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Abstract. In this paper, we discuss a class of stochastic linear quadratic
dynamic decision problems of a general time-inconsistent type, in the sense
that, it does not satisfy the Bellman optimality principle. More precisely, the
dependence of the running and the terminal costs in the objective functional
on some general discounting coefficients, as well as on some quadratic terms
of the conditional expectation of the state process, makes the problem time-
inconsistent. Open-loop Nash equilibrium controls are then constructed in-
stead of optimal controls, this has been accomplished through the stochas-
tic maximum principle approach that includes a flow of forward-backward
stochastic differential equations under a maximum condition. Then by de-
coupling the flow of the adjoin process, we derive an explicit representation
of the equilibrium strategies in feedback form. As an application, we study
some concrete examples. We emphasize that; this method can provide the
necessary and sufficient conditions to characterize the equilibrium strategies.
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While most existing results which are based on the dynamic programming
principle and the extended HJB equation can create only the sufficient con-
dition to characterize the equilibrium strategies.

Introduction. Stochastic optimal control problems with linear dynam-
ics and quadratic stage costs are one of the most important classes of optimal
control ones. They have wide applications in engineering and financial mathe-
matics, etc. A major approach for studying such stochastic control problems is
the dynamic programming principle which expresses the optimal policy in terms
of an optimization problem involving the value function (or a sequence of value
functions in the time-varying case). The proof of the dynamic programming prin-
ciple is technical and has been studied by different methods. The value function
can be create, by an iteration connecting to the Bellman operator, which maps
functions on the state space into functions on the state space and involves an
expectation and a minimization step.

A number of studies have been devoted to this topic by different methods.
Wu and Wang [23] discussed a kind of stochastic LQ problem for system driven
by a Brownian motion and an independent Poisson jump process then a linear
feedback regulator for the optimal control problem is given by the solution of a
generalized Riccati equation system. In view of completing of squares technique,
Hu and Øksendal [13] studied the stochastic LQ problem for a general stochastic
differential equation with random coefficients, under partial information. Meng
[12] investigate the stochastic maximum principle in LQ control problem for mul-
tidimensional stochastic differential equation driven by a Brownian motion and
a Poisson random martingale measure and obtain the existence and uniqueness
result for a class of backward stochastic Riccati equations. For more information
on LQ control models for stochastic dynamic systems, we refer to [20], [28], [23],
[25] and [28].

Time-inconsistent stochastic control problems have received remarkable
attention in the recent years. The risk aversion attitude of a mean-variance in-
vestor [2], [3] and [9], and the portfolio optimization model with non-exponential
discount function [6] and [7], provide two well-known examples of time-inconsis-
tency in mathematical finance. The main difficulty when facing a time-inconsis-
tent optimal control problem is that, we cannot use the dynamic programming
and the standard HJB techniques, meaning that an optimal strategy might not
remains optimal as time goes. However, the main approach to handle the time-
inconsistent optimal control problems, is by viewing them within a game theoretic
framework. Nash equilibriums are therefore considered instead of optimal solu-
tions, see e.g. [2], [4], [5], [6], [7], [9], [10], [16], [17], [18], [24], [25] and [26].
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The fundamental idea is that the control action that the controller makes at
every instant of time, is considered as a game against all the control actions
that describes the future incarnations of the controller. Strotz [24], was the first
who used this game perspective to handle the dynamic time-inconsistent deci-
sion problem on the deterministic Ramsay problem [18]. Then by capturing the
idea of non-commitment, by letting the commitment period being infinitesimally
small, he characterized a Nash equilibrium strategy. Further work which extend
[18] are [10], [18], [17] and [8]. Ekland and Lazrak [6] and Ekland and Pirvu [7]
apply this game perspective to investigate the optimal investment-consumption
problem under general discount functions, in both, deterministic and stochastic
framework. Then, by means of the so-called ”local spike variation” they provide
a formal definition of feedback Nash equilibrium controls in continuous time.
The work [2] extends the idea to the stochastic framework where the controlled
process is Markovian. In addition, an extended HJB equation is derived, along
with a verification argument that characterizes a Markov subgame perfect Nash
equilibium.

To the best of our knowledge, there is little work in the literature con-
cerning equilibrium strategy for time-inconsistent LQ control problems. In [24]
Yong studied a general discounting time-inconsistent deterministic LQ model,
and he derive a closed-loop equilibrium strategies, via a forward ordinary differ-
ential equation coupled with a backward Riccati-Volterra integral equation. Hu
et al [9] investigate open loop equilibrium strategies for time inconsistent LQ
control problem with random coefficients by adopting a Pontryagin type stochas-
tic maximum principle approach, we refer to [22] for partially observed recursive
optimization problem. Yong [26] investigate a time-inconsistent stochastic LQ
problem for mean-field type stochastic differential equation and closed-loop so-
lutions are presented by means of multi-person differential games, the limit of
which leads to the equilibrium Riccati equation. As far as we know, there is
no literature on the time-inconsistent stochastic linear-quadratic optimal control
problems incorporating stochastic jumps.

Novelty and contribution. Motivated by these points, this paper stud-
ies optimality conditions for time-inconsistent linear quadratic stochastic control
problem, in the sense that, it does not satisfy the Bellman optimality princi-
ple, since a restriction of an optimal control for a specific initial pair on a later
time interval might not be optimal for that corresponding initial pair. The state
is described by a n-dimensional non homogeneous controlled SDE with jump
processes, defined on a complete filtered probability space. The objective func-
tional includes the cases of hyperbolic discounting, as well as, the continuous-time
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Markowitz’s mean-variance portfolio selection problem, with state-dependent risk
aversion.

Our objective, is to investigate a characterization of Nash equilibrium
controls instead of optimal controls. The novelty of this work lies in the fact
that, our calculations are not limited to the exponential discounting framework,
the time-inconsistency of the LQ optimal control in this situation, is due to the
presence of some general discounting coefficients, involving the so-called hyper-
bolic discounting situations. In addition, the presence of some quadratic terms of
the expected controlled state process, in both the running and the terminal costs,
(this can be motivated by the reward term in the mean-variance portfolio choice
model), and the presence of the risk aversion term, whish stems from the state-
dependent utility function in economics [9], make the problem time-inconsistent.
Each of these terms introduces time-inconsistency of the underlying model, in
somewhat different ways.

We accentuate that, our model covers some class of time-inconsistent
stochastic LQ optimal control problem studied by [9], and some relevant cases
appeared in [25]. Note that, in [9] the weighting matrices do not depend on
current time t and in [25] the terminal cost do not depend on current state
ξ. Moreover, we have defined the equilibrium controls in open-loop sense, in a
manner similar to [9], which is different from the feedback form, see e.g. [2], [3],
[4], [6], [7], [24], [26] and [23].

Structure of the paper. The rest of the paper is organized as follows. In
Section 2, we describe the model and formulate the objective. In Section 3 we
present the first main result of this work (Theorem 3.2), which characterizes the
equilibrium control via a stochastic system, which involves a flow of forward-
backward stochastic differential equation with jumps (FBSDEJ in short), along
with some equilibrium conditions. In Section 4, by decoupling the flow of the
FBSDEJ, we investigate a feedback representation of the equilibrium control,
via some class of ordinary differential equations, which do not have a symmetry
structure. Section 5 is devoted to some applications, we solve a continuous time
mean–variance portfolio selection model and some one-dimensional general dis-
counting LQ problems. The paper ends with Appendix containing some proofs.

2. Problem setting. Let (Ω,F , (Ft)t∈[0,T ] ,P) be a filtered probability
space such that F0 contains all P-null sets, FT = F for an arbitrarily fixed finite
time horizon T > 0, and (Ft)t∈[0,T ] satisfies the usual conditions. We assume that
(Ft)t∈[0,T ] is generated by a d-dimensional standard Browian motion (W (t))t∈[0,T ]

and an independent Poisson measure N on [0, T ] × Z where Z ⊂ R − {0}. We
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assume that the compensator of N has the form µ (dt, dz) = θ (dz) dt for some
positive and σ−finite Levy measure on Z, endowed with it’s Borel σ−field B (Z).
We suppose that

∫
Z

1∧|z|2 θ (dz) <∞ and write Ñ (dt, dz) = N (dt, dz)−θ (dz) dt

for the compensated jump martingal rondom measure of N. Obviously, we have

Ft = σ
[∫ ∫

A×(0,s]N (dr, de) ; s ≤ t, A ∈ B (Z)
]
∨ σ [Bs; s ≤ t] ∨ N ,

where N denotes the totality of θ−null sets, and σ1 ∨ σ2 denotes the σ−field
generated by σ1 ∪ σ2.

2.1. Notations. Throughout this paper, we use the following notations:

• Sn : the set of n× n symmetric real matrices.

• C⊤ : the transpose of the vector (or matrix) C.

• 〈., .〉: the inner product in some Euclidean space.

For any Euclidean space H = R
n, Rn×m or Sn with Frobenius norm |.|

we let for any t ∈ [0, T ]

• L
p (Ω,Ft,P;H) := {ξ : Ω → H | ξ is Ft −measurable, with E [|ξ|p] <∞},

for any p ≥ 1.

