Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

RADICAL TRANSVERSAL SCREEN PSEUDO-SLANT LIGHTLIKE SUBMANIFOLDS OF INDEFINITE SASAKIAN MANIFOLDS*

S. S. Shukla, Akhilesh Yadav

Communicated by O. Mushkarov

Abstract

In this paper, we introduce the notion of radical transversal screen pseudo-slant lightlike submanifolds of indefinite Sasakian manifolds giving characterization theorem with some non-trivial examples of such submanifolds. Integrability conditions of distributions D_{1}, D_{2} and RadTM on radical transversal screen pseudo-slant lightlike submanifolds of an indefinite Sasakian manifold, have been obtained. We also obtain necessary and sufficient conditions for foliations determined by above distributions to be totally geodesic.

1. Introduction. The theory of lightlike submanifolds of a semi-Riemannian manifold was introduced by Duggal and Bejancu [6]. A submanifold M of

[^0]a semi-Riemannian manifold \bar{M} is said to be lightlike submanifold if the induced metric g on M is degenerate, i.e. there exists a non-zero $X \in \Gamma(T M)$ such that $g(X, Y)=0, \forall Y \in \Gamma(T M)$. In [5], B. Y. Chen defined slant immersions in complex geometry as a natural generalization of both holomorphic immersions and totally real immersions. In [10], A. Lotta introduced the concept of slant immersions of a Riemannian manifold into an almost contact metric manifold. A. Carriazo defined and studied bi-slant submanifolds of almost Hermitian and almost contact metric manifolds and further gave the notion of pseudo-slant submanifolds [2].

The geometry of radical transversal, transversal, generalized transversal lightlike submanifolds has been studied in [18, 19]. In [16], authors give the notion of screen pseudo-slant lightlike submanifolds of indefinite Sasakian manifolds. In this article, we introduce the notion of radical transversal screen pseudo-slant lightlike submanifolds of indefinite Sasakian manifolds. This new class of lightlike submanifolds of an indefinite Sasakian manifold includes radical transversal, transversal, generalized transversal lightlike submanifolds as its sub-cases. The paper is arranged as follows. There are some basic results in Section 2. In Section 3, we introduce radical transversal screen pseudo-slant lightlike submanifolds of an indefinite Sasakian manifold giving some examples. Section 4 is devoted to the study of foliations determined by distributions on radical transversal screen pseudo-slant lightlike submanifolds of indefinite Sasakian manifolds.
2. Preliminaries. A submanifold $\left(M^{m}, g\right)$ immersed in a semi-Riemannian manifold $\left(\bar{M}^{m+n}, \bar{g}\right)$ is called a lightlike submanifold [6] if the metric g induced from \bar{g} is degenerate and the radical distribution $R a d T M$ is of rank r, where $1 \leq r \leq m$. Let $S(T M)$ be a screen distribution which is a semiRiemannian complementary distribution of RadTM in $T M$, that is

$$
\begin{equation*}
T M=R a d T M \oplus_{o r t h} S(T M) \tag{2.1}
\end{equation*}
$$

Now consider a screen transversal vector bundle $S\left(T M^{\perp}\right)$, which is a semiRiemannian complementary vector bundle of RadTM in $T M^{\perp}$. Since for any local basis $\left\{\xi_{i}\right\}$ of $R a d T M$, there exists a local null frame $\left\{N_{i}\right\}$ of sections with values in the orthogonal complement of $S\left(T M^{\perp}\right)$ in $[S(T M)]^{\perp}$ such that $\bar{g}\left(\xi_{i}, N_{j}\right)=\delta_{i j}$ and $\bar{g}\left(N_{i}, N_{j}\right)=0$, it follows that there exists a lightlike transversal vector bundle $l \operatorname{tr}(T M)$ locally spanned by $\left\{N_{i}\right\}$. Let $\operatorname{tr}(T M)$ be complementary (but not orthogonal) vector bundle to $T M$ in $\left.T \bar{M}\right|_{M}$. Then

$$
\begin{equation*}
\operatorname{tr}(T M)=\operatorname{ltr}(T M) \oplus_{o r t h} S\left(T M^{\perp}\right) \tag{2.2}
\end{equation*}
$$

$$
\begin{gather*}
\left.T \bar{M}\right|_{M}=T M \oplus \operatorname{tr}(T M) \tag{2.3}\\
\left.T \bar{M}\right|_{M}=S(T M) \oplus_{o r t h}[R a d T M \oplus l \operatorname{tr}(T M)] \oplus_{o r t h} S\left(T M^{\perp}\right) .
\end{gather*}
$$

Following are four cases of a lightlike submanifold $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$:
Case 1. r-lightlike if $r<\min (m, n)$,
Case 2. co-isotropic if $r=n<m, S\left(T M^{\perp}\right)=\{0\}$,
Case 3. isotropic if $r=m<n, S(T M)=\{0\}$,
Case 4. totally lightlike if $r=m=n, S(T M)=S\left(T M^{\perp}\right)=\{0\}$.
The Gauss and Weingarten formulae are given as

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.5}\\
& \bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{t} V \tag{2.6}
\end{align*}
$$

for all $X, Y \in \Gamma(T M)$ and $V \in \Gamma(\operatorname{tr}(T M))$, where $\nabla_{X} Y, A_{V} X$ belong to $\Gamma(T M)$ and $h(X, Y), \nabla_{X}^{t} V$ belong to $\Gamma(\operatorname{tr}(T M)) . \nabla$ and ∇^{t} are linear connections on M and on the vector bundle $\operatorname{tr}(T M)$ respectively. The second fundamental form h is a symmetric $F(M)$-bilinear form on $\Gamma(T M)$ with values in $\Gamma(\operatorname{tr}(T M))$ and the shape operator A_{V} is a linear endomorphism of $\Gamma(T M)$. From (2.5) and (2.6), for any $X, Y \in \Gamma(T M), N \in \Gamma(l \operatorname{tr}(T M))$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$, we have

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h^{l}(X, Y)+h^{s}(X, Y) \tag{2.7}\\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{l} N+D^{s}(X, N) \tag{2.8}\\
& \bar{\nabla}_{X} W=-A_{W} X+\nabla_{X}^{s} W+D^{l}(X, W) \tag{2.9}
\end{align*}
$$

where $h^{l}(X, Y)=L(h(X, Y)), h^{s}(X, Y)=S(h(X, Y)), D^{l}(X, W)=L\left(\nabla_{X}^{t} W\right)$, $D^{s}(X, N)=S\left(\nabla_{X}^{t} N\right)$. L and S are the projection morphisms of $\operatorname{tr}(T M)$ on $\operatorname{ltr}(T M)$ and $S\left(T M^{\perp}\right)$ respectively. ∇^{l} and ∇^{s} are linear connections on $l \operatorname{tr}(T M)$ and $S\left(T M^{\perp}\right)$ called the lightlike connection and screen transversal connection on M respectively.

