover, the term linear in ε is
negative. So choosing ε small enough, this term will dominate the quadratic one
in the sum. We fix ε equal to the corresponding value and choose z sufficiently
small to make the right hand side of the last equality negative.

This ends the proof of Theorem 1.

4. Asymptotics of the counting function. In this paragraph, we
are interested in the number of isolated eigenvalues created below the threshold
π2

d2
of the essential spectrum . We use the Dirichlet-Neumann bracketing tech-

nique (as used in [2, 11, 13]) and we focus on the situation when the window is of
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a squared shape. We cut the domain Ω into two subdomains Ω+ and Ω− = Ω\Ω+

where

Ω+ = {(x, y, z) ∈ Ω; |x| ≤ a, |y| ≤ a}.
By putting Dirichlet or Neumann boundary conditions on the boundary of Ω+

we get two new operators H(N) and H(D). These operators decompose in the
following way:

H(N) = H
(N)
t ⊕H

(N)
l and H(D) = H

(D)
t ⊕H

(D)
l .

The subscripts t and l refer to transversal and longitudinal decomposition of the
waveguide. Indeed, the operator H satisfies

H
(N)
t ⊕H

(N)
l ≤ H ≤ H

(D)
t ⊕H

(D)
l

in the sense of quadratic forms. The eigenvalues of H below the essential spec-

trum are squeezed between those of H
(D)
l . The operator H

(D)
l has the following

sequence of eigenvalues

(3) λ
(H

(D)
l

)

n,p,k =

ÇÅ
n

a

ã2

+

Å
p

a

ã2

+

Å
2k + 1

2d

ã2å
π2, for n, p ∈ N

∗, k ∈ N,

with the corresponding eigenfunctions

f
(H

(D)
l

)

n,p,k (x, y, z) = sin

Å
nπ

a
x

ã
sin

Å
pπ

a
y

ã
cos

Å
2k + 1

2d
πz

ã
.

The essential spectrum of H is the interval [

Å
π

d

ã2

,+∞[. We can approximate the

number of isolated eigenvalues of H by the number ND of eigenvalues of H
(D)
l

less than
π2

d2
. So we have to compute the number of (n, p, k) ∈ (N∗)2 × N such

that

λ
(H

(D)
l

)

n,p,k <
π2

d2
.

Using the explicit form of λ
(K)
n,p,k given in (3), the last condition yields

n2

a2
+
p2

a2
+

Å
2k + 1

2d

ã2

<
1

d2
.

This can be fulfilled only for k = 0.
We find therefore the following condition on (n, p)

n2

a2
+
p2

a2
<

3

4d2
.
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The last may be written in the form

(4) n2 + p2 <

Ç√
3

2

a

d

å2

.

Lemma 2. Let α > 0 be a constant and A(α) be the cardinal of the

following set
¶

(n, p) ∈ N
∗ × N

∗;n2 + p2 < α2
©
.

Then for α large enough we have

A(α) =
π

4
α2 +O(α).

Using the Weyl formula, yields

ND =
3π

16

a2

d2
+O(

a

d
).

This ends the proof of Theorem 2.
P r o o f o f L e m m a 2. For α > 0, let’s consider the number

B(α) = #
¶

(m,n) ∈ N × N;n2 +m2 ≤ α2
©
.

This counts the number of points of integer coordinates contained in the region

D =
¶

(x, y) ∈ R
2;x ≥ 0, y ≥ 0, x2 + y2 ≤ α2

©
.

We associate to each point M of D with integer coordinates the square of area 1
for which M is the left bottom extremity. Let S be the union of all these squares.
The area of S is equal to B(α) and we have

πα2

4
≤ B(α)

because D ⊂ S and the surface area of the set D is
πα2

4
.

We would like to have a more precise estimate for B(α). We denote by T the
family of squares contained in D and such that the circle C centered at (0, 0) and
with radius α passes through them. Let R(α) be the number of these squares.
The set S \ T is contained in D and its surface area is equal to B(α) −R(α). So
we have

(5) B(α) −R(α) ≤ πα2

4
≤ B(α).

Let’s find asymptotics of R(α) for large α. The surface area of T is R(α). If
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we exclude from TT the two elementary squares which have common sides with
the (Ox) and (Oy) axis, then we obtain a set T ′ whose surface area is equal to
A(T ′) = R(α)− 2. According to Figure 3 we denote by S0, . . . , Sk+1 the elements
of T numbered from the left to the right and by A0, . . . , Ak+2 the points defined
by

A0 = C ∩ (Oy), Ak+2 = C ∩ (Ox), Aj = C ∩ Sj−1 ∩ Sj for j = 1, . . . , k.

