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Abstract. This work discusses asymptotic behavior of solutions of class
of third-order non-linear delay differential equation with middle term. Our
results in this paper extend and improve some the previous results, the sense
that the results do not require delay function (gi (t)) with monotonicity.
As well, by using Riccati transformation technique, we establish some new
oscillation criteria for third-order delay differential equation. Examples given
in the study to clarify the new results.

Introduction. In this work, we consider new class of third order delay
differential equations of the form

(1.1)
(

r (t) x′′ (t)
)′
+ p (t) x′ (t) +

n
∑

i=1

qi (t) f (x (gi (t))) = 0,
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and

(1.2)
(

r (t) x′′ (t)
)′
+ φ

(

t, x′ (t)
)

+
n
∑

i=1

qi (t) f (x (gi (t))) = 0,

where r, p, qi and gi are positive real-valued functions, gi (t) ≤ t, lim
t→∞

gi (t) =

∞, i = 1, 2, . . . , n,

∫ ∞

t0

r−1 (t) dt = ∞ and

(A1) f ∈ C (R,R) ,
f (u)

u
≥ k > 0 for u 6= 0,

(A2) There exists a positive real function p∗ (t) such that φ (u, v) ≥ p∗ (u) v and
φ (u,−v) = −φ (u, v).

We intend to a solution of Eq. (1.1) or (1.2) a function x(t) : [tx,∞) →
R, tx ≥ t0 such that r(t)x′′(t) is continuously differentiable for all t ∈ [tx,∞) and
sup{|x(t)| : t ≥ T} > 0 for any T ≥ tx. Any solution of differential equation is
called oscillatory if it has arbitrary large zeros, otherwise it is called nonoscilla-
tory.

Asymptotic properties of any solutions of the second/third order differ-
ential equation have been subject of intensive researching in the literature. This
problem for differential equations with delay has received a great deal of attention
in the last years, see for example ([1]–[14] and [16]–[18]).

This paper, in Section 2, we shall present some oscillation criteria for Eq.
(1.1), which complement and extend the results in [14], [17] and [10]. In Section
3, we will establish some sufficient conditions which insure that any solution of
Eq. (1.2) oscillates or converges to zero and also condition of Philos-type for
oscillation. The results obtained essentially generalize and improve the earlier
ones. Finally, examples are also presented to illustrate the relevance of the results.

The following lemmas due to Kiguradze [13] and Bacuĺıková [3] will be
useful in the rest of this paper.

Lemma 1.1 ([13]). If the function y satisfies y(i) > 0, i = 0, 1, . . . , n,
and y(n+1) < 0, then

y (t)

tn/n!
≥

y′ (t)

tn−1/ (n− 1)!
.
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Lemma 1.2 ([3]). Assume that u (t) > 0, u′ (t) ≥ 0 and u′′ (t) ≤ 0 on

[t0,∞) . Then for each l ∈ (0, 1) there exists a Tl ≥ t0 such that

u (g (t))

g (t)
≥ l

u (t)

t
for t ≥ Tl.

2. Oscillation results for equation (1.1). In this section, we es-
tablish new oscillation criteria for solutions of equation (1.1) when r′ (t) > 0.
First, we show some lemmas that will be useful to establish our results.

Lemma 2.1. Assume that

(C1) 2k
n
∑

i=1

qi (t)− p′ (t) ≥ 0 for t ≥ t0 and is not identically zero in any

subinterval of [t0,∞) .

Let x (t) be a nonoscillatory solution of (1.1) that is eventually positive with

(2.1) G [x (t1)] = r (t1)
(

x′ (t1)
)2

− 2r (t1) x (t1)x
′′ (t1)− p (t1) x

2 (t1) ≥ 0,

for some t1 ∈ [t0,∞) . Then there exists t2 ≥ t1 such that

(2.2) x (t) > 0, x′ (t) > 0, x′′ (t) > 0 and x′′′ (t) < 0,

for t ≥ t2.