• L
2 (Z,B (Z) , θ;H) :=

{
r (.) : Z → H | r (.) is B (Z)−measurable

, with

∫

Z

|r (z)|2 θ (dz) <∞

}
.

• S2
F (t, T ;H) :=

{
X (.) : [t, T ]× Ω → H | X (.) is (Fs)s∈[t,T ] − adapted,

s 7→ X(s) is càdlàg, with E sup
s∈[t,T ]

|X (s)|2 ds <∞

}
.

• L2
F (t, T ;H) :=

{
X (.) : [t, T ]× Ω → H|X (.) is (Fs)s∈[t,T ] − adapted,

with E

[∫ T

t

|X (s)|2 ds

]
<∞

}
.
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• Lθ,2
F ([t, T ]× Z;H) :=

{
R (., .) : [t, T ]× Ω× Z → H | R (.) is (Fs)s∈[t,T ]

− adapted process on [t, T ]× Ω× Z, with

E

[∫ T

t

∫

Z

|R (s, z)|2 θ (dz) ds

]
<∞

}
.

• C ([0, T ] ;H) := {f : [0, T ] → H| f (.) is continuous} .

• D [0, T ] := {(t, s) ∈ [0, T ]× [0, T ] , such that s ≥ t} .

• C (D [0, T ] ;H) := {f (., .) : D [0, T ] → H (t, s) | f (., .) is continuous} .

• C0,1 (D [0, T ] ;H) :=

{
f (., .) : D [0, T ] → H| f (., .) and

∂f

∂s
(., .)

are continuous

}
.

2.2. Problem statement. We consider a n-dimensional non homoge-
neous linear controlled jump diffusion system

(2.1)





dX (s) = {A (s)X (s) +B (s)u (s) + b (s)} ds

+
d∑

j=1

{Cj (s)X (s) +Dj (s)u (s) + σj (s)} dW
j (s)

+

∫

Z

{E (s, z)X (s−) + F (s, z) u (s) + c (s, z)} Ñ (ds, dz) ,

s ∈ [t, T ] ,
X (t) = ξ.

where (t, ξ, u (.)) ∈ [0, T ] × L
2 (Ω,Ft,P;R

n) × L2
F (t, T ;Rm) . Under some con-

ditions, for any initial situation (t, ξ) and any admissible control u (.) the state
equation is uniquely solvable, we denote by X (.) = Xt,ξ (.;u (.)) its solution, for
s ∈ [t, T ] . Different controls u (.) will lead to different solutions X (.) . Note that
L2
F (t, T ;Rm) is the space of all admissible strategies.

Our aim is to minimize the following expected discounted cost functional
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(2.2)

J (t, ξ, u (.))

= E
t

[∫ T

t

1

2

(
〈Q (t, s)X (s) ,X (s)〉+

〈
Q̄ (t, s)Et [X (s)] ,Et [X (s)]

〉

+ 〈R (t, s)u (s) , u (s)〉) ds

+ 〈µ1 (t) ξ + µ2 (t) ,X (T )〉

+
1

2

(
〈G (t)X (T ) ,X (T )〉+

〈
Ḡ (t)Et [X (T )] ,Et [X (T )]

〉) ]
,

over u (.) ∈ L2
F (t, T ;Rm), where X (.) = Xt,ξ (.;u (.)) and E

t [.] = E [. |Ft ] .
We need to impose the following assumptions about the coefficients

(H1) The functions A (.) , Cj (.) : [0, T ] → R
n×n, B (.) ,Dj (.) : [0, T ] → R

n×m,

b (.) , σj (.) : [0, T ] → R
n, E (., .) : [0, T ] × Z → R

n×n, F (., .) : [0, T ] × Z →
R
n×m, and c (., .) : [0, T ]×Z → R

n are continuous and uniformly bounded.
The coefficients on the cost functional satisfy





Q (., .) , Q̄ (., .) ∈ C (D [0, T ] ;Sn) ,

R (., .) ∈ C (D [0, T ] ;Sm) ,

G (.) , Ḡ (.) ∈ C ([0, T ] ;Sn) ,

µ1 (.) ∈ C
(
[0, T ] ;Rn×n

)
,

µ2 (.) ∈ C ([0, T ] ;Rn) .

(H2) The functions R (., .) , Q (., .) and G (.) satisfy

R (t, t) ≥ 0, G (t) ≥ 0, ∀t ∈ [0, T ] , and Q (t, s) ≥ 0, ∀ (t, s) ∈ D [0, T ] .

Under (H1) for any (t, ξ, u (.)) ∈ [0, T ]×L
2 (Ω,Ft,P;R

n)×L2
F (t, T ;Rm),

the state equation (2.1) has a unique solution X (.) ∈ S2
F (t, T ;Rn), see for exam-

ple [12]. Moreover, we have the following estimate

E

[
sup

t≤s≤T

|X (s)|2
]
≤ K

(
1 + E

[
|ξ|2

])
,

for some positif constant K. The optimal control problem can be formulated as
follows.

Problem (LQJ). For any given initial pair (t, ξ) ∈ [0, T ]×L
2 (Ω,Ft,P;R

n),
find a control û (.) ∈ L2

F (t, T ;Rm) such that

J (t, ξ, û (.)) = inf
u(.)∈L2

F
(t,T ;Rm)

J (t, ξ, u (.)) .
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Remark 2.1. 1) The dependence of the weighting matrices of the current
time t, the dependence of the terminal cost on the current state ξ and the presence
of quadratic terms of the expected controlled state process in the cost functional
make the Problem (LQJ) time-inconsistent.

2) One way to get around the time-inconsistency issue is to consider only
precommitted controls (i.e., the controls are optimal only when viewed at the
initial time).

2.3. An example of time-inconsistent optimal control problem.
We present a simple illustration of stochastic optimal control problem which
is time-inconsistent. Our aim is to show that the classical SMP approach is
not efficient in the study of this problem if it’s viewed as time-consistent. For
n = d = 1, consider the following controlled SDE starting from (t, x) ∈ [0, T ]×R

(2.3)

{
dXt,x (s) = bu (s) ds + σdW (s) , s ∈ [t, T ] ,
Xt,x (t) = x,

where b and σ are real constants. The cost functional is given by

(2.4) J (t, x, u (.)) =
1

2
E

[∫ T

t

|u (s)|2 ds+ h (t)
(
Xt,x (T )− x

)2
]
,

where h (.) : [0, T ] → (0,∞) , is a general deterministic non-exponential discount

function satisfying h (0) = 1, h (s) ≥ 0 and

∫ T

0
h (t) dt <∞. We want to address

the following stochastic control problem.
Problem (E). For any given initial pair (t, x) ∈ [0, T ]×R, find a control

ū (.) ∈ L2
F (t, T ;R) such that

J (t, x, ū (.)) = inf
u(.)∈L2

F
(t,T ;R)

J (t, x, u (.)) .

At a first stage, we consider the Problem (E) as a standard time consistent
stochastic linear quadratic problem. Since J (t, x, .) is convex and coercive, there
exists then a unique optimal control for this problem for each fixed initial pair
(t, x) ∈ [0, T ]×R. Notice that the usual Hamiltonian associated to this problem
is H : [0, T ]× R

4 → R such that for every (s, y, v, p, q) ∈ [0, T ]× R
4 we have

H (s, y, v, p, q) = pbv + σq −
1

2
v2,

Let ut,x (.) be an admissible control for (t, x) ∈ [0, T ] × R. Then the
corresponding first order and second order adjoint equations are given respectively
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by {
dpt,x (s) = qt,x (s) dW (s) , s ∈ [t, T ] ,
pt,x (T ) = −h (t)

(
Xt,x (T )− x

)
,

and {
dP t,x (s) = Qt,x (s) dW (s) , s ∈ [t, T ] ,
P t,x (T ) = −h (t) ,

the last equation has only the solution
(
P t,x (s) , Qt,x (s)

)
= (−h (t) , 0), ∀s ∈

[t, T ] .
Note that, the corresponding H-function is given by

H (s, y, v) = H
(
s, y, v, pt,x (s) , qt,x (s)

)
= pt,x (s) bv + σqt,x (s)−

1

2
v2,

which is a concave function of v. Then according to the sufficient condition of
optimality, see e.g. Theorem 5.2 pp 138 in [16], for any fixed initial pair (t, x) ∈
[0, T ]×R, Problem (E) is uniquely solvable with an optimal control ūt,x (.) having
the representation

ūt,x (s) = bp̄t,x (s) , ∀s ∈ [t, T ] ,

such that the process
(
p̄t,x (.) , q̄t,x (.)

)
is the unique adapted solution to the BSDE

{
dp̄t,x (s) = q̄t,x (s) dW (s) , s ∈ [t, T ] ,
p̄t,x (T ) = −h (t)

(
X̄t,x (s)− x

)
.

By stadard arguments we can show that the processes
(
p̄t,x (.) , q̄t,x (.)

)

are explicitly given by

{
p̄t,x (s) = −M t (s)

(
X̄t,x (s)− x

)
, s ∈ [t, T ] ,

q̄t,x (s) = −σM t (s) , s ∈ [t, T ] ,

where X̄t,x (.) is the solution of the state equation corresponding to ūt,x (.) , given
by {

dX̄t,x (s) = b2p̄t,x (s) ds + σdW (s) , s ∈ [t, T ] ,
X̄t,x (t) = x.

and

M t (s) =
h (t)

b2h (t) (T − s) + 1
, ∀s ∈ [t, T ] .