Now by using (2.7)-(2.9) and metric connection $\bar{\nabla}$, we obtain

$$
\begin{equation*}
\bar{g}\left(h^{s}(X, Y), W\right)+\bar{g}\left(Y, D^{l}(X, W)\right)=g\left(A_{W} X, Y\right) \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\bar{g}\left(D^{s}(X, N), W\right)=\bar{g}\left(N, A_{W} X\right) \tag{2.11}
\end{equation*}
$$

Denote the projection of $T M$ on $S(T M)$ by \bar{P}. Then from the decomposition of the tangent bundle of a lightlike submanifold, for any $X, Y \in \Gamma(T M)$ and $\xi \in \Gamma(\operatorname{RadTM})$, we have

$$
\begin{gather*}
\nabla_{X} \bar{P} Y=\nabla_{X}^{*} \bar{P} Y+h^{*}(X, \bar{P} Y) \tag{2.12}\\
\nabla_{X} \xi=-A_{\xi}^{*} X+\nabla_{X}^{* t} \xi \tag{2.13}
\end{gather*}
$$

By using above equations, we obtain

$$
\begin{gather*}
\bar{g}\left(h^{l}(X, \bar{P} Y), \xi\right)=g\left(A_{\xi}^{*} X, \bar{P} Y\right), \tag{2.14}\\
\bar{g}\left(h^{*}(X, \bar{P} Y), N\right)=g\left(A_{N} X, \bar{P} Y\right) \tag{2.15}\\
\bar{g}\left(h^{l}(X, \xi), \xi\right)=0, \quad A_{\xi}^{*} \xi=0 . \tag{2.16}
\end{gather*}
$$

It is important to note that in general ∇ is not a metric connection. Since $\bar{\nabla}$ is metric connection, by using (2.7), we get

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=\bar{g}\left(h^{l}(X, Y), Z\right)+\bar{g}\left(h^{l}(X, Z), Y\right) \tag{2.17}
\end{equation*}
$$

A semi-Riemannian manifold (\bar{M}, \bar{g}) is called an ϵ-almost contact metric manifold [8] if there exists a $(1,1)$ tensor field ϕ, a vector field V called characteristic vector field and a 1-form η, satisfying

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) V, \quad \eta(V)=\epsilon, \quad \eta \circ \phi=0, \quad \phi V=0 \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
\bar{g}(\phi X, \phi Y)=\bar{g}(X, Y)-\epsilon \eta(X) \eta(Y) \tag{2.19}
\end{equation*}
$$

for all $X, Y \in \Gamma(T \bar{M})$, where $\epsilon=1$ or -1 . It follows that

$$
\begin{gather*}
\bar{g}(V, V)=\epsilon, \tag{2.20}\\
\bar{g}(X, V)=\eta(X), \tag{2.21}\\
\bar{g}(X, \phi Y)=-\bar{g}(\phi X, Y) . \tag{2.22}
\end{gather*}
$$

Then (ϕ, V, η, \bar{g}) is called an ϵ-almost contact metric structure on \bar{M}.
An ϵ-almost contact metric structure (ϕ, V, η, \bar{g}) is called an indefinite Sasakian structure if and only if

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=\bar{g}(X, Y) V-\epsilon \eta(Y) X \tag{2.23}
\end{equation*}
$$

for all $X, Y \in \Gamma(T \bar{M})$, where $\bar{\nabla}$ is Levi-Civita connection with respect to \bar{g}.
A semi-Riemannian manifold endowed with an indefinite Sasakian structure is called an indefinite Sasakian manifold. From (2.23), for any $X \in \Gamma(T \bar{M})$, we get

$$
\begin{equation*}
\bar{\nabla}_{X} V=-\phi X \tag{2.24}
\end{equation*}
$$

Let $(\bar{M}, \bar{g}, \phi, V, \eta)$ be an ϵ-almost contact metric manifold. If $\epsilon=1$, then \bar{M} is said to be a spacelike almost contact metric manifold and if $\epsilon=-1$, then \bar{M} is called a timelike almost contact metric manifold. In this paper, we consider indefinite Sasakian manifolds with spacelike characteristic vector field V.

3. Radical transversal screen pseudo-slant lightlike subman-

ifolds. In this section, we introduce the notion of radical transversal screen pseudo-slant lightlike submanifolds of ϵ-almost contact metric manifolds. At first, we state the following Lemma for later use:

Lemma 3.1. Let M be a $2 q$-lightlike submanifold of an ϵ-almost contact metric manifold \bar{M}, of index $2 q$ such that $2 q<\operatorname{dim}(M)$ with structure vector field tangent to M. Then the screen distribution $S(T M)$ on lightlike submanifold M is Riemannian.

The proof of above Lemma follows as in Lemma 4.1 of [13], so we omit it.
Definition 3.1. Let M be a $2 q$-lightlike submanifold of an ϵ-almost contact metric manifold \bar{M} of index $2 q$ such that $2 q<\operatorname{dim}(M)$ with structure vector field tangent to M. Then we say that M is a radical transversal screen pseudoslant lightlike submanifold of \bar{M} if the following conditions are satisfied:
(i) $\phi \operatorname{Rad} T M=l \operatorname{tr}(T M)$,
(ii) there exists non-degenerate orthogonal distributions D_{1} and D_{2} on M such that
(a) $S(T M)=D_{1} \oplus_{\text {orth }} D_{2} \oplus_{\text {orth }}\{V\}$,
(b) the distribution D_{1} is anti-invariant, i.e. $\phi D_{1} \subset S\left(T M^{\perp}\right)$,
(c) the distribution D_{2} is slant with angle $\theta(\neq \pi / 2)$, i.e. for each $x \in M$ and each non-zero vector $X \in\left(D_{2}\right)_{x}$, the angle θ between ϕX and the vector
subspace $\left(D_{2}\right)_{x}$ is a constant $(\neq \pi / 2)$, which is independent of the choice of $x \in M$ and $X \in\left(D_{2}\right)_{x}$.

This constant angle θ is called the slant angle of distribution D_{2}. A radical transversal screen pseudo-slant lightlike submanifold is said to be proper if $D_{1} \neq$ $\{0\}, D_{2} \neq\{0\}$ and $\theta \neq 0$.

From the above definition, we have the following decomposition

$$
\begin{equation*}
T M=\operatorname{RadTM} \oplus_{\text {orth }} D_{1} \oplus_{\text {orth }} D_{2} \oplus_{\text {orth }}\{V\} \tag{3.1}
\end{equation*}
$$

In particular, we have
(i) if $D_{2}=0$, then M is a transversal lightlike submanifold,
(ii) if $D_{1}=0$ and $\theta=0$, then M is a radical transversal lightlike submanifold,
(iii) if $D_{1} \neq 0$ and $\theta=0$, then M is a generalized transversal lightlike submanifold.

Thus the above new class of lightlike submanifolds of an ϵ-almost contact metric manifold includes radical transversal, transversal, generalized transversal lightlike submanifolds as its sub-cases which have been studied in $[18,19]$.