P r o o f. Let x be a nonoscillatory solution of Eq. (1.1) that is eventually
positive with the condition G [x (t1)] ≥ 0 for some t1 ∈ [t0,∞). Then there exists
a t2 ≥ t1 such that x (t) > 0 and x (gi (t)) > 0 for t ≥ t2 and i = 1, 2, . . . , n. From
(1.1) and (2.1), we get

G′ [x (t)] = r′ (t)
(

x′ (t)
)2

+ 2x (t)

n
∑

i=1

qi (t) f (x (gi (t)))− p′ (t)x2 (t

Thus, from (A1) and (C1), we obtain G′ [x (t)] ≥ 0 for t ≥ t2. So there exists a
point t3 ≥ t2 such that G [x (t)] is nonnegative and strictly increasing for t ≥ t3.
Since G [x (t)] ≥ 0 for t ≥ t3, we have

2r (t)
d

dt

(

x′ (t)

x (t)

)

= x−2 (t)
(

2r (t)x (t)x′′ (t)− 2r (t)
(

x′ (t)
)2
)
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≤ −x2 (t)
(

p (t) x2 (t) + r (t)
(

x′ (t)
)2
)

< 0.

Hence, the function x′/x is decreasing on [t3,∞) . This means that x (t) >
0, x′ (t) 6= 0 for t ≥ t3.

The rest of the proof is the same in [14, Lemmas 3.1], and hence, is
omitted. ✷

Lemma 2.2. Assume that (C1) holds. Let x (t) be solution of Eq. (1.1)
satisfying (2.1) for some t1 ∈ [t0,∞). Then, there exist a t2 ≥ t0 and constant

M such that

(2.3) x (gi (t)) ≥
g2
i
(t)

t

M

2
,

for t ≥ t2 and i = 1, 2, . . . , n.

P r o o f. Let x (t) be solution of Eq. (1.1) satisfying (2.1) for some
t1 ∈ [t0,∞). Then, by Lemma 2.1, there exists a t2 ≥ t1 such that (2.2) holds for
t ≥ t2. Thus, from Lemma 1.1, we have

x′ (t)

x (t)
≤

2

t
,

for t ≥ t2. Integrating this inequality from gi (t) to t, we see that

(2.4)
x (t)

x (gi (t))
≤

t2

g2
i
(t)
.

Since, x′ (t) > 0 for t ≥ t2 and increasing, we get x′ (t) > M > 0 for t ≥ t2. Thus,
by using x (t2) > 0, we obtain

x (t) ≥ x (t2) +M (t− t2) ≥
M

2
t.

Hence, from (2.4), we have

x (gi (t)) ≥
g2
i
(t)

t2
x (t) ≥

g2
i
(t)

t

M

2
.

The proof is complete. ✷

In the following theorems, we establish some oscillation criteria for Eq.
(1.1) when p (t) with monotonicity.
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Theorem 2.1. Assume that (C1) holds, p′ (t) ≤ 0. Let x (t) be solution

of Eq. (1.1) satisfying (2.1) for some t1 ∈ [t0,∞). If

(2.5)

∫ ∞

t0

1

s

n
∑

i=1

(

kqi (s)− p′ (s)
)

g2i (s) ds = ∞,

then x (t) is oscillatory.

P r o o f. Let x be a nonoscillatory solution of Eq. (1.1). Without
loss of generality, we may assume that there exists t1 ≥ t0 such that x (t) > 0
and x (gi (t)) > 0 for t ≥ t1, i = 1, 2, . . . , n and x (t) satisfying (2.1) for some
t1 ∈ [t0,∞). From Lemma 2.1, there exists a t2 ≥ t1 such that (2.2) holds for
t ≥ t2. Now, by integrating Eq. (1.1) from t2 to t and using (A1), we obtain

r (t) x′′ (t)− r (t2) x
′′ (t2) ≤ −

∫

t

t2

p (s)x′ (s) ds−

∫

t

t2

k

n
∑

i=1

qi (s)x (gi (s)) ds.