A simple computation show that

ut,x (s) = −
bh (t)

b2h (t) (T − s) + 1

(
X̄t,x (s)− x

)
, ∀s ∈ [t, T ] ,
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clearly we have

(2.5) ut,x (s) 6= 0, ∀s ∈ (t, T ] .

In the next stage, we will prove that the Problem (E) is time-inconsistent,
for this we first fix the initial data (t, x) ∈ [0, T ] × R. Note that, if we assume
that the Problem (E) is time-consistent, in the sense that for any r ∈ [t, T ]
the restriction of ūt,x (.) on [r, T ] is optimal for Problem (E) with initial pair(
r, X̄t,x (r)

)
, however as Problem (E) is uniquely solvable for any initial pair, we

should have then ∀r ∈ (t, T ]

ūt,x (s) = ūr,X̄
t,x(r) (s) = −

bh (r)

b2h (r) (T − s) + 1

(
X̄r,X̄t,x(r) (s)− X̄t,x (r)

)
,

∀s ∈ [r, T ] ,

where X̄r,X̂t,x(r) (.) solves the SDE





dX̄r,X̄t,x(r) (s) = b2
h (r)

b2h (r) (T − s) + 1

(
X̄r,X̄t,x(r) (s)− X̄t,x (r)

)
ds+ σdW (s) ,

∀s ∈ [r, T ] ,

X̄r,X̄t,x(r) (r) = X̄t,x (r) .

In particular by the uniqueness of solution to the state SDE we should
have

ūt,x (r) = −
bh (r)

b2h (r) (T − r) + 1

(
X̄r,X̄t,x(r) (r)− X̄t,x (r)

)
= 0,

is the only optimal solution of the Problem (E), this contradict (2.5). Therefore,
the Problem (E) is not time-consistent, and more precisely, the solution obtained
by the classical SMP is wrong and the problem is rather trivial since the only
optimal solution equal to zero.

3. Characterization of equilibrium strategies. The purpose of
this paper is to characterize open-loop Nash equilibriums instead of optimal con-
trols. We use the game theoretic approach to handle the time inconsistency in
the same perspective as Ekeland and Lazrak [6], Bjork and Murgoci [2]. Let us
briefly describe the game perspective that we will consider, as follows.

• We consider a game with one player at each point t in [0, T ]. This player
represents the incarnation of the controller at time t and is referred to as
“player t”.
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• The t − th player can control the system only at time t by taking his/her
strategy u (t, .) : Ω → R

m.

• A control process u (.) is then viewed as a complete description of the chosen
strategies of all players in the game.

• The reward to the player t is given by the functional J (t, ξ, u (.)), which
depends only on the restriction of the control u (.) to the time interval [t, T ].

In the above description, we have presented the concept of a “Nash equi-
librium point” of the game. This is an admissible control process û (.) satisfying
the following condition; Suppose that every player s, such that s > t, will use the
strategy û (s). Then the optimal choice for player t is that, he/she also uses the
strategy û (t) .

Nevertheless, the problem with this “definition”, is that the individual
player t does not really influence the outcome of the game at all. He/she only
chooses the control at the single point t, and since this is a time set of Lebesgue
measure zero, the control dynamics will not be influenced. Therefore, to charac-
terize open-loop Nash equilibriums, which have not to be necessary feedback, we
follow [9] who suggest the following formal definition inspired by [6] and [7].

Noting that, for brevity, in the rest of the paper, we suppress the subscript
(s) for the coefficients A (s) , B (s) , b (s) , Cj (s) ,Dj (s) , σj (s), and we use the
notation ̺ (z) instead of ̺ (s, z) for ̺ = E,F and c. In addition, sometimes we
simply call û (.) an equilibrium control instead of open-loop Nash equilibrium
control when there is no ambiguity.

Following [9], we first consider an equilibrium by local spike variation,
given an admissible control û (.) ∈ L2

F (0, T ;Rm). For any t ∈ [0, T ] , v ∈
L
2 (Ω,Ft,P;R

m) and for any ε > 0, define

(3.1) uε (s) =

{
û (s) + v, for s ∈ [t, t+ ε) ,
û (s) , for s ∈ [t+ ε, T ] ,

we have the following definition.

Definition 3.1 (Open-loop Nash equilibrium). An admissible strategy
û (.) ∈ L2

F (0, T ;Rm) is an open-loop Nash equilibrium control for Problem (LQJ)
if

(3.2) lim
ε↓0

1

ε

{
J
(
t, X̂ (t) , uε (.)

)
− J

(
t, X̂ (t) , û (.)

)}
≥ 0,
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for any t ∈ [0, T ] , and v ∈ L
2 (Ω,Ft,P;R

m). The corresponding equilibrium
dynamics solves the following SDE with jumps





dX̂ (s) =
{
AX̂ (s) +Bû (s) + b

}
ds+

d∑

j=1

{
CjX̂ (s) +Dj û (s) + σj

}
dW j (s)

+

∫

Z

{
E (z) X̂ (s−) + F (z) û (s) + c (z)

}
Ñ (ds, dz) , s ∈ [0, T ] ,

X̂0 = x0.

3.1. The flow of adjoint equations. We introduce the adjoint equa-
tions involved in the stochastic maximum principle which characterize the open-
loop Nash equilibrium controls of Problem (LQJ). First, define the Hamiltonian
H : D [0, T ]× L

1 (Ω,Ft,P;R
n)× R

m × R
n × R

n×d × L
2 (Z,B (Z) , θ;Rn) → R by

(3.3)

H (t, s,X, u, p, q, r (.))

= 〈p,AX +Bu+ b〉+
d∑

j=1

〈qj,DjX + Cju+ σj〉 −
1

2
〈R (t, s)u, u〉

+

∫

Z

〈r (z) , E (z)X + F (z) u+ c (z)〉 θ (dz)

−
1

2

(
〈Q (t, s)X,X〉 +

〈
Q̄ (t, s)Et [X] ,Et [X]

〉)
.

Let û (.) ∈ L2
F (0, T ;Rm) and denote by X̂ (.) the corresponding controlled

state process. For each t ∈ [0, T ], we introduce the first order adjoint equa-
tion defined on the time interval [t, T ], and satisfied by the triple of processes
(p (.; t) , q (.; t) , r (., .; t)) as follows

(3.4)





dp (s; t) = −



A

⊤p (s; t) +
d∑

j=1

C⊤
j qj (s; t) +

∫

Z

E (z)⊤ r (s, z; t) θ (dz)

−Q (t, s) X̂ (s)− Q̄ (t, s)Et
[
X̂ (s)

]


 ds

+
d∑

j=1

qj (s; t) dW
j (s) +

∫

Z

r (s−, z; t) Ñ (ds, dz) , s ∈ [t, T ] ,

p (T ; t) = −G (t) X̂ (T )− Ḡ (t)Et
[
X̂ (T )

]
− µ1 (t) X̂ (t)− µ2 (t) ,

where q (.; t) = (q1 (.; t) , . . . , qd (.; t)) .
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Similarly, we introduce the second order adjoint equation defined on the
time interval [t, T ], and satisfied by the triple of processes (P (.; t) ,Λ (.; t) ,Γ (., .; t))
as follows

(3.5)





dP (s; t) = −



A

⊤P (s; t) + P (s; t)A+
d∑

j=1

(
C⊤
j P (s; t)Cj + Λj (s; t)Cj

+ C⊤
j Λj (s; t)

)
+

∫

Z

E (z)⊤ (Γ (s, z; t) + P (s; t))E (z) θ (dz)

+

∫

Z

Γ(s, z; t)E(z)θ(dz)+

∫

Z

E(z)⊤Γ(s, z; t)θ(dz) −Q(t, s)



 ds

+
d∑

j=1

Λj (s; t) dW
j
s +

∫

Z

Γ (s−, z; t) Ñ (ds, dz) , s ∈ [t, T ] ,

P (T ; t) = −G (t) ,

where Λ (.; t) = (Λ1 (.; t) , ...,Λd (.; t)). Under (H1) the BSDE (3.4) is uniquely

solvable in S2
F (t, T ;Rn) × L2

F

(
t, T ;Rn×d

)
× Lθ,2

F ([t, T ]× Z;Rn), see e.g. [12].

Moreover there exists a constant K > 0 such that

(3.6) E

[
sup

t≤s≤T

|p (s; t)|2
Rn

]
+ E

[∫ T

t

|q (s; t)|2
Rn×d ds

]

+ E

[∫ T

t

∫

Z

|r (s, z; t)|2
Rn θ (dz) ds

]
≤ K

(
1 + |x0|

2
)
.