Let $\left(\mathbb{R}_{2 q}^{2 m+1}, \bar{g}, \phi, \eta, V\right)$ denote the manifold $\mathbb{R}_{2 q}^{2 m+1}$ with its usual ϵ-almost contact metric structure given by

$$
\begin{gathered}
\eta=\frac{1}{2}\left(d z-\sum_{i=1}^{m} y^{i} d x^{i}\right), \quad V=2 \partial z \\
\bar{g}=\eta \otimes \eta+\frac{1}{4}\left\{-\sum_{i=1}^{q}\left(d x^{i} \otimes d x^{i}+d y^{i} \otimes d y^{i}\right)+\sum_{i=q+1}^{m}\left(d x^{i} \otimes d x^{i}+d y^{i} \otimes d y^{i}\right)\right\}, \\
\phi\left(\sum_{i=1}^{m}\left(X_{i} \partial x_{i}+Y_{i} \partial y_{i}\right)+Z \partial z\right)=\sum_{i=1}^{m}\left(Y_{i} \partial x_{i}-X_{i} \partial y_{i}\right)+\left(\sum_{i=1}^{m} Y_{i} y^{i}\right) \partial z
\end{gathered}
$$

where $\left(x^{i}, y^{i}, z\right)$ are the cartesian coordinates on $\mathbb{R}_{2 q}^{2 m+1}$. Now we construct some examples of radical transversal screen pseudo-slant lightlike submanifolds of a spacelike almost contact metric manifold.

Example 1. Let $\left(\mathbb{R}_{2}^{13}, \bar{g}, \phi, \eta, V\right)$ be a spacelike almost contact metric manifold, where \bar{g} is of signature $(-,+,+,+,+,+,-,+,+,+,+,+,+)$ with respect to the canonical basis $\left\{\partial x_{1}, \partial x_{2}, \partial x_{3}, \partial x_{4}, \partial x_{5}, \partial x_{6}, \partial y_{1}, \partial y_{2}, \partial y_{3}, \partial y_{4}, \partial y_{5}\right.$, $\left.\partial y_{6}, \partial z\right\}$.

Suppose M is a submanifold of \mathbb{R}_{2}^{13} given by $x^{1}=u_{1}, y^{1}=u_{2}$, $x^{2}=-u_{1} \cos \alpha+u_{2} \sin \alpha, y^{2}=u_{1} \sin \alpha+u_{2} \cos \alpha, x^{3}=y^{4}=u_{3}, x^{4}=y^{3}=u_{4}$,
$x^{5}=u_{5}, y^{5}=u_{6}, x^{6}=k \cos u_{6}, y^{6}=k \sin u_{6}, z=u_{7}$, where k is a non-zero constant.
The local frame of $T M$ is given by $\left\{Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}, Z_{6}, Z_{7}\right\}$, where

$$
\begin{aligned}
& Z_{1}=2\left(\partial x_{1}-\cos \alpha \partial x_{2}+\sin \alpha \partial y_{2}+y^{1} \partial z-\cos \alpha y^{2} \partial z\right) \\
& Z_{2}=2\left(\partial y_{1}+\sin \alpha \partial x_{2}+\cos \alpha \partial y_{2}+\sin \alpha y^{2} \partial z\right) \\
& Z_{3}=2\left(\partial x_{3}+\partial y_{4}+y^{3} \partial z\right) \\
& Z_{4}=2\left(\partial x_{4}+\partial y_{3}+y^{4} \partial z\right) \\
& Z_{5}=2\left(\partial x_{5}+y^{5} \partial z\right) \\
& Z_{6}=2\left(\partial y_{5}-k \sin u_{6} \partial x_{6}+k \cos u_{6} \partial y_{6}-k \sin u_{6} y^{6} \partial z\right) \\
& Z_{7}=V=2 \partial z
\end{aligned}
$$

Hence $\operatorname{RadTM}=\operatorname{span}\left\{Z_{1}, Z_{2}\right\}$ and $S(T M)=\operatorname{span}\left\{Z_{3}, Z_{4}, Z_{5}, Z_{6}, V\right\}$.
Now $l \operatorname{tr}(T M)$ is spanned by $N_{1}=-\partial x_{1}-\cos \alpha \partial x_{2}+\sin \alpha \partial y_{2}-y^{1} \partial z-\cos \alpha y^{2} \partial z$,
$N_{2}=-\partial y_{1}+\sin \alpha \partial x_{2}+\cos \alpha \partial y_{2}+\sin \alpha y^{2} \partial z$ and $S\left(T M^{\perp}\right)$ is spanned by

$$
\begin{aligned}
& W_{1}=2\left(\partial x_{3}-\partial y_{4}+y^{3} \partial z\right) \\
& W_{2}=2\left(\partial x_{4}-\partial y_{3}+y^{4} \partial z\right) \\
& W_{3}=2\left(k \cos u_{6} \partial x_{6}+k \sin u_{6} \partial y_{6}+k \cos u_{6} y^{6} \partial z\right) \\
& W_{4}=2\left(k^{2} \partial y_{5}+k \sin u_{6} \partial x_{6}-k \cos u_{6} \partial y_{6}+k \sin u_{6} y^{6} \partial z\right) .
\end{aligned}
$$

It follows that $\phi Z_{1}=2 N_{2}, \phi Z_{2}=-2 N_{1}$, which implies that $\phi R a d T M=$ $\operatorname{ltr}(T M)$. On the other hand, we can see that $D_{1}=\operatorname{span}\left\{Z_{3}, Z_{4}\right\}$ such that $\phi Z_{3}=W_{2}, \phi Z_{4}=W_{1}$, which implies that D_{1} is anti-invariant with respect to ϕ and $D_{2}=\operatorname{span}\left\{Z_{5}, Z_{6}\right\}$ is a slant distribution with slant angle $\theta=\arccos \left(1 / \sqrt{1+k^{2}}\right)$. Hence M is a radical transversal screen pseudo-slant 2-lightlike submanifold of \mathbb{R}_{2}^{13}.

Example 2. Let $\left(\mathbb{R}_{2}^{13}, \bar{g}, \phi, \eta, V\right)$ be a spacelike almost contact metric manifold, where \bar{g} is of signature $(-,+,+,+,+,+,-,+,+,+,+,+,+)$ with respect to the canonical basis $\left\{\partial x_{1}, \partial x_{2}, \partial x_{3}, \partial x_{4}, \partial x_{5}, \partial x_{6}, \partial y_{1}, \partial y_{2}, \partial y_{3}, \partial y_{4}, \partial y_{5}\right.$, $\left.\partial y_{6}, \partial z\right\}$.

Suppose M is a submanifold of \mathbb{R}_{2}^{13} given by $x^{1}=y^{2}=u_{1}, x^{2}=y^{1}=u_{2}$, $x^{3}=u_{3} \cos \beta, y^{3}=u_{3} \sin \beta, x^{4}=u_{4} \sin \beta, y^{4}=u_{4} \cos \beta, x^{5}=u_{5} \cos u_{6}$, $y^{5}=u_{5} \sin u_{6}, x^{6}=\cos u_{5}, y^{6}=\sin u_{5}, z=u_{7}, u_{5} \neq 0$.
The local frame of $T M$ is given by $\left\{Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}, Z_{6}, Z_{7}\right\}$, where

$$
Z_{1}=2\left(\partial x_{1}+\partial y_{2}+y^{1} \partial z\right)
$$

$$
\begin{aligned}
Z_{2}= & 2\left(\partial x_{2}+\partial y_{1}+y^{2} \partial z\right) \\
Z_{3}= & 2\left(\cos \beta \partial x_{3}+\sin \beta \partial y_{3}+y^{3} \cos \beta \partial z\right) \\
Z_{4}= & 2\left(\sin \beta \partial x_{4}+\cos \beta \partial y_{4}+y^{4} \sin \beta \partial z\right), \\
Z_{5}= & 2\left(\cos u_{6} \partial x_{5}+\sin u_{6} \partial y_{5}-\sin u_{5} \partial x_{6}+\cos u_{5} \partial y_{6}+\cos u_{6} y^{5} \partial z\right. \\
& \left.-\sin u_{5} y^{6} \partial z\right) \\
Z_{6}= & 2\left(-u_{5} \sin u_{6} \partial x_{5}+u_{5} \cos u_{6} \partial y_{5}-u_{5} \sin u_{6} y^{5} \partial z\right) \\
Z_{7}= & V=2 \partial z
\end{aligned}
$$