Integrating by parts, we get

r (t2)x
′′ (t2) + p (t2) x (t2) ≥ r (t)x′′ (t) + p (t)x (t)

+

∫

t

t2

n
∑

i=1

(

kqi (s)− p′ (s)
x (s)

x (gi (s))

)

x (gi (s)) ds,

and so

(2.6) r (t2) x
′′ (t2) + p (t2)x (t2) ≥

∫

t

t2

n
∑

i=1

(

kqi (s)− p′ (s)
x (s)

x (gi (s))

)

x (gi (s)) ds.

Since p′ (t) ≤ 0, x′ (t) > 0 and g (t) ≤ t, (2.6) yields

r (t2) x
′′ (t2) + p (t2)x (t2) ≥

∫

t

t2

n
∑

i=1

(

kqi (s)− p′ (s)
)

x (gi (s)) ds.

From Lemma 2.2, we have

(

r (t2) x
′′ (t2) + p (t2)x (t2)

)

≥
M

2

∫

t

t2

1

s

n
∑

i=1

(

kqi (s)− p′ (s)
)

g2i (s) ds.

Taking the limit of both sides as t→ ∞, we get that
∫ ∞

t2

1

s

n
∑

i=1

(

kqi (s)− p′ (s)
)

g2i (s) ds <∞,

which contradicts assumption (2.5). This completes the proof. ✷
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Theorem 2.2. Assume that p′ (t) ≥ 0 and

(C2) 2k

n
∑

i=1

qi (t)−p
′ (t)

t2

g2
i
(t)

≥ 0 for t ≥ t0 and i = 1, 2, . . . , n.

Let x (t) be solution of Eq. (1.1) satisfying (2.1) for some t1 ∈ [t0,∞). If

(2.7)

∫ ∞

t0

1

s

(

k

n
∑

i=1

qi (s) g
2
i (s)− p′ (s) s2

)

ds = ∞,

then x (t) is oscillatory.

P r o o f. We note that the condition (C2) lead to (C1) . Therefore, from
Lemma 2.1 x (t) satisfies (2.2). Proceeding as in the proof of Theorem 2.1, we
see that (2.6) holds. By Lemma 2.2, we have (2.3) and (2.4) hold and hence

r (t2) x
′′ (t2) + p (t2)x (t2) ≥

∫

t

t2

n
∑

i=1

(

kqi (s)− p′ (s)
s2

g2
i
(s)

)

x (gi (s)) ds.

From (C2), we obtain

(

r (t2)x
′′ (t2) + p (t2)x (t2)

)

≥
M

2

∫

t

t2

n
∑

i=1

(

kqi (s)− p′ (s)
s2

g2
i
(s)

)

g2
i
(s)

s
ds,

so,
∫ ∞

t2

1

s

(

n
∑

i=1

kqi (s) g
2
i (s)− p′ (s) s2

)

ds <∞,

which contradicts (2.7). This completes the proof. ✷

In the following theorem, we extend the results of Lazer [14].

Theorem 2.3. Assume that (C1) hold. Let x (t) be solution of Eq. (1.1)
satisfying (2.1) for some t1 ∈ [t0,∞). If for some m < 1/2, the second-order

differential equation

(2.8)
(

r (t)u′ (t)
)′
+

(

p (t) +
km

t

n
∑

i=1

qi (t) g
2
i (t)

)

u (t) = 0,

is oscillatory, then x (t) is oscillatory.
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P r o o f. Let x be a nonoscillatory solution of Eq. (1.1) with (2.1) for
some t1 ∈ [t0,∞). Without loss of generality, we may assume that there exists
t1 ≥ t0 such that x (t) > 0 and x (gi (t)) > 0 for t ≥ t1, i = 1, 2, . . . , n. From
Lemma 2.1, there exists a t2 ≥ t1such that (2.2) holds for t ≥ t2. Next, We can
write equation (1.1) as the system

u (t) = x′ (t)

u′ (t) = x′′ (t)

(

r (t) u′ (t)
)′

= −p (t) u (t)−

n
∑

i=1

qi (t) f (x (gi (t))) .

The last equation can be written as

(2.9)
(

r (t)u′ (t)
)′
+

(

p (t) +

n
∑

i=1

qi (t)
f (x (gi (t)))

u (t)

)

u (t) = 0.