In an other hand, noting that the final data of the equation (3.5) is de-
terministic, it is straightforward to look at a deterministic solution. In addition
we have the following representation

(3.7)





dP (s; t) = −



A

⊤P (s; t) + P (s; t)A+

d∑

j=1

C⊤
j P (s; t)Cj

+

∫

Z

E (z)⊤ P (s; t)E (z) θ (dz)−Q (t, s)



 ds, s ∈ [t, T ] ,

P (T ; t) = −G (t) ,

which is a uniquely solvable matrix-valued ordinary differential equation. Next,
for each t ∈ [0, T ], associated with the 6-tuple (û(.), X̂(.), p(.; t), q(., t), r(., .; t),
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P (.; t)) we define the Ht-function as follows

Ht (s,X, u) = H (t, s,X, û (s) + u, p (s; t) , q (s; t) , r (s, .; t))

+
1

2
u⊤





d∑

j=1

D⊤
j P (s; t)Dj +

∫

Z

F (z)⊤ P (s; t)F (z) θ (dz)



u,(3.8)

where (s,X, u) ∈ [t, T ]× L
1 (Ω,F ,P;Rn)× R

m. In the rest of the paper, we will
keep the following notation, for (s, t) ∈ D [0, T ]

δH (t; s) = H

(
t, s, X̂ (s) , û (s) + u, p (s; t) , q (s; t) , r (s, .; t)

)

−H

(
t, s, X̂ (s) , û (s) , p (s; t) , q (s; t) , r (s, .; t)

)
.

3.2. A stochastic maximum principle for equilibrium controls. In
this section, we present a version of Pontryagin’s stochastic maximum principle
which characterize the equilibrium controls of the Problem (LQJ). We derive
the result by using the second order Taylor expansion in the special form spike
variation (3.1). Here, we don’t assume the non-negativity condition about the
matrices Q, G and R as in [9] and [25].

The following theorem is the first main result of this work, it’s providing a
necessary and sufficient condition to characterize the open-loop Nash equilibrium
controls for time-inconsistent Problem (LQJ).

Theorem 3.2 (Stochastic Maximum Principle For Equilibriums). Let
(H1) holds. Then an admissible control û (.) ∈ L2

F (0, T ;Rm) is an open-loop
Nash equilibrium, if and only if, for any t ∈ [0, T ], there exist a unique triple
of adapted processes (p (.; t) , q (.; t) , r (., .; t)) which satisfy the BSDE (3.4) and a
deterministic matrix-valued function P (.; t) which satisfies the ODE (3.7), such
that the following condition holds, for all u ∈ R

m

(3.9)
δH (t; t) +

1

2
u⊤





d∑

j=1

D⊤
j P (t; t)Dj +

∫

Z

F (z)⊤ P (t; t)F (z) θ (dz)



u ≤ 0,

P− a.s.

Or equivalently, we have the following two conditions. The first order
equilibrium condition

(3.10) R (t, t) û (t)−B⊤p (t; t)−
d∑

j=1

D⊤
j qj (t; t)



The maximum principle in LQ equilibrium control problem 117

−

∫

Z

F (z)⊤ r (t, z; t) θ (dz) = 0, P−a.s,

and the second order equilibrium condition

(3.11) R (t, t)−
d∑

j=1

D⊤
j P (t; t)Dj −

∫

Z

F (z)⊤ P (t; t)F (z) θ (dz) ≥ 0.

Remark 3.3. Note that for each t ∈ [0, T ], (3.4) and (3.5) are backward
stochastic differential equations. So, as we consider all t in [0, T ] , all their corre-
sponding adjoint equations form essentially a ”flow” of BSDEs. Moreover, there
is an additional constraint (3.9) which is equivalent to the conditions (3.10) and
(3.11) that acts on the flow only when s = t, while the Pontryagin’s stochas-
tic maximum principle for optimal control involves only one system of forward-
backward stochastic differential equation.

3.2.1. Proof of the Theorem 3.2. Our goal now, is to give a proof of
the Theorem 3.2. The main idea is still based on the variational techniques in
the same spirit of proving the stochastic Pontryagin’s maximum principle [19].

Let û (.) ∈ L2
F (0, T ;Rm) be an admissible control and X̂ (.) the corre-

sponding controlled process solution to the state equation. Consider the per-
turbed control uε (.) defined by the spike variation (3.1) for some fixed arbitrary
t ∈ [0, T ] , v ∈ L

2 (Ω,Ft,P;R
m) and ε ∈ [0, T − t] . Denote by X̂ε (.) the solution

of the state equation corresponding to uε (.). Since the coefficients of the con-
trolled state equation are linear, then by the standard perturbation approach, see
e.g. [19], we have

(3.12) X̂ε (s)− X̂ (s) = yε,v (s) + zε,v (s) , s ∈ [t, T ] ,

where yε,v (.) and zε,v (.) solve the following linear stochastic differential equa-
tions, respectively

(3.13)





dyε,v (s) = Ayε,v (s) ds+
d∑

j=1

{
Cjy

ε,v (s) +Djv1[t,t+ε) (s)
}
dW j (s)

+

∫

Z

{
E (z) yε,v (s−) + F (z) v1[t,t+ε) (s)

}
Ñ (ds, dz) , s ∈ [t, T ] ,

yε,v (t) = 0,
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and

(3.14)





dzε,v (s) =
{
Azε,v (s) +Bv1[t,t+ε) (s)

}
ds+

d∑

j=1

Cjz
ε,v (s) dW j (s)

+

∫

Z

E (z) zε,v (s) Ñ (ds, dz) , s ∈ [t, T ] ,

zε,v (t) = 0.

First, we present the following technical lemma needed later in this study,
see the Appendix for its proof.

Lemma 3.4. Under assumption (H1), the following estimates hold

E
t [yε (s)] = 0, a.e. s ∈ [t, T ] and sup

s∈[t,T ]

∣∣Et [zε (s)]
∣∣2 = O

(
ε2
)
,(3.15)

E
t sup
s∈[t,T ]

|yε (s)|2 = O (ε) and E
t sup
s∈[t,T ]

|zε (s)|2 = O
(
ε2
)
.(3.16)

Moreover, we have the equality

(3.17)

J
(
t, X̂ (t) , uε (.)

)
− J

(
t, X̂ (t) , û (.)

)

= −E
t



∫ T

t



δH (t; s) +

1

2
v⊤




d∑

j=1

D⊤
j P (s; t)Dj

+

∫

Z

F (z)⊤ P (s; t)F (z) θ (dz)


 v



 1[t,t+ε) (s) ds


+ o (ε) .

Now, we are ready to give the proof of the Theorem 3.2.
P r o o f o f T h e o r em 3.2. Given an open-loop Nash equilibrium û (.),

then for any t ∈ [0, T ] and v ∈ L
2 (Ω,Ft,P;R

m), we have clearly

lim
ε↓0

1

ε

{
J
(
t, X̂ (t) , û (.)

)
− J

(
t, X̂ (t) , uε (.)

)}
≤ 0,

which leads from (3.17) to

lim
ε→0

1

ε
E
t



∫ T

t



δH (t; s) +

1

2
v⊤

d∑

j=1

D⊤
j P (s; t)Dj

+
1

2
v⊤

∫

Z

F (z)⊤ P (s; t)F (z) θ (dz) v



 1[t,t+ε) (s) ds


 ≤ 0,
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from which we deduce

δH (t; t)+
1

2
v⊤




d∑

j=1

D⊤
j P (t; t)Dj +

∫

Z

F (z)⊤ P (t; t)F (z) θ (dz)


 v ≤ 0, P−a.s,

Therefore, the inequality (3.9) is ensured by stetting v ≡ u for an arbi-
trarily u ∈ R

m.

Conversely, given an admissible control û (.) ∈ L2
F (0, T ;Rm) . Suppose

that for any t ∈ [0, T ], the variational inequality (3.9) holds. Then for any
v ∈ L

2 (Ω,F (t) ,P;Rm) it yields

δH (t; t)+
1

2
v⊤




d∑

j=1

D⊤
j P (t; t)Dj +

∫

Z

F (z)⊤ P (t; t)F (z) θ (dz)


 v ≤ 0, P−a.s,

consequently

lim
ε↓0

1

ε
E
t



∫ t+ε

t



δH (t; s) +

1

2
v⊤




d∑

j=1

D⊤
j P (s; t)Dj

+

∫

Z

F (z)⊤ P (s; t)F (z) θ (dz)


 v



 ds


 ≤ 0.

Hence

lim
ε↓0

1

ε

{
J
(
t, X̂ (t) , û (.)

)
− J

(
t, X̂ (t) , uε (.)

)}
≤ 0.

Thus û (.) is an equilibrium control.

Easy manipulations show that the variational inequality (3.9) is equivalent
to

Ht

(
t, X̂ (t) , 0

)
= max

u∈Rm
Ht

(
t, X̂ (t) , u

)
,

then (3.10) and (3.11) follow respectively from the following first order and sec-
ond order conditions at the maximum point u = 0 for the quadratic function

Ht

(
t, X̂ (t) , u

)

DuHt

(
t, X̂ (t) , 0

)
= 0 and D2

uHt

(
t, X̂ (t) , u

)
≤ 0,



120 Ishak Alia, Farid Chighoub, Ayesha Sohail

where we denote by DuHt (resp. D2
uHt) the gradient (resp. the Hessian) of Ht

with respect to the variable u. Then, the required result is directly follows. �

In Theorem 3.2, in view of condition (3.9), as long as the term

−
d∑

j=1

D⊤
j P (t; t)Dj −

∫

Z

F (z)⊤ P (t; t)F (z) θ (dz) ,

for each t ∈ [0, T ] is sufficiently positive definite, the necessary and sufficient
condition for equilibriums might still be satisfied even if R (t, t) is negative. This
is different from [9] and [25] where the authors have assumed the non-negativity
of the matrices Q, G and R in order to state their stochastic maximum principle
for open-loop Nash equilibriums. Moreover, in the case where Q (t, s) ≥ 0 for
every s ∈ [t, T ] , and G (t) ≥ 0, it follows that the solution of the second order
adjoint equation satisfies P (t; t) ≤ 0, then if further we have R (t, t) ≥ 0, Thus
the condition that

R (t, t)−
d∑

j=1

D⊤
j P (t; t)Dj −

∫

Z

F (z)⊤ P (t; t)F (z) θ (dz) ≥ 0,

is obviously satisfied. Therefore, we summarize the main theorem into the fol-
lowing Corollary.