Hence $R a d T M=\operatorname{span}\left\{Z_{1}, Z_{2}\right\}$ and $S(T M)=\operatorname{span}\left\{Z_{3}, Z_{4}, Z_{5}, Z_{6}, V\right\}$. Now $l \operatorname{tr}(T M)$ is spanned by $N_{1}=-\partial x_{1}+\partial y_{2}-y^{1} \partial z, N_{2}=-\partial x_{2}+\partial y_{1}-y^{2} \partial z$ and $S\left(T M^{\perp}\right)$ is spanned by

$$
\begin{aligned}
W_{1}= & 2\left(\sin \beta \partial x_{3}-\cos \beta \partial y_{3}+y^{3} \sin \beta \partial z\right) \\
W_{2}= & 2\left(\cos \beta \partial x_{4}-\sin \beta \partial y_{4}+y^{4} \cos \beta \partial z\right) \\
W_{3}= & 2\left(\cos u_{6} \partial x_{5}+\sin u_{6} \partial y_{5}+\sin u_{5} \partial x_{6}-\cos u_{5} \partial y_{6}+\cos u_{6} y^{5} \partial z\right. \\
& \left.+\sin u_{5} y^{6} \partial z\right) \\
W_{4}= & 2\left(u_{5} \cos u_{5} \partial x_{6}+u_{5} \sin u_{5} \partial y_{6}+u_{5} \cos u_{5} y^{6} \partial z\right) .
\end{aligned}
$$

It follows that $\phi Z_{1}=-2 N_{2}, \phi Z_{2}=-2 N_{1}$, which implies that $\phi \operatorname{RadTM}=$ $\operatorname{ltr}(T M)$. On the other hand, we can see that $D_{1}=\operatorname{span}\left\{Z_{3}, Z_{4}\right\}$ such that $\phi Z_{3}=W_{1}, \phi Z_{4}=W_{2}$, which implies that D_{1} is anti-invariant with respect to ϕ and $D_{2}=\operatorname{span}\left\{Z_{5}, Z_{6}\right\}$ is a slant distribution with slant angle $\pi / 4$. Hence M is a radical transversal screen pseudo-slant 2-lightlike submanifold of \mathbb{R}_{2}^{13}.

Now, for any vector field X tangent to M, we put $\phi X=P X+F X$, where $P X$ and $F X$ are tangential and transversal parts of ϕX respectively. We denote the projections on $\operatorname{RadTM}, D_{1}$ and D_{2} in $T M$ by P_{1}, P_{2} and P_{3} respectively. Similarly, we denote the projections of $\operatorname{tr}(T M)$ on $\operatorname{ltr}(T M), \phi\left(D_{1}\right)$ and D^{\prime} by Q_{1}, Q_{2} and Q_{3} respectively, where D^{\prime} is non-degenerate orthogonal complementary subbundle of $\phi\left(D_{1}\right)$ in $S\left(T M^{\perp}\right)$. Then, for any $X \in \Gamma(T M)$, we get

$$
\begin{equation*}
X=P_{1} X+P_{2} X+P_{3} X+\eta(X) V \tag{3.2}
\end{equation*}
$$

Now applying ϕ to (3.2), we have

$$
\begin{equation*}
\phi X=\phi P_{1} X+\phi P_{2} X+\phi P_{3} X \tag{3.3}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\phi X=\phi P_{1} X+\phi P_{2} X+f P_{3} X+F P_{3} X \tag{3.4}
\end{equation*}
$$

where $f P_{3} X$ (resp. $F P_{3} X$) denotes the tangential (resp. transversal) component of $\phi P_{3} X$. Thus we get $\phi P_{1} X \in \Gamma(\operatorname{ltr}(T M)), \phi P_{2} X \in \Gamma\left(\phi D_{1}\right) \subset \Gamma\left(S\left(T M^{\perp}\right)\right)$, $f P_{3} X \in \Gamma\left(D_{2}\right)$ and $F P_{3} X \in \Gamma\left(D^{\prime}\right)$. Also, for any $W \in \Gamma(\operatorname{tr}(T M))$, we have

$$
\begin{equation*}
W=Q_{1} W+Q_{2} W+Q_{3} W \tag{3.5}
\end{equation*}
$$

Applying ϕ to (3.5), we obtain

$$
\begin{equation*}
\phi W=\phi Q_{1} W+\phi Q_{2} W+\phi Q_{3} W \tag{3.6}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\phi W=\phi Q_{1} W+\phi Q_{2} W+B Q_{3} W+C Q_{3} W \tag{3.7}
\end{equation*}
$$

where $B Q_{3} W$ (resp. $C Q_{3} W$) denotes the tangential (resp. transversal) component of $\phi Q_{3} W$. Thus we get $\phi Q_{1} W \in \Gamma(R a d T M), \phi Q_{2} W \in \Gamma\left(D_{1}\right), B Q_{3} W \in$ $\Gamma\left(D_{2}\right)$ and $C Q_{3} W \in \Gamma\left(D^{\prime}\right)$.

Now, by using $(2.23),(3.4),(3.7)$ and (2.7)-(2.9) and identifying the components on $\operatorname{RadTM}, D_{1}, D_{2}, \operatorname{ltr}(T M), \phi\left(D_{1}\right), D^{\prime}$ and $\{V\}$, we obtain

$$
\begin{align*}
P_{1}\left(A_{\phi P_{2} Y} X\right) & +P_{1}\left(A_{\phi P_{1} Y} X\right)+P_{1}\left(A_{F P_{3} Y} X\right)=P_{1}\left(\nabla_{X} f P_{3} Y\right) \\
& -\phi h^{l}(X, Y)+\eta(Y) P_{1} X \tag{3.8}\\
P_{2}\left(A_{\phi P_{2} Y} X\right)+ & P_{2}\left(A_{\phi P_{1} Y} X\right)+P_{2}\left(A_{F P_{3} Y} X\right)=P_{2}\left(\nabla_{X} f P_{3} Y\right) \\
& -\phi Q_{2} h^{s}(X, Y)+\eta(Y) P_{2} X \tag{3.9}\\
P_{3}\left(A_{\phi P_{2} Y} X\right) & +P_{3}\left(A_{\phi P_{1} Y} X\right)+P_{3}\left(A_{F P_{3} Y} X\right)=P_{3}\left(\nabla_{X} f P_{3} Y\right) \\
& -B Q_{3} h^{s}(X, Y)-f P_{3} \nabla_{X} Y+\eta(Y) P_{3} X \tag{3.10}
\end{align*}
$$