From Lemma (2.2) and (A1), we see that

p (t) +
n
∑

i=1

qi (t)
f (x (gi (t)))

u (t)
≥ p (t) + k

n
∑

i=1

qi (t)
x (gi (t))

x′ (t)

≥ p (t) + k

n
∑

i=1

qi (t)
g2
i
(t)

t2
x (t)

x′ (t)
.(2.10)

By Lemma (1.1), we have
x (t)

x′ (t)
≥

t

2
for t ≥ t2. Since m < 1/2, there esists a

t3 ≥ t2 such that
x (t)

x′ (t)
≥ mt for t ≥ t3. Hence, (2.8) yields

p (t) +
n
∑

i=1

qi (t)
f (x (gi (t)))

u (t)
≥ p (t) + km

n
∑

i=1

qi (t)
g2
i
(t)

t
.

Since (2.8) is oscillatory, from the Sturm Comparison Theorem, every nontrivial
solution of (2.9) is oscillatory. This contradicts the fact that u (t) = x′ (t) > 0.
This completes the proof. ✷

Example 2.1. Consider the third order delay differential equation

(2.11) x′′′ (t) +
a

t2
x′ (t) +

n
∑

i=1

b

tg2
i
(t)
x (gi (t)) = 0, t ≥ 1,
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where gi are positive delay functions, gi (t) ≤ t for i = 1, 2, . . . , n and a, b are
positive constants such that a < 1/4. To apply Theorem 2.3, we note that k = 1
and the equation (2.8) becomes

(2.12) u′′ (t) +

(

a

t2
+ n

bm

t2

)

u′ (t) = 0.

Applying the Hille-Kneser criterion, we see that equation (2.12) is oscillatory if
a + nbm > 1/4 for some m < 1/2. That is, 2a + nb > 1/2. By Theorem 2.3,
if 2a + nb > 1/2, then we have every solution of Eq. (2.11) satisfying (2.1) is
oscillatory.

Example 2.2. Consider the third order delay differential equation

(2.13)
(

tx′′ (t)
)′
+ x′ (t) +

2

t
x

(

t

2

)(

x2
(

t

2

)

+ 2

)

= 0, t ≥ 1,

We note that n = 1, f (x) = x
(

x2 + 2
)

with k = 2 and the equation (2.8) becomes

(2.14)
(

tu′ (t)
)′
+ (m+ 1) u (t) = 0.

By [6], we see that equation (2.14) is oscillatory. Then, by Theorem 2.3, every
solution of Eq. (2.13) satisfying (2.1) is oscillatory.

3. Oscillation results for equation (1.2). In this section, we es-
tablish some new oscillatory criteria for Eq. (1.2). First, we state and prove some
useful lemmas, which we will use in the proof of our main results.

Lemma 3.1. Suppose that the second-order differential equation

(3.1)
(

r (t) v′ (t)
)′
+ p∗ (t) v (t) = 0

is nonoscillatory. If x is a nonoscillatory solution of Eq. (1.2), then there exists

a t1 ≥ t0 such that either x (t)x′ (t) > 0 or x (t)x′ (t) < 0 for t ≥ t1.

P r o o f. Suppose that x is a nonoscillatory solution of (1.2). Without
loss of generality, we may assume that there exists a t1 ≥ t0 such that x (t) > 0
and x (gi (t)) > 0 for t ≥ t1 and i = 1, 2, . . . , n. We note that w (t) = −x′ (t) is a
solution of the second order nonhomogeneous delay differential equation

(3.2)
(

r (t)w′ (t)
)′
+ φ (t, w (t)) =

n
∑

i=1

qi (t) f (x (gi (t))) .
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Now, we shall prove that all solutions of (3.2) are nonoscillatory. If possible, let
w be an oscillatory solution of (3.2) with consecutive zeros at b and c such that
t1 < b < c, w′ (b) ≥ 0 and w′ (c) ≤ 0. Let v (t) be a solution of (3.1) and v (t) > 0
for t ≥ t1. The case when v (t) is ultimately negative can similarly be deal with.
From (1.2), (3.1) and (A2) we obtain

v (t)
n
∑

i=1

qi (t) f (x (gi (t))) = v (t)
[

−
(

r (t) x′′ (t)
)′
− φ

(

t, x′ (t)
)