For j = 1, . . . , k, the surface area of the square Sj is less than the arc length
˛�Aj−1Aj+1. Thus we have

(6) R(α) − 2 ≤
k∑

j=1

˛�Aj−1Aj+1.

Furthermore,

k∑

j=1

˛�Aj−1Aj+1 =
k∑

j=1

¸�Aj−1Aj + ¸�AjAj+1

=
k−1∑

j=0

¸�AjAj+1 +
k∑

j=1

¸�AjAj+1

Fig. 3. Squares of integer coordinates
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≤ 2
k+1∑

k=0

¸�AjAj+1.

Indeed, the circle is of radius α, so
k+1∑

j=0

¸�AjAj+1 =
2πα

4
=
πα

2
.

The equation (6) writes then as

R(α) ≤ πα+ 2,

and the relation (5) gives

π

4
≤ B(α)

α2
≤ π

4
+
R(α)

α2
.

Thus we have the asymptotics

lim
α→+∞

B(α)

α2
=
π

4

and

B(α) =
π

4
α2 +O(α)

for α large. To end the proof, we have just to remark that B(α) −A(α) ≤ 2α. �

5. Approximate eigenfunctions. We give in this section some com-
putations of approximate eigenfunctions. The results may be used to make nu-
merical illustration of the theoretical results given in the previous sections. The

operator H has its essential spectrum starting at
π2

d2
and its whole spectrum is

contained in the infinite interval

ñ
π2

4d2
,+∞

ñ
. So we look for eigenvalues of the

form λ(ε) = ε
π2

d2
where

1

4
< ε < 1.

For ε fixed, we calculate an approximate eigenfunction Ψε associated to
the eigenvalue λ(ε) using the mode matching technique. For this end, we de-
compose the domain of the waveguide into different regions (subdomains) and we
compute the corresponding approximate eigenfunction in each region. After that,
we write the continuity conditions for the eigenfunction and its derivatives on the
lines separating the different subdomains of the waveguide. By the mode match-
ing technique we get a global approximate eigenfunction. For symmetry reasons,
the computation will be made only in some particular regions. We restrict our-
selves firstly to the quadrant W =

¶
(x, y, z) ∈ R

3;x > 0, y > 0, 0 ≤ z ≤ d
©

and
let’s decompose W into the following three regions:
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Region I: this is the region DI = W ∩ {(x, y, z) ∈ R
3;x > a, y > a}. In

this part of the waveguide we have Dirichlet boundary conditions everywhere. So
we consider the transverse modes:

αk(z) =





 
2

d
sin

Å
kπ

d
z

ã
z ∈ [0, d]

0 otherwise
, k ∈ N

∗

We look for an eigenfunction ΨI that decomposes into the previous transverse
modes in the following way:

ΨI =
∑

k≥1

Ψk
I with Ψk

I (x, y, z) = ϕ(x)ψ(y)αk(z).

If we write the eigenvalue equation −∆ΨI = λ(ε)ΨI , then we lead to the relation

ϕ′′(x)

ϕ(x)
+
ψ′′(y)

ψ(y)
= (k2 − ε)

π2

d2
, for all x > a, y > a.

By the variable separation method, we know that there exists a constant λ ∈ R

such that

ϕ′′(x)

ϕ(x)
=
ψ′′(y)

ψ(y)
= λ, for all x > a, y > a.

By identification we have λ = (k2 − ε)
π2

2d2
. Let’s put ωk =

 
(k2 − ε)

π2

d2
and

recall that we look for eigenfunctions that belong to L2(R3). Therefore, we get
the following solutions for ψ and ϕ:

ϕ(x) = Ak.e
− ωk

√

2
(a−x)

, ψ(y) = Bk.e
− ωk

√

2
(a−y)

, where Ak, Bk are constants.

Then, the approximate solution ΨI in the subdomain DI has the following ex-
pansion:

ΨI(x, y, z) =
∑

k≥1

ake
ωk
√

2
(a−x)

e
ωk
√

2
(a−y)

αk(z), where ak are constants.

Region II: DI = W ∩ {(x, y, z) ∈ R
3; 0 ≤ x ≤ a, 0 ≤ y ≤ a}. The trans-

verse modes to take in this region are the functions

βk(z) =





 
2

d
sin

Ç
(2k − 1)(d − z)π

2d

å
z ∈ [0, d]

0 otherwise

which satisfy Dirichlet boundary conditions on the sides {z = 0} and {z = d}
of the waveguide. We look again for an ansatz in the form ΨII(x, y, z) =
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ϕ(x)ψ(y)βk(z) and satisfies −∆ΨII = λ(ε)ΨII . If we set ω̃k =
π

d

 
(k − 1

2
)2 − ε,

then ϕ(x)ψ(y) has to be a linear combination of one kind of the following func-
tions:

cosh

Ç
ω̃k√

2
x

å
cosh

Ç
ω̃k√

2
y

å
; sinh

Ç
ω̃k√

2
x

å
sinh

Ç
ω̃k√

2
y

å
;

sinh

Ç
ω̃k√

2
x

å
cosh

Ç
ω̃k√

2
y

å
; cosh

Ç
ω̃k√

2
x

å
sinh

Ç
ω̃k√

2
y

å
.