(3.11) $\nabla_{X}^{l} \phi P_{1} Y+D^{l}\left(X, \phi P_{2} Y\right)+h^{l}\left(X, f P_{3} Y\right)+D^{l}\left(X, F P_{3} Y\right)=\phi P_{1} \nabla_{X} Y$,

$$
\begin{align*}
Q_{2} \nabla_{X}^{s} \phi P_{2} Y+Q_{2} \nabla_{X}^{s} F P_{3} Y= & \phi P_{2} \nabla_{X} Y-Q_{2} D^{s}\left(X, \phi P_{1} Y\right) \\
& -Q_{2} h^{s}\left(X, f P_{3} Y\right) \tag{3.12}
\end{align*}
$$

$$
\begin{equation*}
Q_{3} \nabla_{X}^{s} \phi P_{2} Y+Q_{3} \nabla_{X}^{s} F P_{3} Y-F P_{3} \nabla_{X} Y=C Q_{3} h^{s}(X, Y) \tag{3.13}
\end{equation*}
$$

$$
-Q_{3} h^{s}\left(X, f P_{3} Y\right)-Q_{3} D^{s}\left(X, \phi P_{1} Y\right)
$$

$$
\begin{equation*}
\eta\left(\nabla_{X} f P_{3} Y\right)-\eta\left(A_{\phi P_{1} Y} X\right)-\eta\left(A_{\phi P_{2} Y} X\right)-\eta\left(A_{F P_{3} Y} X\right)=\bar{g}(\phi X, \phi Y) \tag{3.14}
\end{equation*}
$$

Theorem 3.2. Let M be a $2 q$-lightlike submanifold of a spacelike almost contact metric manifold \bar{M} with structure vector field tangent to M. Then M is a radical transversal screen pseudo-slant lightlike submanifold of \bar{M} if and only if
(i) $\phi \operatorname{ltr}(T M)$ is a distribution on M such that $\phi \operatorname{ltr}(T M)=\operatorname{RadTM}$,
(ii) distribution D_{1} is anti-invariant with respect to ϕ, i.e. $\phi D_{1} \subset S\left(T M^{\perp}\right)$,
(iii) there exists a constant $\lambda \in(0,1]$ such that $P^{2} X=-\lambda X$.

Moreover, there also exists a constant $\mu \in[0,1)$ such that $B F X=-\mu X$, for all $X \in \Gamma\left(D_{2}\right)$, where D_{1} and D_{2} are non-degenerate orthogonal distributions on M such that $S(T M)=D_{1} \oplus_{\text {orth }} D_{2} \oplus_{\text {orth }}\{V\}$ and $\lambda=\cos ^{2} \theta, \theta$ is slant angle of D_{2}.

Proof. Let M be a radical transversal screen pseudo-slant lightlike submanifold of a spacelike almost contact metric manifold \bar{M}. Then distribution D_{1} is anti-invariant with respect to ϕ and $\phi \operatorname{RadTM}=\operatorname{ltr}(T M)$. Thus $\phi X \in \Gamma(l \operatorname{tr}(T M))$, for all $X \in \Gamma(\operatorname{Rad} T M)$. Hence $\phi(\phi X) \in \Gamma(\phi(l \operatorname{tr}(T M)))$, which implies $-X \in \Gamma(\phi(l \operatorname{tr}(T M)))$, for all $X \in \Gamma(\operatorname{RadTM})$, which proves (i) and (ii).

Now for any $X \in \Gamma\left(D_{2}\right)$, we have $|P X|=|\phi X| \cos \theta$, which implies

$$
\begin{equation*}
\cos \theta=\frac{|P X|}{|\phi X|} \tag{3.15}
\end{equation*}
$$

In view of (3.15), we get $\cos ^{2} \theta=\frac{|P X|^{2}}{|\phi X|^{2}}=\frac{g(P X, P X)}{g(\phi X, \phi X)}=\frac{g\left(X, P^{2} X\right)}{g\left(X, \phi^{2} X\right)}$, which gives

$$
\begin{equation*}
g\left(X, P^{2} X\right)=\cos ^{2} \theta g\left(X, \phi^{2} X\right) \tag{3.16}
\end{equation*}
$$

Since M is radical transversal screen pseudo-slant lightlike submanifold, $\cos ^{2} \theta=\lambda$ (const $) \in(0,1]$ and therefore from (3.16), we get $g\left(X, P^{2} X\right)=$ $\lambda g\left(X, \phi^{2} X\right)=g\left(X, \lambda \phi^{2} X\right)$, which implies

$$
\begin{equation*}
g\left(X,\left(P^{2}-\lambda \phi^{2}\right) X\right)=0 \tag{3.17}
\end{equation*}
$$

Since $\left(P^{2}-\lambda \phi^{2}\right) X \in \Gamma\left(D_{2}\right)$ and the induced metric $g=\left.g\right|_{D_{2} \times D_{2}}$ is non-degenerate (positive definite), from (3.17), we have $\left(P^{2}-\lambda \phi^{2}\right) X=0$, which implies

$$
\begin{equation*}
P^{2} X=\lambda \phi^{2} X=-\lambda X \tag{3.18}
\end{equation*}
$$

Now, for any vector field $X \in \Gamma\left(D_{2}\right)$, we have

$$
\begin{equation*}
\phi X=P X+F X \tag{3.19}
\end{equation*}
$$

where $P X$ and $F X$ are tangential and transversal parts of ϕX respectively.
Applying ϕ to (3.19) and taking tangential component, we get

$$
\begin{equation*}
-X=P^{2} X+B F X \tag{3.20}
\end{equation*}
$$

From (3.18) and (3.20), we get

$$
\begin{equation*}
B F X=-\mu X \tag{3.21}
\end{equation*}
$$

where $1-\lambda=\mu($ const $) \in[0,1)$. This proves (iii).
Conversely suppose that conditions (i), (ii) and (iii) are satisfied. From (i), we have $\phi N \in \Gamma(\operatorname{RadTM})$, for all $N \in \Gamma(\operatorname{ltr}(T M))$. Hence $\phi(\phi N) \in$ $\Gamma(\phi(\operatorname{RadTM}))$, which implies $-N \in \Gamma(\phi(\operatorname{RadTM}))$, for all $N \in \Gamma(\operatorname{ltr}(T M))$. Thus $\phi \operatorname{RadTM}=\operatorname{ltr}(T M)$. From (3.20), for any $X \in \Gamma\left(D_{2}\right)$, we get

$$
\begin{equation*}
-X=P^{2} X-\mu X \tag{3.22}
\end{equation*}
$$

which implies

$$
\begin{equation*}
P^{2} X=-\lambda X \tag{3.23}
\end{equation*}
$$

where $1-\mu=\lambda($ const $) \in(0,1]$.
Now

$$
\begin{aligned}
\cos \theta & =\frac{g(\phi X, P X)}{|\phi X||P X|}=-\frac{g(X, \phi P X)}{|\phi X||P X|}=-\frac{g\left(X, P^{2} X\right)}{|\phi X||P X|} \\
& =-\lambda \frac{g\left(X, \phi^{2} X\right)}{|\phi X||P X|}=\lambda \frac{g(\phi X, \phi X)}{|\phi X||P X|}
\end{aligned}
$$

From above equation, we get

$$
\begin{equation*}
\cos \theta=\lambda \frac{|\phi X|}{|P X|} \tag{3.24}
\end{equation*}
$$

Therefore (3.15) and (3.24) give $\cos ^{2} \theta=\lambda$ (const).
Hence M is a radical transversal screen pseudo-slant lightlike submanifold.