]

≤
(

r (t)w′ (t)
)′
v (t) + p∗ (t)w (t) v (t)

=
(

r (t)w′ (t)
)′
v (t)−

(

r (t) v′ (t)
)′
w (t)

=
[

r (t)w′ (t) v (t)− r (t) v′ (t)w (t)
]′
.(3.3)

By integrating (3.3) from b to c, we get a contradiction. This contradiction
completes the proof. ✷

Lemma 3.2. Let x (t) be an eventually positive solution of the equation

(1.2) such that x (t)x′ (t) > 0 eventually. Then there exists a t1 ≥ t0 such that

(3.4) x′ (t) > 0, x′′ (t) > 0 and
(

r (t) x′′ (t)
)′
≤ 0,

for t ≥ t1.

The proof of this lemma is similar to that of the proof of Lemma 1 of
Skerlik [16], and hence is omitted.

Lemma 3.3. Let x (t) be an eventually positive solution of the equation

(1.2) such that x (t)x′ (t) < 0 eventually. If

(C3) k
n
∑

i=1

qi (s)− p′∗ (s) ≥ 0 for t ≥ t0 and is not identically zero in any

subinterval of [t0,∞) , and

∫ ∞

t0

(

k

n
∑

i=1

qi (s)− p′∗ (s)

)

ds = ∞,

then x (t) is converges to zero as t→ ∞.

P r o o f. Assume that x (t) be an eventually positive solution of the
equation (1.2) such that x′ (t) < 0 eventually. Thus, there exists t1 ≥ t0 such
that x (t) > 0 and x′ (t) < 0 for t ≥ t1, and hence,

lim
t→∞

x (t) = σ ≥ 0.
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Now. We shall prove that σ = 0. If σ > 0, then we have x (t) ≥ σ for t enough
large. By integrating Eq. (1.2) from t1 to t and using (A2), we obtain

r (t)x′′ (t) ≤M − p∗ (t) x (t) +

∫

t

t1

p′∗ (s)x (s) ds−

∫

t

t1

n
∑

i=1

qi (s) f (x (gi (s))) ds,

where M = r (t1)x
′′ (t1) + p∗ (t1)x (t1). From (A1), we get

r (t) x′′ (t) ≤M −

∫

t

t1

(

k

n
∑

i=1

qi (s)
x (gi (s))

x (s)
− p′∗ (s)

)

x (s) ds.

Since x′ (t) < 0 and g (t) < t, we see that

r (t) x′′ (t) ≤M − σ

∫

t

t1

(

k

n
∑

i=1

qi (s)− p′∗ (s)

)

ds.

From (C3), we have lim
t→∞

r (t) x′′ (t) = −∞. Hence, there exists δ < 0 such that

r (t) x′′ (t) ≤ δ for large t and so x′′ (t) < 0 for large t. But x′′ (t) < 0 and
x′ (t) < 0 eventually imply x (t) < 0 for t ≥ t1. This contradiction completes the
proof. ✷

The next theorems is obtained by using Riccati transformation technique.

Theorem 3.1. Assume that r′ (t) > 0, (C3) holds and the second-order

differential equation (3.1) is nonoscillatory. If there exists a positive function

ρ (t) such that for T > t0

(3.5)

∫ ∞

T

(

k
ρ (s)

s2

n
∑

i=1

qi (s) g
2
i (s)−

[ρ′ (s) r (s)− (s− t0) ρ (s) p∗ (s)]
2

4 (s− t0) ρ (s) r (s)

)

ds = ∞,

then every solution of Eq. (1.2) is either oscillatory or tends to zero as t→ ∞.

P r o o f. Let x be a nonoscillatory solution of Eq. (1.2). Without loss
of generality, we may assume that there exists t1 ≥ t0 such that x (t) > 0 and
x (gi (t)) > 0 for t ≥ t1, i = 1, 2, . . . , n. Hence, from Lemma 3.1, there exists a
t2 ≥ t1 such that x′ (t) > 0 or x′ (t) < 0 for t ≥ t2. If x′ (t) < 0, by Lemma 2.5,
we get that lim

t→∞
x (t) = 0.