Corollary 3.5. Let (H1)–(H2) hold. Then an admissible control û (.) ∈
L2
F (0, T ;Rm) is an equilibrium control, if and only if, for any t ∈ [0, T ], there

exists a triple of adapted processes (p (.; t) , q (.; t) , r (., .; t)) which satisfies the
BSDE (3.4), with only the first order condition (3.10) holds.

4. Linear feedback stochastic equilibrium control. In this sec-
tion, we consider only the case where the Brownian motion is one-dimensional
(d = 1) for simplicity of presentation. There is no essential difficulty with the
multidimensional Brownian motions. All the indices j will then be dropped. Our
goal is to obtain a state feedback representation of an equilibrium control for
Problem (LQJ) via some class of ordinary differential equations.

We first consider the following system of coupled generalized Riccati equa-
tions, for (t, s) ∈ D [0, T ]
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(4.1)





0 =
∂M

∂s
(t, s) +M (t, s)A+A⊤M (t, s) + C⊤M (t, s)C

+

∫

Z

E (z)⊤M (t, s)E (z) θ (dz)

−

(
M (t, s)B + C⊤M (t, s)D +

∫

Z

E (z)⊤M (t, s)F (z) θ (dz)

)
Ψ(s)

+Q (t, s) ,

0 =
∂M̄

∂s
(t, s) + M̄ (t, s)A+A⊤M̄ (t, s)− M̄ (t, s)BΨ(s) + Q̄ (t, s) ,

0 =
∂Υ

∂s
(t, s) +A⊤Υ(t, s) ,

0 =
∂ϕ

∂s
(t, s) +

(
M (t, s) + M̄ (t, s)

)
(b−Bψ (s)) +A⊤ϕ (t, s)

+C⊤M (t, s) (σ −Dψ (s))

+

∫

Z

E (z)⊤M (t, s) (c (z)− F (z)ψ (s)) θ (dz) ,

M (t, T ) = G (t) , M̄ (t, T ) = Ḡ (t) , Υ(t, T ) = µ1 (t) ,

ϕ (t, T ) = µ2 (t) , t ∈ [0, T ] ,

where

det

(
R (t, t) +D⊤M (t, t)D +

∫

Z

F (z)⊤M (t, t)F (z) θ (dz)

)
6= 0, ∀t ∈ [0, T ] ,

The maps Θ (.) , Ψ(.) and ψ (.) are given for t ∈ [0, T ] by

(4.2)





Θ(t) =

(
R (t, t) +D⊤M (t, t)D +

∫

Z

F (z)⊤M (t, t)F (z) θ (dz)

)−1

,

Ψ(t) = Θ (t)

{
B⊤

(
M (t, t) + M̄ (t, t) + Υ (t, t)

)
+D⊤M (t, t)C

+

∫

Z

F (z)⊤M (t, t)E (z) θ (dz)

}
,

ψ (t) = Θ (t)

{
B⊤ϕ (t, t) +D⊤M (t, t) σ

+

∫

Z

F (z)⊤M (t, t) c (z) θ (dz)

}
.
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Theorem 4.1. Let (H1)–(H2) hold. If there exists a solution to the
system (4.1). Then the stochastic control problem (2.2) subject to the SDE (2.1),
has a feedback Nash equilibrium solution

(4.3) û (t) = −Ψ(t) X̂ (t)− ψ (t) , ∀t ∈ [0, T ] .

P r o o f. Suppose that û (.) is an equilibrium control and denote by
X̂ (.) the corresponding controlled process. Then in view of Theorem 3.2, there

exists an adapted process
(
X̂ (.) , (p (.; t) , q (.; t) , r (., .; t))t∈[0,T )

)
solution to the

following forward-backward SDE with jumps, parametrized by t ∈ [0, T ]

(4.4)





dX̂ (s) =
{
AX̂ (s) +Bû (s) + b

}
ds+

{
CX̂ (s) +Dû (s) + σ

}
dW (s)

+

∫

Z

{
E (z) X̂ (s−) + F (z) û (s) + c (z)

}
Ñ (ds, dz) , s ∈ [0, T ] ,

dp (s; t) = −
{
A⊤p (s; t) + C⊤q (s; t) +

∫

Z

E (z)⊤ r (s, z; t) θ (dz)

−Q (t, s) X̂ (s)− Q̄ (t, s)Et
[
X̂ (s)

]}
ds

+ q (s; t) dW (s) +

∫

Z

r (s−, z; t) Ñ (ds, dz) , s ∈ [t, T ] ,

X̂0 = x0, p (T ; t) = −G (t) X̂ (T )− Ḡ (t)Et
[
X̂ (T )

]

− µ1 (t) X̂ (t)− µ2 (t) , t ∈ [0, T ] ,

such that the following condition holds

(4.5) R (t, t) û (t)−B⊤p (t; t)−D⊤q (t; t)−

∫

Z

F (z)⊤ r (t, z; t) θ (dz) = 0,

P− a.s, ∀t ∈ [0, T ] .

Now, to solve the above stochastic system, we conjecture that X̂ (.) and
p (.; t) for t ∈ [0, T ) are related by the following relation

(4.6) p (s; t) = −M (t, s) X̂ (s)− M̄ (t, s)Et
[
X̂ (s)

]
−Υ(t, s) X̂ (t)

− ϕ (t, s) , ∀ (t, s) ∈ D [0, T ] ,

for some deterministic functions M (., .) , M̄ (., .) ,Υ(., .) ∈ C0,1
(
D [0, T ] ,Rn×n

)

and ϕ (., .) ∈ C0,1 (D [0, T ] ,Rn) such that
(4.7)
M (t, T ) = G (t) , M̄ (t, T ) = Ḡ (t) , Υ(t, T ) = µ1 (t) , ϕ (t, T ) = µ2 (t) , ∀t ∈ [0, T ] .
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Applying Itô’s formula to (4.6) and using (4.4), it yields

dp (s; t) =

{
−
∂M

∂s
(t, s) X̂ (s)−

∂M̄

∂s
(t, s)Et

[
X̂ (s)

]
−
∂Υ

∂s
(t, s) X̂ (t)

−
∂ϕ

∂s
(t, s)−M (t, s)

(
AX̂ (s) +Bu (s) + b

)

−M̄ (t, s)
(
AEt

[
X̂ (s)

]
+BE

t [u (s)] + b
)}

ds

−M (t, s)
(
CX̂ (s) +Dû (s) + σ

)
dW (s)

−

∫

Z

M (t, s)
(
E (z) X̂ (s−) + F (z) û (s) + c (z)

)
Ñ (ds, dz) ,

= −

{
A⊤p (s; t) + C⊤q (s; t) +

∫

Z

E (z)⊤ r (s, z; t) θ (dz)

−Q (t, s) X̂ (s)− Q̄ (t, s)Et
[
X̂ (s)

]}
ds+ q (s; t) dW (s)

+

∫

Z

r (s−, z; t) Ñ (ds, dz) , ∀s ∈ [t, T ] ,(4.8)

from which we deduce

q (s; t) = −M (t, s)
(
CX̂ (s) +Dû (s) + σ

)
,(4.9)

r (s, z; t) = −M (t, s)
(
E (z) X̂ (s) + F (z) û (s) + c (z)

)
.(4.10)

We put the above expressions of q (s; t) and r (s, z; t) into (4.5) , then

0 = R (t, t) û (t) +B⊤
((
M (t, t) + M̄ (t, t) + Υ (t, t)

)
X̂ (t) + ϕ (t, t)

)

+D⊤M (t, t)
(
CX̂ (t) +Dû (t) + σ

)

+

∫

Z

F (z)⊤M (t, t)
(
E (z) X̂ (t) + F (z) û (t) + c (z)

)
θ (dz) ,

Subsequently, we obtain with the above notations

Θ (t)−1
(
û (t) + Ψ (t) X̂ (t) + ψ (t)

)
= 0, ∀t ∈ [0, T ] .