Corollary 3.1. Let M be a radical transversal screen pseudo-slant lightlike submanifold of a spacelike almost contact metric manifold \bar{M} with slant angle θ, then for any $X, Y \in \Gamma\left(D_{2}\right)$, we have
(i) $g(P X, P Y)=\cos ^{2} \theta g(X, Y)$,
(ii) $\bar{g}(F X, F Y)=\sin ^{2} \theta g(X, Y)$.

The proof of above Corollary follows by using similar steps as in proof of Corollary 3.2 of [12].

Lemma 3.3. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then we have
(i) $g\left(\nabla_{X} Y, V\right)=\bar{g}(Y, \phi X)$,
(ii) $g([X, Y], V)=2 \bar{g}(Y, \phi X)$, for all $X, Y \in \Gamma(T M-\{V\})$.

Proof. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Since $\bar{\nabla}$ is a metric connection, from (2.7) and (2.24), for any $X, Y \in \Gamma(T M-\{V\})$, we have

$$
\begin{equation*}
g\left(\nabla_{X} Y, V\right)=\bar{g}(Y, \phi X) \tag{3.25}
\end{equation*}
$$

From (2.22) and (3.25), we have $g([X, Y], V)=2 \bar{g}(Y, \phi X)$.
Theorem 3.4. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then RadTM $\oplus\{V\}$ is integrable if and only if
(i) $Q_{2} D^{s}(Y, \phi X)=Q_{2} D^{s}(X, \phi Y)$ and $Q_{3} D^{s}(Y, \phi X)=Q_{3} D^{s}(X, \phi Y)$,
(ii) $P_{3} A_{\phi X} Y=P_{3} A_{\phi Y} X$, for all $X, Y \in \Gamma(R a d T M \oplus\{V\})$.

Proof. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Let $X, Y \in \Gamma(R a d T M \oplus\{V\})$. From (3.12), we have $Q_{2} D^{s}(X, \phi Y)=\phi P_{2} \nabla_{X} Y$, which gives

$$
Q_{2} D^{s}(X, \phi Y)-Q_{2} D^{s}(Y, \phi X)=\phi P_{2}[X, Y]
$$

In view of (3.13), we get $Q_{3} D^{s}(X, \phi Y)=C Q_{3} h^{s}(X, Y)+F P_{3} \nabla_{X} Y$, which implies $Q_{3} D^{s}(X, \phi Y)-Q_{3} D^{s}(Y, \phi X)=F P_{3}[X, Y]$. Also from (3.10), we have

$$
P_{3} A_{\phi Y} X+B Q_{3} h^{s}(X, Y)=-f P_{3} \nabla_{X} Y
$$

which gives $P_{3} A_{\phi X} Y-P_{3} A_{\phi Y} X=f P_{3}[X, Y]$. This proves the theorem.
Theorem 3.5. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then D_{1} is integrable if and only if
(i) $Q_{3}\left(\nabla_{Y}^{s} \phi X\right)=Q_{3}\left(\nabla_{X}^{s} \phi Y\right)$ and $P_{3} A_{\phi X} Y=P_{3} A_{\phi Y} X$,
(ii) $D^{l}(X, \phi Y)=D^{l}(Y, \phi X)$, for all $X, Y \in \Gamma\left(D_{1}\right)$.

Proof. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Let $X, Y \in \Gamma\left(D_{1}\right)$. From (3.11), we have $D^{l}(X, \phi Y)=\phi P_{1} \nabla_{X} Y$, we have $D^{l}(X, \phi Y)-D^{l}(Y, \phi X)=\phi P_{1}[X, Y]$.

In view of (3.10), we get $P_{3} A_{\phi Y} X+B Q_{3} h^{s}(X, Y)=-f P_{3} \nabla_{X} Y$, which implies $P_{3} A_{\phi X} Y-P_{3} A_{\phi Y} X=f P_{3}[X, Y]$. Also from (3.13), we have

$$
Q_{3}\left(\nabla_{X}^{s} \phi Y\right)-C Q_{3} h^{s}(X, Y)=F P_{3} \nabla_{X} Y
$$

which gives

$$
Q_{3}\left(\nabla_{X}^{s} \phi Y\right)-Q_{3}\left(\nabla_{Y}^{s} \phi X\right)=F P_{3}[X, Y] .
$$

This concludes the theorem.
Theorem 3.6. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then $D_{2} \oplus\{V\}$ is integrable if and only if
(i) $D^{l}(X, F Y)-h^{l}(Y, f X)=D^{l}(Y, F X)-h^{l}(X, f Y)$,
(ii) $Q_{2}\left(\nabla_{X}^{s} F Y-h^{s}(Y, f X)\right)=Q_{2}\left(\nabla_{Y}^{s} F X-h^{s}(X, f Y)\right)$, for all $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$.

Proof. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Let $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$. From (3.11), we have $h^{l}(X, f Y)+D^{l}(X, F Y)=\phi P_{1} \nabla_{X} Y$, which gives $h^{l}(X, f Y)-$ $h^{l}(Y, f X)+D^{l}(X, F Y)-D^{l}(Y, F X)=\phi P_{1}[X, Y]$. In view of (3.12), we get $Q_{2} \nabla_{X}^{s} F Y+Q_{2} h^{s}(X, f Y)=\phi P_{2} \nabla_{X} Y$, which implies $Q_{2} \nabla_{X}^{s} F Y-Q_{2} \nabla_{Y}^{s} F X+$ $Q_{2} h^{s}(X, f Y)-Q_{2} h^{s}(Y, f X)=\phi P_{2}[X, Y]$. Thus, we obtain the required results.

Theorem 3.7. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then the induced connection ∇ on M is not a metric connection.

Proof. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Suppose that the induced connection ∇ on M is a metric connection. Then $\nabla_{X} \phi N \in \Gamma(R a d T M)$ for all $X \in \Gamma(T M)$ and $N \in \Gamma(\operatorname{ltr}(T M))$. From (2.7), (2.8) and (2.23), for any $X \in \Gamma(T M)$ and $N \in \Gamma(\operatorname{ltr}(T M))$, we have

$$
\begin{align*}
\nabla_{X} \phi N+ & h^{l}(X, \phi N)+h^{s}(X, \phi N)=-\phi A_{N} X+\phi \nabla_{X}^{l} N \tag{3.26}\\
& +\phi Q_{2} D^{s}(X, N)+\phi Q_{3} D^{s}(X, N)+\bar{g}(X, N) V
\end{align*}
$$

Now, on comparing tangential components of both sides of (3.26), we get

$$
\begin{align*}
\nabla_{X} \phi N= & -f P_{3} A_{N} X+\phi \nabla_{X}^{l} N+\phi Q_{2} D^{s}(X, N) \tag{3.27}\\
& +B Q_{3} D^{s}(X, N)+\bar{g}(X, N) V
\end{align*}
$$

Since $T M=R a d T M \oplus_{\text {orth }} D_{1} \oplus_{\text {orth }} D_{2} \oplus_{\text {orth }}\{V\}$, from (3.27), we obtain

$$
\begin{gather*}
\nabla_{X} \phi N-\phi \nabla_{X}^{l} N=0, B Q_{3} D^{s}(X, N)-f P_{3} A_{N} X=0 \tag{3.28}\\
\phi Q_{2} D^{s}(X, N)=0, \quad \bar{g}(X, N) V=0 \tag{3.29}
\end{gather*}
$$

Now taking $X=\xi \in \Gamma(\operatorname{Rad}(T M))$ in (3.29), we get $\bar{g}(\xi, N) V=0$. Thus $V=0$, which is a contradiction. Hence M does not have a metric connection.
4. Foliations determined by distributions. In this section, we obtain necessary and sufficient conditions for foliations determined by distributions on a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold to be totally geodesic.

