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Abstract. Let X be a separable Banach space, and B a subset of the dual
unit ball BX∗ such that every x ∈ X attains its norm on B. Under Martins’s
axiom and the negation of continuum hypothesis, it is shown that one of the
following statements is true: (a) the dual unit ball BX∗ is the norm-closed
convex hull of B; (b) the set B contains a subset Γ which has the cardinality
of the continuum, and is equivalent to the canonical basis of l1(Γ). Several
consequences of this optimal result are spelled out.

1. Introduction. Let X be an arbitrary Banach space. A subset B of
the dual unit ball BX∗ is called a James boundary, or in short a boundary (see [5]),
if for every x ∈ X, there exists x∗ ∈ B such that x∗(x) = ‖x‖. The set Ext(BX∗)
of extreme points of the dual unit ball provides a classical example. It readily
follows from Hahn-Banach theorem that BX∗ is the weak*-closed convex hull of
any boundary B. Sometimes, for instance if X is separable and does not contain
an isomorphic copy of l1(N) (see [5]), it can actually be shown that the dual unit
ball is the norm-closed convex hull of any boundary B. However this is not true
in general: if for instance X = C([0, 1]) is the space of continuous functions on
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the unit interval, then B = {δx : x ∈ [0, 1]} is a boundary, whose norm-closed
convex hull consists of discrete measures. We refer to [9] for related results, under
assumptions of topological regularity of B. We refer to [2] for lineability in the
set of norm-attaining functionals, and to [12], [15], [16] for important results on
James’ theorem and boundaries.

Martin’s axiom is a combinatorial statement which allows to extend Can-
tor’s diagonal argument to all cardinals which are strictly less than the continuum
c. It is therefore an obvious consequence of the continuum hypothesis (CH), but
what makes it important is that it is compatible with the negation of continuum
hypothesis (see Theorem 11E in [4]). It turns out that if we assume Martin’s
axiom and the negation of continuum hypothesis (denoted (MA+¬CH)), trans-
finite biorthogonal systems can be constructed in quite a few spaces (see [21], [1],
[7]). This feature of Martin’s axiom is confirmed by the present work. On the
other hand, the world looks quite different if (CH) is assumed (see [19], [13]).

In this short note, we show that under (MA+¬CH), the natural example
given above, namely the boundary B = {δx : x ∈ [0, 1]} in C([0, 1])∗ which does
not span C([0, 1])∗ in norm, is somewhat minimal. This result does not require
any assumption of regularity on the boundary B. Some consequences of this
observation are given.

2. Results. The proof of our main result will rely in particular on
Simons’ inequality [17]. We refer to [6] for various applications of this inequality.
A bounded subset Γ of cardinality τ in a Banach space E is said to be equivalent
to the natural basis of l1(τ) if there exists m > 0 such that
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for any family (λγ)γ∈Γ of scalars with finitely many non-zero terms. With this
notation, our main result reads as follows.

Theorem 2.1. (MA + ¬CH): Let X be a separable Banach space, and

let B ⊂ BX∗ be a boundary. If B does not contain a subset equivalent to the

natural basis of l1(c) where c is the cardinality of the continuum, then BX∗ is the

norm-closed convex hull of B.

P r o o f. We assume that B does not contain a subset equivalent to
the natural basis of l1(c) where c is the cardinality of the continuum. Since c is
not of countable cofinality, it follows from Theorem 4 in [20] that if we denote
Z = span(B) ⊂ X∗, then this space Z does not contain an isomorphic copy of
l1(c). Hence by [10], it follows from (MA + ¬CH) that if (z∗n) is any bounded
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sequence in Z∗, there exists a sequence (c∗k) of successive convex combinations of
(z∗n), such that (c∗k) is a weak* convergent sequence (when k → ∞).

Therefore, if (xn) is any bounded sequence in X, there exists a sequence
(ck) of successive convex combinations which is pointwise convergent on B, and
hence, weakly Cauchy since B is a boundary ([17], see [6, Corollary 2]). It follows
that X 6⊇ l1, since obviously the canonical basis of l1 has no weakly Cauchy
sequence of convex combinations.