Next, Let x′ (t) > 0 for t ≥ t2. By Lemma 3.2, we see that (3.4) holds for
t ≥ t2. Since r

′ (t) > 0, we have

(3.6) x′′′ (t) < 0,
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and so,

(3.7) x′ (t) ≥

∫

t

t2

x′′ (s) ds ≥ x′′ (t) (t− t2) .

We define

ω (t) = ρ (t)
r (t) x′′ (t)

x (t)
.

Then ω (t) > 0, and

ω′ (t) =
ρ′ (t)

ρ (t)
ω (t) + ρ (t)

(r (t)x′′ (t))′

x (t)
− ρ (t)

r (t)x′′ (t)

x2 (t)
x′ (t) .

By using (1.2), (A1) and (A2), we obtain

ω′ (t) ≤
ρ′ (t)

ρ (t)
ω (t)− ρ (t) p∗ (t)

x′ (t)

x (t)
− kρ (t)

n
∑

i=1

qi (t)
x (gi (t))

x (t)

−ρ (t)
r (t)x′′ (t)

x2 (t)
x′ (t) .(3.8)

Now, from Lemma 1.1, (3.4), we have

x′ (t)

x (t)
≤

2

t
,

for t ≥ t2. Integrating this inequality from gi (t) to t, we see that

x (gi (t))

x (t)
≥ 0,

which with (3.7) and (3.8) gives

ω′ (t) ≤ −k
ρ (t)

t2

n
∑

i=1

qi (t) g
2
i (t) +

(

ρ′ (t)

ρ (t)
− (t− t2)

p∗ (t)

r (t)

)

ω (t)

−
(t− t2)

ρ (t) r (t)
ω2 (t) .

This implies that

(3.9) ω′ (t) ≤ −k
ρ (t)

t2

n
∑

i=1

qi (t) g
2
i (t) +

[ρ′ (t) r (t)− (t− t2) ρ (t) p∗ (t)]
2

4 (t− t2) ρ (t) r (t)
.
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Integrating (3.9) from t3 to t, we have,

∫

t

t3

(

k
ρ (s)

s2

n
∑

i=1

qi (s) g
2
i (s)−

[ρ′ (s) r (s)− (s− t2) ρ (s) p∗ (s)]
2

4 (s− t2) ρ (s) r (s)

)

ds < ω (t2) ,

where t3 > t2, which contradicts (3.5). This completes the proof. ✷

Theorem 3.2. Assume that r′ (t) > 0, (C3) holds and the second-order

differential equation (3.1) is nonoscillatory. If there exists a positive function

ρ (t) such that

(3.10)

∫ ∞

t0

(

ρ (s)

(

p∗ (s) + kl
g2 (s)

2s

n
∑

i=1

qi (s)

)

−
r (s) (ρ′ (s))2

4ρ (s)

)

ds = ∞,

where g (t) = min {gi (t) : i = 1, 2, . . . , n} and l ∈ (0, 1) arbitrarily chosen, then

every solution of Eq. (1.2) is either oscillatory or tends to zero as t→ ∞.

P r o o f. Proceeding as in the proof of Theorem 3.1, we see that (3.6)
holds for t ≥ t2. Thus, by Lemma 1.2 with u (t) = x′ (t), we have for l ∈ (0, 1)

(3.11)
1

x′ (t)
≥ l

g (t)

t

1

x′ (g (t))
.

Using Lemma 1.1, (3.4) and (3.11), we obtain

x (gi (t))

x′ (t)
≥
x (g (t))

x′ (t)
≥ l

g2 (t)

2t
.

Next, we define

ω (t) = ρ (t)
r (t) x′′ (t)

x′ (t)
.