Hence (4.3) holds, and for any (t, s) ∈ D [0, T ] , we have

(4.11) E
t [û (s)] = −Ψ(s)Et

[
X̂ (s)

]
− ψ (s) .
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Next, comparing the ds term in (4.8) by the one in the BSDE from (4.4) ,
then by using the expressions (4.3) and (4.11), we obtain

0 =

{
∂M

∂s
(t, s) +M (t, s)A+A⊤M (t, s) + C⊤M (t, s)C

+

∫

Z

E (z)⊤M (t, s)E (z) θ (dz)

−
(
M (t, s)B + C⊤M (t, s)D

+

∫

Z

E (z)⊤M (t, s)F (z) θ (dz)

)
Ψ(s) +Q (t, s)

}
X̂ (s)

+

{
∂M̄

∂s
(t, s) + M̄ (t, s)A+A⊤M̄ (t, s)

−M̄ (t, s)BΨ(s) + Q̄ (t, s)

}
E
t
[
X̂ (s)

]

+

{
∂Υ

∂s
(t, s) +A⊤Υ(t, s)

}
X̂ (t)

+
∂ϕ

∂s
(t, s) +

(
M (t, s) + M̄ (t, s)

)
(b−Bψ (s)) +A⊤ϕ (t, s)

+ C⊤M (t, s) (σ −Dψ (s)) +

∫

Z

E (z)⊤M (t, s) (c (z)− F (z)ψ (s)) θ (dz) .

This suggests that the functions M (., .) , M̄ (., .) ,Υ(., .) and ϕ (., .) solve
the system (4.1).

Note that, we can check that Ψ (.) and ψ (.) in (4.2) are both uniformly
bounded. Then the following linear SDE, for s ∈ [0, T ]




dX̂ (s) =
{
(A−BΨ(s)) X̂ (s) + b−Bψ (s)

}
ds

+
{
(C −DΨ(s)) X̂ (s) + σ −Dψ (s)

}
dW (s)

+

∫

Z

{
(E (z)− F (z)Ψ (s)) X̂ (s−) + c (z)− F (z)ψ (s)

}
Ñ (ds, dz) ,

X̂ (0) = x0,

is uniquely solvable, and the following estimate holds

E

[
sup

s∈[0,T ]

∣∣∣X̂ (s)
∣∣∣
2
]
≤ K

(
1 + x20

)
.

So the control û (.) defined by (4.3) is admissible. ✷
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Remark 4.2. Note that, the verification theorem (Theorem 4.1 ) assumes
the existence of a solution to the system (4.1). However, since the ODEs which
should be solved by M (., .) and M̄ (., .) do not have a symmetry structure. The
general solvability for this type of ODEs when (n > 1) remains an outstanding
open problem. We will see in the next section two examples in the case when n =
1, this case is important, especially in financial applications as will be confirmed
by the mean–variance portfolio selection model. Also, we remark that a special
feature of the case when n = 1 is that the state X (.) is one-dimensional, so are
the unknown M (., .) , M̄ (., .) ,Υ(., .) and ϕ (., .) of the system (4.1). This makes
it easier to solve (4.1).

5. Some applications.

5.1. Mean-variance portfolio selection problem. In this subsec-
tion, we discuss the continuous-time Markowitz’s mean-variance portfolio selec-
tion problem. We apply Theorem 4.1 to obtain a state feedback representation of
an equilibrium control for the problem. In the absence of Poisson random jumps
this problem is discussed in [9].

The problem is formulated as follows: We consider a financial market, in
which two securities are traded continuously. One of them is a bond, with price
S0 (s) at time s ∈ [0, T ] governed by

(5.1) dS0 (s) = S0 (s) r (s) ds, S0 (0) = s0 > 0.

There is also a stock with unit price S1 (s) at time s ∈ [0, T ] governed by

(5.2) dS1 (s) = S1 (s−)

(
α (s) ds+ β (s) dW (s) +

∫

R∗

γ (s, z) Ñ (ds, dz)

)
,

S1 (0) = s1 > 0.

where r : [0, T ] → (0,∞) , α, β : [0, T ] → R and γ : [0, T ]×R
∗ → R are assumed to

be deterministic and continuous, we also assume a uniform ellipticity condition

as follow σ (t)2 +

∫

Z

γ (t, z)2 θ (dz) ≥ δ, a.e, for some δ > 0. For an investor,

a portfolio π (.) is a process represents the amount of money invested in the
stock. The wealth process Xx0,π(.) (.) corresponding to initial capital x0 > 0, and
portfolio π (.), satisfies then the equation

(5.3)





dX (s) = (r (s)X (s) + π (s) (α (s)− r (s))) ds+ π (s)β (s) dW (s)

+ π (s)

∫

R∗

γ (s, z) Ñ (ds, dz) , for t ∈ [0, T ] ,

X (0) = x0.
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As time evolves, we need to consider the controlled stochastic differential
equation parametrized by (t, ξ) ∈ [0, T ]× L

2 (Ω,Ft,P;R) and satisfiied by X (.)

(5.4)





dX (s) = (r (s)X (s) + π (s) (α (s)− r (s))) ds+ π (s)β (s) dW (s)

+ π (s)

∫

R∗

γ (s, z) Ñ (ds, dz) , for s ∈ [t, T ] ,

X (t) = ξ.

The objective is to maximize the conditional expectation of terminal
wealth E

t [X (T )] , and at the same time to minimize the conditional variance
of the terminal wealth Vart [X (T )] , over controls π (.) valued in R. Then, the
mean-variance portfolio optimization problem is denoted as: minimizing the cost
J (t, ξ, .), given by

(5.5) J (t, ξ, π (.)) =
1

2
Vart [X (T )]− (µ1 (t) ξ + µ2 (t))E

t [X (T )] ,

subject to (5.4) . Here µ1, µ2 : [0, T ] → (0,∞) , are some deterministic non con-
stant, continuous and bounded functions. The above model cover the one in [9],
since, in our case, the weight between the conditional variance and the condi-
tional expectation depends on the current wealth level, as well as, the current
time, while in [9] the weight depends on the current wealth level only. Hence, in
the above model, there are three different sources of time-inconsistency. More-
over, the above model is mathematically a special case of the general LQ problem
formulated earlier in this paper, with n = d = m = 1. Then we can apply The-
orem 4.1 to obtain a Nash equilibrium control. We recall that, the definition
of equilibrium controls is in the sense of open-loop, which is different from the
feedback one in [3], [4] and [27].

The optimal control problem associated with (5.4) and (5.5) is equivalent
to minimize

J (t, ξ, u (.)) =
1

2

(
E
t
[
X (T )2

]
− E

t [X (T )]2
)
− (µ1 (t) ξ + µ2 (t))E

t [X (T )]

subject to (5.4). Denote

ρ (t) =
(α (s)− r (s))2

β (t)2 +
∫
R∗ γ (t, z)

2 θ (dz)
.

Thus, the system (4.1) reduces for (t, s) ∈ D [0, T ] to the following system
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(5.6)





∂M

∂s
(t, s)

+

{
2r (s)−

ρ (s)

M (s, s)

(
M (s, s) + M̄ (s, s) + Υ (s, s)

)}
M (t, s) = 0,

∂M̄

∂s
(t, s)

+

{
2r (s)−

ρ (s)

M (s, s)

(
M (s, s) + M̄ (s, s) + Υ (s, s)

)}
M̄ (t, s) = 0,

∂Υ

∂s
(t, s) + r (s)Υ (t, s) = 0,

∂ϕ

∂s
(t, s) + r (s)ϕ (t, s) = 0,

M (t, T ) = 1, M̄ (t, T ) = −1, Υ(t, T ) = −µ1 (t) ,

ϕ (t, T ) = −µ2 (t) , ∀t ∈ [0, T ] .

Clearly, if M (., .) and M̄ (., .) are solutions to the first and the second
equations, respectively, in (5.6), then M̃ (., .) =

(
M̄ +M

)
(., .) solves the follow-

ing ODE, ∀ (t, s) ∈ D [0, T ]

(5.7)





∂M̃

∂s
(t, s) +

{
2r (s)−

ρ (s)

M (s, s)

(
M̃ (s, s) + Υ (s, s)

)}
M̃ (t, s) = 0,

M̃ (t, T ) = 0, t ∈ [0, T ] ,

which is equivalent to

M̃ (t, s) = M̃ (t, T ) e

∫ T

s

(

2r(τ)−
ρ(τ)

M(τ,τ)(M̃(τ,τ)+Υ(τ,τ))
)

dτ
,

from the boundary condition in (5.7), it yields

M̄ (t, s) +M (t, s) = M̃ (t, s) = 0, ∀ (t, s) ∈ D [0, T ] .

Moreover, we remark that all data of the ODEs which should be solved
by M (., .) and M̄ (., .) are not influenced by t, thus (5.6) reduces to

(5.8)





dM

ds
(s) + 2r (s)M (s)− ρ (s)Υ (s, s) = 0, ∀s ∈ [0, T ] ,

M̄ (s) = −M (s) , ∀s ∈ [0, T ] ,

∂Υ

∂s
(t, s) + r (s)Υ (t, s) = 0, ∀ (t, s) ∈ D [0, T ] ,

∂ϕ

∂s
(t, s) + r (s)ϕ (t, s) = 0, ∀ (t, s) ∈ D [0, T ] ,

M (T ) = 1, Υ(t, T ) = −µ1 (t) , ϕ (t, T ) = −µ2 (t) , ∀t ∈ [0, T ] .
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which is explicitly solved by

(5.9)





M (s) = e2
∫ T

s
r(τ)dτ

{
1 +

∫ T

s

e−
∫ T

τ
r(l)dlµ1 (τ) ρ (τ) dτ

}
, ∀s ∈ [0, T ] ,

M̄ (s) = −e2
∫ T

s
r(τ)dτ

{
1 +

∫ T

s

e−
∫ T

τ
r(l)dlµ1 (τ) ρ (τ) dτ

}
, ∀s ∈ [0, T ] ,

Υ(t, s) = −µ1 (t) e
∫ T

s
r(τ)dτ , ∀ (t, s) ∈ D [0, T ] ,

ϕ (t, s) = −µ2 (t) e
∫ T

s
r(τ)dτ , ∀ (t, s) ∈ D [0, T ] .