This depends on wether we take symmetric or antisymmetric solutions. Thus, the
eigenfunction ΨII has one of the following expansion into the transverse modes βk:

ΨII(x, y, z) =
∑

k≥1

bk

cosh
( ‹ωk√

2
x
)

cosh
( ‹ωk√

2
a
)

cosh
( ‹ωk√

2
y
)

cosh
( ‹ωk√

2
a
)βk(z)

or

ΨII(x, y, z) =
∑

k≥1

bk

sinh
( ‹ωk√

2
x
)

sinh
( ‹ωk√

2
a
)

sinh
( ‹ωk√

2
y
)

sinh
( ‹ωk√

2
a
)βk(z)

or

ΨII(x, y, z) =
∑

k≥1

bk

cosh
( ‹ωk√

2
x
)

cosh
( ‹ωk√

2
a
)

sinh
( ‹ωk√

2
y
)

sinh
( ‹ωk√

2
a
)βk(z)

or

ΨII(x, y, z) =
∑

k≥1

bk

sinh
( ‹ωk√

2
x
)

sinh
( ‹ωk√

2
a
)

cosh
( ‹ωk√

2
y
)

cosh
( ‹ωk√

2
a
)βk(z)

where bk are constants.

Region III: this is the region DIII = W ∩ {(x, y, z) ∈ R
3; 0 ≤ x ≤ a,

y > a}. The transverse modes are αk and the solution takes the form

∑

k≥1

ΨIII(x, y, z) =
∑

k≥1

cke
ωk
√

2
(a−y)

ϕIII(y)αk(z)

where ck are constants and ϕIII is one the functions cosh

Ç
ωk√

2
x

å
or sinh

Ç
ωk√

2
x

å
,

here is again depending on symmetric or antisymmetric case.
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Now let’s use the mode matching technique to construct a global approx-
imate eigenfunction. The condition for bound states is obtained by matching
the approximate wave functions and their normal derivatives at the boundaries
between regions. We have to write the continuity conditions for the functions
ΨI ,ΨII and ΨIII and their derivatives on the boundries of the three regions I, II
and III.

1) On the boundary between Region I and Region II, and taking x = a, we
get

∑

k≥0

cke
ωk
√

2
(a−y)

αk(z) =
∑

k≥0

ake
ωk
√

2
(a−y)

αk(z), ∀y > a, 0 ≤ z ≤ d.

This gives ck = ak for all k ≥ 0.

2) On the boundary between Region II and Region III, and taking x = a, y = a,

we get
∑

k≥0

akαk(z) =
∑

k≥0

bkβk(z).

Let j ≥ 1. Taking the scalar product of the previous terms with αj gives

(7) aj =
∑

k

bk〈βk|αj〉

where

〈βk|αj〉 =
(−1)k−1

π

8j

4j2 − (2k − 1)2
.

Now, let’s write the continuity conditions for the derivatives. The deriva-
tive of the wavefunction with respect to y has to be continous at the points
(x = a, y = a, z). So

∂ΨII

∂y
(a, a, z) =

∂ΨIII

∂y
(a, a, z)

may be written as

−
∑

k

ak

ωk√
2
e

ω
k

√

2
(a−y)

ϕIII(x)αk(z) =
∑

k

ak

ω̃k√
2
ψ′

II(y)ϕIII(x)βk(z).

Therefore, for x = a, y = a we have

−
∑

k

akωkαk(z) =
∑

k

bk tanh±1 (ω̃ka) βk(z).
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Taking the scalar product by αj, for j ≥ 1 fixed, we get

(8) ajωj +
∑

k

bk tanh±1 (ω̃ka) < βk|αj >= 0.

Substituting (7) into (8), we can write the equation (8) as an infinite system of
linear equations like Ca = 0 with

a = (aj)j and Cjk =
Ä
ωj + ω̃k tanh±1 (ω̃ka)

ä
< βk(z)|αj > .

This can be solved numerically using the techniques given in [8] and [5]. The
bound states are obtained by truncating the resulting expansions and solving the
matrix equation. The condition for the bound state is det(C) = 0.
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