The rest of the proof runs as in Theorem 3.1. The proof is complete. ✷

Theorem 3.3. Assume that (C3) holds and the second-order differential

equation (3.1) is nonoscillatory. If there exists a positive function ρ (t) such that

(3.12)

∫ ∞

t0

(

kρ (s)

n
∑

i=1

qi (s)−
[ρ′ (s)− ρ (s) p∗ (s)Rt0 (g (s))]

2

4ρ (s)Rt0 (g (s)) g
′ (s)

)

ds = ∞,

where Ru (t) =

∫

t

u

r−1 (s) ds, u ≥ t0 and g (t) = min {gi (t) : i = 1, 2, . . . , n} ,

then every solution of Eq. (1.2) is either oscillatory or tends to zero as t→ ∞.
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P r o o f. Let x be a nonoscillatory solution of Eq. (1.2). Let, without
loss of generality, that there exists t1 ≥ t0 such that x (t) > 0 for t ≥ t1. By
Lemma 3.1, there exists a t2 ≥ t1 such that x′ (t) > 0 or x′ (t) < 0 for t ≥ t2.
If x′ (t) < 0, from Lemma 2.5, we get that lim

t→∞
x (t) = 0. Next, assume that

x′ (t) > 0. Then, by Lemma 3.2, we see that (3.4) holds for t ≥ t2. Thus, we get

x′ (t) = x′ (t2) +

∫

t

t2

r (s)x′′ (s)

r (s)
ds

≥
[

r (t)x′′ (t)
]

Rt2 (t) .

Since g (t) ≤ gi (t) ≤ t and
(

r (t) x′′ (t)
)′
≤ 0 for i = 1, 2, . . . , n, t ≥ t2, we obtain

(3.13) x′ (t) ≥ x′ (g (t)) ≥
[

r (t)x′′ (t)
]

Rt2 (g (t)) .

Now, we define

ω (t) = ρ (t)
r (t) x′′ (t)

x (g (t))
.

By using Eq. (1.2) and (3.13), we have

ω′ (t) ≤ −kρ (t)
n
∑

i=1

qi (t) +

(

ρ′ (t)

ρ (t)
− p∗ (t)Rt2 (g (t))

)

ω (t)

−
Rt2 (g (t)) g

′ (t)

ρ (t)
ω2 (t) .(3.14)

The rest of the proof is the same in Theorem 3.1, and hence, is omitted. ✷

In the following, we present some new oscillation results for Eq. (1.2),
by using an integral averages condition of Philos-type [15]. First, we introduce a
class of functions ℑ. Let

D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) : t ≥ s ≥ t0} .

A kernel function H ∈ C (D,R) is said to belong to the function class ℑ, written
by H ∈ ℑ, if

(i) H (t, t) = 0 for t ≥ t0 and H (t, s) > 0 on D0.

(ii) H (t, s) has a continuous and nonpositive partial derivative ∂H/∂s on D0

such that the condition

−
∂H (t, s)

∂s
= h (t, s)

√

H (t, s) for (t, s) ∈ D0

is satisfied for some h ∈ C (D,R).
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Theorem 3.4. Assume that (C3) holds and the second-order differential

equation (3.1) is nonoscillatory. If there exist functions H ∈ ℑ and ρ ∈ C (t0,∞)
such that

(3.15) lim sup
t→∞

1

H (t, t0)

∫

t

t0

H (t, s)

(

Θ(s)−
Q2 (t, s)

η (s)

)

ds = ∞,

where

Θ(t) = kρ (t)

n
∑

i=1

qi (t) , η (t) =
Rt2 (g (t)) g

′ (t)

ρ (t)

and

Q (t, s) =
ρ′ (t)

ρ (t)
− p∗ (t)Rt0 (g (t))−

h (t, s)
√

H (t, s)
,

then every solution of Eq. (1.2) is either oscillatory or tends to zero as t→ ∞.

P r o o f. Proceeding as in the proof of Theorem 3.3, we see that (3.14)
holds for t ≥ t2. Thus, we have

(3.16) ω′ (t) ≤ −Θ(t) + λ (t)ω (t)− η (t)ω2 (t) ,

where

λ (t) =
ρ′ (t)

ρ (t)
− p∗ (t)Rt2 (g (t)) .