If BX∗ is not the norm-closed convex hull of B, there exists F ∈ BX∗∗

and x∗0 ∈ BX∗ such that F (x∗0) > supF (B). Let supF (B) < α < F (m∗

0). Let

C = {x ∈ BX : x∗0(x) > α}. Clearly F ∈ C
w∗

. Since X is separable and X 6⊇ l1,
the compact space BX∗∗ consists of first Baire class functions [14] and thus it is
angelic in the sense defined in [3]. In particular, there is a sequence {xn} ⊆ C

such that lim
n→∞

x∗(xn) = F (x∗) for all x∗ ∈ B. Since B is a boundary of BX∗ and

supF (B) < α, it follows from Simons’ inequality [17] that there is x ∈ co({xn}) ⊆
C such that α > supx(B). Since we clearly have conv w∗

(B) = BX∗ , this implies
α > ‖x‖. But this contradicts x∗0(x) > α. ✷

Theorem 2.1 implies of course that if X is separable and X∗ does not
contain l1(c), then BX∗ is the norm-closed convex hull of any boundary. This
result does not request axioms (it is part of Theorem III.1 in [5]), and it is shown
by the second half of the above proof.

A duality argument provides the following translation of Theorem 2.1.

Corollary 2.2. (MA + ¬CH) Let Z be a Banach space which does not

contain l1(c) isomorphically. If there is a norm-closed separable subspace X of

Z∗ which separates Z and consists of norm-attaining linear functionals, then X

is an isometric predual of Z.

P r o o f. Indeed let Q : Z → X∗ be the canonical map of restriction to
X. The set B = Q(BZ) is a boundary of BX∗ , and it follows from the lifting
property of l1 that the norm-closed linear span of B does not contain l1(c). Hence
B is norm-dense in BX∗ by Theorem 2.1. But this implies that Q is an isometry
from Z onto X∗. ✷

Note that the space Z is simply assumed to be separating in Corollary
2.2, and since it ends up being an isometric predual it is in particular 1-norming.
The example of X = C([0, 1]) as separating subspace of l1(c)

∗ shows that our
assumption on Z is necessary. Along these lines, l1(c)

∗ contains a norm-closed
separable subspace consisting of norm-attaining functionals which is separating
but not norming (Proposition 4 in [8]).

Corollary 2.3. (MA) Let X be a separable Banach space. If there is a
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boundary B ⊂ BX∗ with cardinality strictly less than c, then X∗ is separable and

BX∗ is the norm-closed convex hull of B.

P r o o f. If we assume (¬CH), Theorem 2.1 shows that that BX∗ is
the norm-closed convex hull of B. If we assume (CH), then B is countable and
again BX∗ is the norm-closed convex hull of B by Simons’ inequality [17]. In
both cases, the density character of X∗ is strictly less than c. But a Cantor-type
construction (or the stronger Stegall’s theorem [18]) shows that if X is separable
and X∗ is not, then the density character of X∗ is c. Therefore X∗ is sepa-
rable. ✷

We note that in the above Corollary 2.3, we may merely assume that the
norm-density character of the norm-closed linear span is less than c and reach the
same conclusion. Assuming norm-attainment on B is of course necessary: indeed
if X is any separable Banach space, there exists a 1-norming separable subspace
of X∗.

We conclude this short note with some remarks and examples, and a
natural problem.

Remarks. 1) Assuming the separability of X in Theorem 2.1 or in Corol-
lary 2.2 is necessary. For instance let X = C(ω1) be the space of continuous
functions on the locally compact ordered space ω1 of all countable ordinals. The
set B = {δα : α < ω1} is a boundary of BX∗ whose norm closed linear span
Z = l1(ω1) does not contain l1(c) (under (MA + ¬CH)). However, δω1

∈ X∗

does not belong to Z.

2) The statement “there exists a separable norm-closed subspace X of
l∞(ω1) which separates l1(ω1) and consists of norm-attaining functionals” is un-
decidable in (ZFC). Indeed, it is true if we assume (CH) (use a bijective map be-
tween ω1 and [0, 1] and take X = C([0, 1])). It is false if we assume (MA+¬CH)
since then, Theorem 2.1 would show that l1(ω1) is isometric to X∗, but since
l1(ω1) has the Radon-Nikodym property and is not separable it cannot be iso-
morphic to the dual of a separable space.

3) It follows from the proof of Theorem 2.1 and Proposition 11 in [15] that
in (ZFC) and with the assumptions and notation of Theorem 2.1, if BX∗ is not
the norm-closed convex hull of B, then the norm closed linear span of B contains
asymptotic copies of l1(N). Note that it follows from Theorem 6 in [20] that if a
Banach space Z contains isomorphically l1(c), then it contains asymptotic copies
of l1(N).