Definition 4.1. A radical transversal screen pseudo-slant lightlike submanifold M of an indefinite Sasakian manifold \bar{M} is said to be mixed geodesic screen pseudo-slant lightlike submanifold if its second fundamental form h satisfies $h(X, Y)=0$, for all $X \in \Gamma\left(D_{1}\right)$ and $Y \in \Gamma\left(D_{2}\right)$. Thus M is mixed geodesic radical transversal screen pseudo-slant lightlike submanifold if $h^{l}(X, Y)=0$ and $h^{s}(X, Y)=0$, for all $X \in \Gamma\left(D_{1}\right)$ and $Y \in \Gamma\left(D_{2}\right)$.

Theorem 4.1. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then RadTM $\oplus\{V\}$ defines a totally geodesic foliation if and only if $P_{1} \nabla_{X} f P_{3} Z=P_{1} A_{\phi P_{2} Z} X+P_{1} A_{F P_{3} Z} X$, for any $X, Y \in \Gamma(R a d T M \oplus\{V\})$ and $Z \in \Gamma\left(D_{1} \oplus D_{2}\right)$.

Proof. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. It is easy to see that $R a d T M \oplus\{V\}$ defines a totally geodesic foliation if and only if

$$
\nabla_{X} Y \in \Gamma(R a d T M \oplus\{V\}), \text { for all } X, Y \in \Gamma(R a d T M \oplus\{V\})
$$

Since $\bar{\nabla}$ is metric connection, using (2.7), (2.19), (2.23) and (3.4), for any $X, Y \in \Gamma(R a d T M \oplus\{V\})$ and $Z \in \Gamma\left(D_{1} \oplus D_{2}\right)$, we get

$$
\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(\bar{\nabla}_{X}\left(\phi P_{2} Z+f P_{3} Z+F P_{3} Z\right), \phi Y\right)
$$

From (2.7), (2.9) and above equation, we get

$$
\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(\nabla_{X} f P_{3} Z-A_{\phi P_{2} Z} X-A_{F P_{3} Z} X, \phi Y\right)
$$

which implies

$$
\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(P_{1} \nabla_{X} f P_{3} Z-P_{1} A_{\phi P_{2} Z} X-P_{1} A_{F P_{3} Z} X, \phi Y\right)
$$

This concludes the theorem.
Theorem 4.2. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then D_{1} defines a totally geodesic foliation if and only if
(i) $\bar{g}\left(h^{s}(X, f Z), \phi Y\right)=-\bar{g}\left(\nabla_{X}^{s} F Z, \phi Y\right)$,
(ii) $h^{s}(X, \phi N)$ has no component in $\phi\left(D_{1}\right)$,
for all $X, Y \in \Gamma\left(D_{1}\right), Z \in \Gamma\left(D_{2}\right)$ and $N \in \Gamma(l t r(T M))$.
Proof. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. The distribution D_{1} defines a totally geodesic foliation if and only if $\nabla_{X} Y \in \Gamma\left(D_{1}\right)$, for all $X, Y \in \Gamma\left(D_{1}\right)$. Since $\bar{\nabla}$ is metric connection, from (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{1}\right)$ and $Z \in \Gamma\left(D_{2}\right)$, we obtain $\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(\bar{\nabla}_{X} \phi Z, \phi Y\right)$, which gives

$$
\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(h^{s}(X, f Z)+\nabla_{X}^{s} F Z, \phi Y\right)
$$

Now from (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{1}\right)$ and $N \in \Gamma(l \operatorname{tr}(T M))$, we have $\bar{g}\left(\nabla_{X} Y, N\right)=-\bar{g}\left(\phi Y, \bar{\nabla}_{X} \phi N\right)$, which implies

$$
\bar{g}\left(\nabla_{X} Y, N\right)=-\bar{g}\left(\phi Y, h^{s}(X, \phi N)\right)
$$

Thus, we obtain the required results.
Theorem 4.3. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then $D_{2} \oplus\{V\}$ defines a totally geodesic foliation if and only if
(i) $\bar{g}\left(f Y, A_{\phi Z} X\right)=\bar{g}\left(F Y, \nabla_{X}^{s} \phi Z\right)$,
(ii) $\bar{g}\left(f Y, A_{\phi N}^{*} X\right)=\bar{g}\left(F Y, h^{s}(X, \phi N)\right)$,
for all $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right), Z \in \Gamma\left(D_{1}\right)$ and $N \in \Gamma(l \operatorname{tr}(T M))$.
Proof. Let M be a radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. The distribution $D_{2} \oplus\{V\}$ defines a totally geodesic foliation if and only if $\nabla_{X} Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$, for all $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$. Since $\bar{\nabla}$ is metric connection, from (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$ and $Z \in \Gamma\left(D_{1}\right)$, we obtain

$$
\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(\phi Y, \bar{\nabla}_{X} \phi Z\right)
$$

which gives

$$
\bar{g}\left(\nabla_{X} Y, Z\right)=\bar{g}\left(f Y, A_{\phi Z} X\right)-\bar{g}\left(F Y, \nabla_{X}^{s} \phi Z\right) .
$$

Now, from (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{2} \oplus\{V\}\right)$ and $N \in \Gamma(l \operatorname{tr}(T M))$, we have

$$
\bar{g}\left(\nabla_{X} Y, N\right)=-\bar{g}\left(\phi Y, \bar{\nabla}_{X} \phi N\right)
$$

which implies

$$
\bar{g}\left(\nabla_{X} Y, N\right)=\bar{g}\left(f Y, A_{\phi N}^{*} X\right)-\bar{g}\left(F Y, h^{s}(X, \phi N)\right) .
$$

Thus, the theorem is completed.
Theorem 4.4. Let M be a mixed geodesic radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then D_{1} defines a totally geodesic foliation if and only if $\nabla_{X}^{s} F Z$ and $h^{s}(X, \phi N)$ have no components in $\phi\left(D_{1}\right)$, for all $X \in \Gamma\left(D_{1}\right), Z \in \Gamma\left(D_{2}\right)$ and $N \in \Gamma(l \operatorname{tr}(T M))$.