Multiplying (3.16) by H (t, s) and integrating from t2 to t, we get

∫

t

t2

H (t, s)Θ (s) ds ≤ −

∫

t

t2

H (t, s)ω′ (s) ds+

∫

t

t2

H (t, s)λ (s)ω (s) ds

−

∫

t

t2

H (t, s) η (s)ω2 (s) ds

≤ H (t, t2)ω (t2) +

∫

t

t2

H (t, s)

(

λ (s)−
h (t, s)
√

H (t, s)

)

ω (s) ds

−

∫

t

t2

H (t, s) η (s)ω2 (s) ds,

and hence,

∫

t

t2

H (t, s)Θ (s) ds ≤ H (t, t2)ω (t2)−

∫

t

t2

H (t, s)
(

η (s)ω2 (s)−Q (t, s)ω (s)
)

ds.
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It follows that

(3.17)
1

H (t, t2)

∫

t

t2

H (t, s)

(

Θ(s)−
Q2 (t, s)

4η (s)

)

≤ ω (t2)−
1

H (t, t2)

∫

t

t2

H (t, s) η (s)

(

ω (s)−
Q (t, s)

2η (s)

)2

ds.

This implies

1

H (t, t2)

∫

t

t2

H (t, s)

(

Θ(s)−
Q2 (t, s)

η (s)

)

ds ≤ ω (t2) ,

which contradicts (3.15). This completes the proof. ✷

The following oscillation criteria treat the cases when it is not possible to
verify easily conditions (3.15).

Theorem 3.5. Assume that (C3) holds, the second-order differential equa-
tion (3.1) is nonoscillatory and let

(3.18) 0 < inf
s≥T

[

lim inf
t→∞

H (t, s)

H (t, T )

]

≤ ∞

and

(3.19) lim sup
t→∞

1

H (t, t2)

∫

t

t2

H (t, s)
Q2 (t, s)

η (s)
ds <∞.

If there exists ψ ∈ C ([t0,∞) ,R) such that for t ≥ T

(3.20) lim sup
t→∞

∫

t

t0

η (s)ψ2
+ (s) ds

and

(3.21) lim sup
t→∞

1

H (t, T )

∫

t

T

H (t, s)

(

Θ(s)−
Q2 (t, s)

4η (s)

)

ds ≥ sup
t≥T

ψ (t) ,

where ψ+ (t) = max {ψ (t) , 0}, then every solution of Eq. (1.2) is either oscilla-

tory or tends to zero as t→ ∞.
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P r o o f. As in the proof of Theorem 3.4, we get that (3.17) holds for
t ≥ t2. Then, we have

lim sup
t→∞

1

H (t, t2)

∫

t

t2

H (t, s)

(

Θ(s)−
Q2 (t, s)

4η (s)

)

≤ ω (t2)− lim inf
t→∞

1

H (t, t2)

∫

t

t2

H (t, s) η (s)

(

ω (s)−
Q (t, s)

2η (s)

)2

ds.

From (3.21), we obtain

0 ≤ lim inf
t→∞

1

H (t, t2)

∫

t

t2

H (t, s) η (s)

(

ω (s)−
Q (t, s)

2η (s)

)2

ds

≤ ω (t2)− ψ (t2) <∞.(3.22)

Now, we define the functions

Φ (t) =
1

H (t, t2)

∫

t

t2

H (t, s) η (s)ω2 (s) ds,

Ψ(t) =
1

H (t, t2)

∫

t

t2

H (t, s)Q (t, s)ω (s) ds.

So that (3.22) implies that

lim inf
t→∞

(Φ (t)−Ψ(t)) <∞.

The remainder of the proof is similar to the proof of Theorem 5.2 in [7] or [9] and
hence is omitted. ✷

Remark 3.1. Consider Example 2.1, if n = 1. This implies that a
sufficient condition for the oscillation of (2.12) is 2a + b > 1/2. On the other
hand, if we choose k = 1, ρ ∈ C ([t0,∞)) and ρ (t) = t, then equation (3.1)
becomes

(3.23) v′′ (t) +
a

t2
v (t) = 0.

Apply Theorem 3.2, it is clear that (C3) is satisfied and the Euler equation (3.23)
is nonoscillatory. Since l < 1, we see that condition (3.10) becomes 2a+ b > 1/2.
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