4) Corollary 2.2 easily implies the following James-type theorem, under
(MA + ¬CH): let Z be a Banach space which does not contain isomorphically
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l1(c). Let X be a separating subspace of Z∗, and denote by τX the locally convex
topology of pointwise convergence on X. We assume that the topology τX is
metrizable on BZ . Then the convex set (BZ , τX) is compact if and only if every
τX-continuous affine function on BZ attains its supremum. The usual example
of X = C([0, 1]) ⊂ l1(c)

∗ shows that the assumption made on Z is necessary.

5) Is Theorem 2.1 a result from (ZFC), or is an axiom necessary? In the
proof, (MA+¬CH) has been used for showing the existence of weak* convergent
sequences of convex combinations in Z∗, and this completely fails under (CH)
since for instance, there exists ([19]) under (CH) a Grothendieck space C(K)
which does not contain l1(c), and in the norm-closed space l1(K) the weak*
convergent sequences are actually norm-convergent. Hence it might be so that
Theorem 2.1 is not provable in (ZFC). However, under a mild topological as-
sumption on the boundary B, one can dispense with axioms: indeed, assume
that B is weak* analytic (in the sense of Suslin). It is in particular so if B is a
weak* Borel subset of X∗. The restriction to B of BX∗∗ is a pointwise compact
set K of functions on the topological space A = (B,w∗), which contains a dense
subset of continuous functions – namely, the restriction of BX to B. By [3], the
compact set K is angelic or contains a copy of βN. If K is angelic, the end of
the proof of Theorem 1 shows that BX∗ is the norm-closed convex hull of B.
If K contains a copy of βN and if we denote by Z the norm-closed linear span
of B, then BZ∗ contains a weak* homeomorphic copy of βN, and thus by [20],
the space Z contains l1(c). This argument also works as soon as B contains a
weak* analytic boundary, e.g. the range of a norm-to-weak* Borel selector of the
support mapping (see [11]).

REFERENCES

[1] M. Bacak, P. Hajek. Mazur intersection property for Asplund spaces. J.
Funct. Anal. 255, 8 (2008), 2090–2094.

[2] P. Bandyopadhyay, G. Godefroy. Linear structures in the set of norm-
attaining functionals on a Banach space. J. Convex Anal. 13, 3–4 (2006),
489–497.

[3] J. Bourgain, D. Fremlin, M. Talagrand. Pointwise compact sets of
Baire-measurable functions. Amer. J. Math. 100 (1978), 845–886.

[4] D. Fremlin. Consequences of Martin’s axiom. Cambridge Tracts in Math-
ematics, vol. 84. Cambridge etc., Cambridge University Press, 1984.

[5] G. Godefroy. Boundaries of a convex set and interpolation sets. Math.

Ann. 277 (1987), 173–184.



64 G. Godefroy

[6] G. Godefroy. Some applications of Simons’ inequality. Serdica Math. J.

26, 1 (2000), 59–78.

[7] G. Godefroy. On the diameter of the Banach-Mazur set. Czech Math. J.

60, 1 (2010), 95–100.

[8] G. Godefroy. The use of norm-attainment. Bull. Belg. Math. Soc. – Simon

Stevin 20, 3 (2013), 417–423.

[9] A. S. Granero, J. M. Hernández. On James boundaries in dual Banach
spaces. J. Funct. Anal. 263, 2 (2012), 429–447.

[10] R. Haydon, M. Levy, E. Odell.On sequences without weak* convergent
convex block sequences. Proc. Amer. Math. Soc. 100 (1987), 94–98.

[11] J. Jayne, C.A. Rogers. Borel selectors for upper semi-continuous set val-
ued maps. Acta Math. 155 (1985), 41–79.

[12] M. Morillon. A new proof of James’ sup theorem. Extr. Math. 20, 3

(2005), 261–271.

[13] S. Negrepontis. Banach spaces and topology. In: Handbook of Set-
theoretic Topology (Eds K. Kunen and J. E. Vaughan), North-Holland, 1984,
1045–1142.

[14] E. Odell, H. P. Rosenthal. A double-dual characterization of Banach
spaces not containing ℓ1. Israel J. Math. 20 (1975), 375–384.

[15] H. Pfitzner. Boundaries for Banach spaces determine weak compactness.
Invent. Math. 182, 3 (2010), 585–604.

[16] H. Pfitzner. A conjecture of Godefroy concerning James’ theorem. Quart.

J. Math. 64, 2 (2013), 547–553.

[17] S. Simons. A convergence theorem with boundary. Pacific J. Math. 40

(1972), 703–708.

[18] C. Stegall. The Radon-Nikodym property in conjugate Banach spaces.
Trans. Amer. Math. Soc. 206 (1975), 213–223.

[19] M. Talagrand. Un nouveau C(K) qui possède la propriété de
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