In view of Theorem 4.1, the representation of the Nash equilibrium control
(4.3) then gives

(5.10) π̂ (s) = −Ψ(s) X̂ (s)− ψ (s) ,∀s ∈ [0, T ] ,

where, ∀s ∈ [0, T ]

Ψ (s) =
ρ (s)

(α (s)− r (s))

Υ (s, s)

M (s)
and ψ (s) =

ρ (s)

(α (s)− r (s))

ϕ (s, s)

M (s)
.

The corresponding equilibrium dynamics solves, for s ∈ [0, T ] , the folow-
ing SDEJ





dX̂ (s) =
{
(r (s)−Ψ(s) (α (s)− r (s))) X̂ (s)− ψ (s) (α (s)− r (s))

}
ds

−
(
Ψ(s) X̂ (s) + ψ (s)

){
β (s) dW (s) +

∫

R∗

γ (s, z) Ñ (ds, dz)

}
,

X̂ (0) = x0.

5.1.1. Special cases and relationship to other works. Equilibrium
investment strategies for mean–variance models have been studied in [1], [2] and
[9] among others in different frameworks. In this paragraph, we will compare our
results with some existing ones in literature. First, suppose that the price process
of the risky asst do not have jumps, i.e γ (s, z) = 0 a.e.

Special case 1. When µ1 (t) ≡ 0 and µ2 (t) ≡ µ2 > 0. In this case the
objective is equivalent to Basak and Chabakauri [1] and Bjork and Murguci [2] in
which the equilibrium is defined within the class of feedback controls. Moreover
the equilibrium strategy π̂ (.) given in our study by (5.10) change to

π̂ (s) = µ2
(α (s)− r (s))

β (t)2
e−

∫ T

s
r(τ)dτ , s ∈ [0, T ] .
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It is worth pointing out that the above equilibrium solution is the same
form as that obtained in Bjork and Murguci [2] by solving the extended HJB
equations.

Special case 2. Suppose that µ1 (t) ≡ µ2 > 0 and µ2 (t) ≡ µ2 ≡ 0. In this
case, the equilibrium strategy π̂ (.) given by expressions (5.10) change to

π̂ (s) =
µ1 (α (s)− r (s))

(
1 + µ1

∫ T

s

e−
∫ T

τ
r(l)dlρ (τ) dτ

)
β (s)2

e−
∫ T

s
r(τ)dτ X̂ (s) ,

which is the same as the solution obtained in Hu et al [9] with one risky asset.

5.2. General discounting LQ regulator. In this subsection, we con-
sider an example of a general discounting time-inconsistent LQ model. The ob-
jective is to minimize the expected cost functional, that is earned during a finite
time horizon

(5.11) J (t, ξ, u (.)) =
1

2
E
t

[∫ T

t

|u (s)|2 ds+ h (t) |X (T )− ξ|2
]

where h (.) : [0, T ] → (0,∞) , is a general deterministic non-exponential discount

function satisfying h (0) = 1, h (s) ≥ 0 and

∫ T

0
h (t) dt < ∞. Subject to a

controlled one dimontional SDE parametrized by (t, ξ) ∈ [0, T ]× L
2 (Ω,Ft,P;R)

(5.12)




dX (s) = {aX (s) + bu (s)} ds + σdW (s) + c

∫

R∗

Ñ (ds, dz) , s ∈ [0, T ] ,

X (t) = ξ,

where a, b and c are real constant. As mentioned in [2], this is a time-inconsistent
version of the classical linear quadratic regulator, we want control the system
so that the final sate X (T ) is close to ξ while at the same time we keep the
control energy (formalized by the running cost) small. Note that, here the time-
inconsistency is due to the fact that the terminal cost depends explicitly on
the current state ξ as well as the current time t. Hence there are two differ-
ent sources of time-inconsistency. For this example, the system (4.1) reduces,
∀ (t, s) ∈ D [0, T ] , to
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(5.13)





∂M

∂s
(t, s) + 2aM (t, s)

−b2M (t, s)
{
M (s, s) + M̄ (s, s) + Υ (s, s)

}
= 0,

∂M̄

∂s
(t, s) + 2aM̄ (t, s)

−b2M̄ (t, s)
{
M (s, s) + M̄ (s, s) + Υ (s, s)

}
= 0,

∂Υ

∂s
(t, s) + aΥ(t, s) = 0,

∂ϕ

∂s
(t, s) + aϕ (t, s)− b2

{
M (t, s) + M̄ (t, s)

}
ϕ (s, s) = 0,

M (t, T ) = h (t) , M̄ (t, T ) = 0, Υ(t, T ) = h (t) ,

ϕ (t, T ) = 0, ∀t ∈ [0, T ] ,

obviously, Υ (., .) is explicitely given by

(5.14) Υ (t, s) = h (t) exp {a (T − s)} , ∀ (t, s) ∈ D [0, T ] .

Moreover, we can check that M (., .) , M̄ (., .) and ϕ (., .) solve (5.13) , if
and only if, they solve the following system of integral equations, for all (t, s) ∈
D [0, T ]

(5.15)





M (t, s) =M (t, T ) e

∫ T

s {2a−b2(M(τ,τ)+M̄(τ,τ)+Υ(τ,τ))}dτ ,.

M̄ (t, s) = M̄ (t, T ) e

∫ T

s {2a−b2(M(τ,τ)+M̄(τ,τ)+Υ(τ,τ))}dτ ,

ϕ (t, s) = ϕ (t, T ) ea(T−s) − b2
∫ T

s

ea(τ−s)
(
M (t, τ) + M̄ (t, τ)

)
ϕ (τ, τ) dτ.

on the other hand, we have M̄ (t, T ) = ϕ (t, T ) = 0, then (5.15) reduces ∀ (t, s) ∈
D [0, T ] , to

(5.16)





M (t, s) =M (t, T ) e

∫ T

s {2a−b2(M(r,r)+Υ(r,r))}dr,
M̄ (t, s) = 0,

ϕ (t, s) = −b2
∫ T

s

ea(τ−s)M (t, τ)ϕ (τ, τ) dτ.

It is clear that if M (., .) is the solution of the first equation in (5.16) ,
then

ϕ (s, s) = −b2
∫ T

s

ea(τ−s)M (s, τ)ϕ (τ, τ) dτ, ∀s ∈ [0, T ] ,
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thus, there exists some constant L > 0 such that |ϕ (s, s)| ≤ L

∫ T

s

|ϕ (τ, τ)| dτ ,

then by Gronwall Lemma, we conclude that ϕ (s, s) = 0,∀s ∈ [0, T ] . Therefore
ϕ (t, s) = 0, ∀ (t, s) ∈ D [0, T ] , is the unique solution to the last equation in the
system (5.16) .

Now, it’s remains to solve the first equation in the system (5.16) . Now,
it is easy to check that the first equation in the system (5.16) is equivalent to

(5.17)





∂M

∂s
(t, s) + 2aM (t, s)− b2M (t, s) {M (s, s) + Υ (s, s)} = 0,

∀ (t, s) ∈ D [0, T ] ,
M (t, T ) = h (t) .

We try a solution of the form M (t, s) = h (t)N (s) , we finde that N (.)
should solve the following ODE

(5.18)

{
dN

ds
(s) +

(
2a+ b2Υ(s, s)

)
N (s)− b2h (s)N (s)2 = 0, s ∈ [0, T ]

N (T ) = 1,

We put N (s) =
1

y (s)
, the equation (5.18) leads to

{
dy

ds
(s)−

(
2a+ b2Υ(s, s)

)
y (s) + b2h (s) = 0, s ∈ [0, T ]

y (T ) = 1,

which is explicitly solvable by

y (s) = e−
∫ T

s {2a+b2Υ(τ,τ)}dτ
(
1 + b2

∫ T

s

e
∫ T

τ {2a+b2Υ(l,l)}dlh (τ) dτ

)
, s ∈ [0, T ] ,

thus

M (t, s) = h (t)
e
∫ T

s {2a+b2Υ(τ,τ)}dτ

1 + b2
∫ T

s
e
∫ T

τ
{2a+b2Υ(l,l)}dlh (τ)

, (t, s) ∈ D [0, T ]

In view of Theorem 4.1, the representation (4.3) of the Nash equilibrium
control, then gives

(5.19) û (s) = −b {Υ(s, s) +M (s, s)} X̂ (s) , ∀s ∈ [0, T ] ,
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and the corresponding equilibrium dynamics solves the SDEJ

(5.20)





dX̂ (s) =
{
a− b2 (Υ (s, s) +M (s, s))

}
X̂ (s) ds+ σdW (s)

+ c

∫

R∗

Ñ (ds, dz) , s ∈ [0, T ] ,

X (0) = x0.