Proof. Let M be a mixed geodesic radical transversal screen pseudoslant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. The distribution D_{1} defines a totally geodesic foliation if and only if $\nabla_{X} Y \in \Gamma\left(D_{1}\right)$, for all $X, Y \in$ $\Gamma\left(D_{1}\right)$. Since $\bar{\nabla}$ is metric connection, from (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{1}\right)$ and $Z \in \Gamma\left(D_{2}\right)$, we get $\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(\phi Y, \bar{\nabla}_{X} \phi Z\right)$, which gives $\bar{g}\left(\nabla_{X} Y, Z\right)=-\bar{g}\left(\nabla_{X}^{s} F Z+h^{s}(X, f Z), \phi Y\right)$. Now, from (2.7), (2.19) and (2.23), for all $X, Y \in \Gamma\left(D_{1}\right)$ and $N \in \Gamma(l \operatorname{tr}(T M))$, we get $\bar{g}\left(\nabla_{X} Y, N\right)=-\bar{g}\left(\phi Y, \bar{\nabla}_{X} \phi N\right)$, which implies $\bar{g}\left(\nabla_{X} Y, N\right)=-\bar{g}\left(\phi Y, h^{s}(X, \phi N)\right)$. This proves the theorem.

Theorem 4.5. Let M be a mixed geodesic radical transversal screen pseudo-slant lightlike submanifold of an indefinite Sasakian manifold \bar{M} with structure vector field tangent to M. Then the induced connection ∇ on $D_{1} \oplus D_{2}$ is a metric connection if and only if
(i) $D^{s}(X, \phi \xi)$ has no component in $\phi\left(D_{1}\right)$,
(ii) $\bar{g}\left(f W, A_{\phi \xi} Z\right)=\bar{g}\left(F W, D^{s}(Z, \phi \xi)\right)$,
for all $X, \in \Gamma\left(D_{1}\right), Z, W \in \Gamma\left(D_{2}\right)$ and $\xi \in \Gamma(\operatorname{RadTM})$.
Proof. Let M be a mixed geodesic radical transversal screen pseudoslant lightlike submanifold of an indefinite Sasakian manifold \bar{M}. Then $h^{l}(X, Z)=$ 0 , for all $X \in \Gamma\left(D_{1}\right)$ and $Z \in \Gamma\left(D_{2}\right)$. Since $\bar{\nabla}$ is metric connection, from (2.7), (2.19) and (2.23), for any $X, Y \in \Gamma\left(D_{1}\right)$ and $\xi \in \Gamma(R a d T M)$, we have $\bar{g}\left(h^{l}(X, Y), \xi\right)=-g\left(\phi Y, \bar{\nabla}_{X} \phi \xi\right)$, which gives $\bar{g}\left(h^{l}(X, Y), \xi\right)=-g\left(\phi Y, D^{s}(X, \phi \xi)\right)$.

In view of (2.7), (2.19) and (2.23), for any $Z, W \in \Gamma\left(D_{2}\right)$ and $\xi \in \Gamma(R a d T M)$, we get $\bar{g}\left(h^{l}(Z, W), \xi\right)=-\bar{g}\left(\phi W, \bar{\nabla}_{Z} \phi \xi\right)$, which implies

$$
\bar{g}\left(h^{l}(Z, W), \xi\right)=\bar{g}\left(f W, A_{\phi \xi} Z\right)-\bar{g}\left(F W, D^{s}(Z, \phi \xi)\right)
$$

Thus, we obtain the required results.

REFERENCES

[1] C. L. Bejan, K. L. Duggal. Global lightlike manifolds and harmonicity. Kodai Math. J. 28, 1 (2005), 131-145.
[2] A. Carriazo. New Developments in Slant Submanifolds Theory. In: Applicable Mathematics in the Golden Age. New Delhi, India, Narosa Publishing House, 2002, 339-356.
[3] J. L. Cabrerizo, A. Carriazo, L. M. Fernández, M. Fernández. Slant submanifolds in Sasakian manifolds. Glasg. Math. J. 42, 1 (2000), 125-138.
[4] J. L. Cabrerizo, A. Carriazo, L. M. Fernández, M. Fernández. Semi-slant submanifolds of a Sasakian manifold. Geom. Dedicata 78, 2 (1999), 183-199.
[5] B. Y. Chen. Geometry of slant submanifolds. Louvain, Katholieke Universiteit Leuven, 1990.
[6] K. L. Duggal, A. Bejancu. Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and its Applications, vol. 364. Dordrecht, Kluwer Academic Publishers Group, 1996.
[7] K. L. Duggal, B. Sahin. Differential geomety of lightlike submanifolds. Frontiers in Mathematics. Basel, Birkhüser Verlag, 2010.
[8] K. L. Duggal, B. Sahin. Lightlike submanifolds of indefinite Sasakian manifolds. Int. J. of Math. Math. Sci., (2007), Article ID 57585, 21 pp.
[9] D. L. Johnson, L. B. Whitt. Totally geodesic foliations. J. Differential Geom. 15, 2 (1980), 225-235 (1981).
[10] A. Lotta. Slant submanifolds in contact geometry. Bull. Math. Soc. Roum. Nouv. Sér. 39, 1-4 (1996), 183-198.
[11] B. O'Neill. Semi-Riemannian Geometry. With applications to relativity. Pure and Applied Mathematics, vol. 103. New York, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], 1983.
[12] B. Şahin. Screen slant lightlike submanifolds. Int. Electron. J. Geom. 2, 1 (2009), 41-54.
[13] B. Sahin, C. Yildirim. Slant lightlike submanifolds of indefinite Sasakian manifolds. Filomat 26, 2 (2012), 277-287.
[14] S. S. Shukla, A. Yadav. Lightlike submanifolds of indefinite para-Sasakian manifolds. Mat. Vesnik 66, 4 (2014), 371-386.
[15] S. S. Shukla, A. Yadav. Radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds. Demonstr. Math. 47, 4 (2014), 994-101.
[16] S. S. Shukla, A. Yadav. Screen pseudo-slant lightlike submanifolds of indefinite Sasakian manifolds. Meditrer. J. Math. DOI 10.1007/s00009-015-0526-2, published online Feb. 2015, Basel, Springer.
[17] S. S. Shukla, A. Yadav. Semi-slant lightlike submanifolds of indefinite Kaehler manifolds. Rev. Un. Mat. Argentina 56, 2 (2015), 21-37.
[18] Y. WANG, X. Liu. Generalized transversal lightlike submanifolds of indefinite Sasakian manifolds. Int. J. Math. Math. Sci. (2012), Article ID 361794, 17 pp.
[19] C. Yildirim, B. Sahin. Transversal lightlike submanifolds of indefinite Sasakian manifolds. Turkish. J. Math. 34, 4 (2010), 561-583.

Department of Mathematics
University of Allahabad
Allahabad-211002, India
e-mail: ssshukla_au@rediffmail.com (S. S. Shukla)
e-mail: akhilesh_mathau@rediffmail.com (A. Yadav)
Received June 22, 2015

[^0]: 2010 Mathematics Subject Classification: 53C15, 53C40, 53C50.
 Key words: semi-Riemannian manifold, degenerate metric, radical distribution, screen distribution, screen transversal vector bundle, lightlike transversal vector bundle, Gauss and Weingarten formulae.
 *Akhilesh Yadav gratefully acknowledges the financial support provided by the Council of Scientific and Industrial Research (C.S.I.R.), India.