To conclude this section let us present the following remark.

Remark 5.1. The Problem (E) given by the subsection 2.3, is in fact
shown to be a particular case of the general discounting LQ regulator model,
formulated earlier in this paragraph, in the case when a = c = 0, and the final
data ξ = x, this leads to the following representation of the Nash equilibrium
control of this problem

û (s) = −b (h (s) +M (s, s)) X̂ (s) ,∀s ∈ [0, T ] ,

where M (t, s) solves

M (t, s) = h (t) e

∫ T

s
−b2(M(τ,τ)+h(τ))dτ , for (t, s) ∈ D [0, T ] ,

and the corresponding equilibrium dynamics solves the SDE
{
dX̂ (s) = −b2 {h(s) +M (s, s)} X̂ (s) ds+ σdW (s) , s ∈ [0, T ] ,
X (0) = x0.

This in fact, the correct solution of the Problem (E).

Conclusion and future work. In this paper, we have studied a class
of dynamic decision problems of a general time-inconsistent type. We have used
the game theoretic approach to handle the time inconsistency. During this study
open-loop Nash equilibrium controls are constructed as an alternative of optimal
controls. This has been accomplished through stochastic maximum principle that
includes a flow of forward-backward stochastic differential equations under maxi-
mum condition. The inclusion of concrete examples confirms the validity of our
proposed study. The work can be extended in several ways. For example, this
approach can be extended to a mean field game to construct decentralized strate-
gies and obtain an estimate of their performance. The reserch on this topic is in
progress and will appear in our forthcoming paper.

6. Appendix: Additional proofs.

P r o o f o f L emma 3.3. Let t ∈ [0, T ] , v ∈ L
2 (Ω,Ft,P;R

m)
and ε ∈ [0, T − t]. Since E

t [yε,v (.)] and E
t [zε,v (.)] solve the following ODEs,
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respectively {
dEt [yε,v (s)] = AEt [yε,v (s)] ds, s ∈ [t, T ] ,

E
t [yε,v (t)] = 0,

and

{
dEt [zε,v (s)] =

{
AEt [zε,v (s)] +BE

t [v] 1[t,t+ε) (s)
}
ds, s ∈ [t, T ] ,

E
t [zε,v (t)] = 0.

Thus, it is clear that Et [yε,v (s)] = 0, a.e. s ∈ [t, T ] . According to Gron-

wall’s inequality there exists a positive constantK such that sup
s∈[t,T ]

∣∣Et [zε,v (s)]
∣∣2 ≤

Kε2. Moreover, by Lemma 2.1. in [19], we obtain (3.16).

By these estimates, we can calculate the differencewe consider the differ-
ence

(A.1)

J
(
t, X̂ (t) , uε (.)

)
− J

(
t, X̂ (t) , û (.)

)

= E
t

[∫ T

t

{〈
Q (t, s) X̂ (s) + Q̄ (t, s)Et

[
X̂ (s)

]
, yε,v (s) + zε,v (s)

〉

+
1

2
〈Q (t, s) (yε,v (s) + zε,v (s)) , yε,v (s) + zε,v (s)〉

+
1

2

〈
Q̄ (t, s)Et [yε,v (s) + zε,v (s)] ,Et [yε,v (s) + zε,v (s)]

〉

+ 〈R (t, s) û (s) , v〉 1[t,t+ε) (s) +
1

2
〈R (t, s) v, v〉 1[t,t+ε) (s)

}
ds

+
1

2
〈G (t) (yε,v (T ) + zε,v (T )) , yε,v (T ) + zε,v (T )〉

+
〈
G (t) X̂ (T ) + Ḡ (t)Et

[
X̂ (T )

]
+ µ1 (t) X̂ (t) + µ2 (t) , y

ε,v (T ) + zε,v (T )
〉

+
1

2

〈
Ḡ (t)Et [yε,v (T ) + zε,v (T )] ,Et [yε,v (T ) + zε,v (T )]

〉]
.

In the other hand, from (H1) and (3.15) − (3.16) the following estimate holds

E
t

[∫ T

t

1

2

〈
Q̄ (t, s)Et [yε,v (s) + zε,v (s)] ,Et [yε,v (s) + zε,v (s)]

〉
ds

+
1

2

〈
Ḡ (t)Et [yε,v (T ) + zε,v (T )] ,Et [yε,v (T ) + zε,v (T )]

〉]
= o (ε) .
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Then, from the terminal conditions in the adjoint equations, it follows that

(A.2)

J
(
t, X̂ (t) , uε (.)

)
− J

(
t, X̂ (t) , û (.)

)

= E
t

[∫ T

t

{〈
Q (t, s) X̂ (s) + Q̄ (t, s)Et

[
X̂ (s)

]
, yε,v (s) + zε,v (s)

〉

+
1

2
〈Q (t, s) (yε,v (s) + zε,v (s)) , yε,v (s) + zε,v (s)〉

+ 〈R (t, s) û (s) , v〉 1[t,t+ε) (s) +
1

2
〈R (t, s) v, v〉 1[t,t+ε) (s)

}
ds

− 〈p (T ; t) , yε,v (T ) + zε,v (T )〉

−
1

2
〈P (T ; t) (yε,v (T ) + zε,v (T )) , yε,v (T ) + zε,v (T )〉

]

+ o (ε) .

Now, by applying Ito’s formula to s 7→ 〈p (s; t) , yε,v (s) + zε,v (s)〉 on [t, T ]
and by taking the conditional expectation, we get

(A.3)

E
t [〈p (T ; t) , yε,v (T ) + zε,v (T )〉] = E

t




T∫

t



v

⊤B⊤p (s; t) 1[t,t+ε) (s)

+ (yε,v (s) + zε,v (s))⊤
(
Q (t, s) X̂ (s) + Q̄ (t, s)Et

[
X̂ (s)

])

+
d∑

j=1

v⊤D⊤
j qj (s; t) 1[t,t+ε) (s)

+

∫

Z

v⊤F (z)⊤ r (s, z; t) 1[t,t+ε) (s) θ (dz)

}
ds

]
.

Again, by applying Ito’s formula to

s 7→ 〈P (s; t) (yε,v (s) + zε,v (s)) , yε,v (s) + zε,v (s)〉

on [t, T ] , we get by taking the conditional expectation
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(A.4)

E
t [〈P (T ; t) (yε,v (T ) + zε,v (T )) , yε,v (T ) + zε,v (T )〉]

= E
t

[∫ T

t

{
2 (yε,v (s) + zε,v (s))⊤ P (s; t)Bv1[t,t+ε) (s)

+ (yε,v (s) + zε,v (s))⊤Q (t, s) (yε,v (s) + zε,v (s))

+

d∑

j=1

{
2 (yε,v (s) + zε,v (s))⊤C⊤

j + v⊤D⊤
j

}
P (s; t)Djv1[t,t+ε) (s)

+

∫

Z

{
2 (yε,v (s) + zε,v (s))⊤E (z)⊤

+v⊤F (z)⊤
}
P (s; t)F (z) v1[t,t+ε) (s) θ (dz)

}
ds
]

Moreover, we conclude from (H1) together with (3.15) − (3.16) that
(A.5)

E
t

[∫ T

t

(yε,v (s) + zε,v (s))⊤ P (s; t)Bv1[t,t+ε) (s) ds

]
= o (ε) ,

E
t

[∫ T

t

(yε,v (s) + zε,v (s))⊤C⊤
j P (s; t)Djv1[t,t+ε) (s) ds

]
= o (ε) ,

E
t

[∫ T

t

∫

Z

(yε,v (s) + zε,v (s))⊤ E (z)⊤ P (s; t)F (z) v1[t,t+ε) (s) θ (dz) ds

]
= o (ε) .

Then by invoking (A.5) it holds

1

2
E
t [〈P (T ; t) (yε,v (T ) + zε,v (T )) , yε,v (T ) + zε,v (T )〉]

=
1

2
E
t

[∫ T

t

{
(yε,v (s) + zε,v (s))⊤Q (t, s) (yε,v (s) + zε,v (s))

+
d∑

j=1

v⊤D⊤
j P (s; t)Djv1[t,t+ε) (s)

+

∫

Z

v⊤F (z)⊤ P (s; t)F (z) v1[t,t+ε) (s) θ (dz)

}
ds

]
+ o (ε) .

(A.6)

By taking (A.3) and (A.6) in (A.2) , it follows that

J
(
t, X̂ (t) , uε (.)

)
− J

(
t, X̂ (t) , û (.)

)

= −E
t



∫ T

t



v

⊤B⊤p (s; t) +
d∑

j=1

v⊤D⊤
j qj (s, t) +

1

2

d∑

j=1

v⊤D⊤
j P (s; t)Djv
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−v⊤R (t, s) û (s)−
1

2
v⊤R (t, s) v

+

∫

Z

(
r (s, z; t)⊤ F (z) v

+
1

2
v⊤F (z)⊤ P (s; t)F (z) v

)
θ (dz)



 1[t,t+ε) (s) ds


+ o (ε) ,

which is equivalent to (3.17). �
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