Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

ON n-HOMOGENEOUS C^{*}-ALGEBRAS OVER TWO-DIMENSIONAL NON-ORIENTED COMPACT MANIFOLDS

Mikhail Shchukin
Communicated by I. G. Todorov

Abstract

We consider algebraic bundles over two-dimensional compact non-oriented connected manifold. Every non-oriented compact manifold can be realized as sphere S^{2} with k projective planes on it. Let P^{k} be the sphere S^{2} with k projective planes. Let ζ be algebraic bundle over P^{k} with fiber $\operatorname{Mat}(n)$. If $n=2 m+1$ then the bundle ζ is trivial. If $n=2 m$ then there are two non-isomorphic algebraic bundles over P^{k} with fiber $\operatorname{Mat}(n)$. J. Fell, J. Tomiyama, M. Takesaki showed in 1961 the correspondence between the classes of algebraic bundles and n-homogeneous C^{*}-algebras. Hence we can classify non-isomorphic n-homogeneous C^{*}-algebras over P^{k}.

1. Introduction. Let A be a n-homogeneous C^{*}-algebra. The " n homogeneous" means that all its irreducible representations are n-dimensional. Suppose that the space of primitive ideals of the algebra A be a two-dimensional

[^0]compact non-oriented manifold. J. Fell [3], I. Tomiyama and M. Takesaki [7] described any n-homogeneous C^{*}-algebra as algebra of all continuous sections $\Gamma(\zeta)$ for appropriate algebraic bundle ζ.

Suppose A_{1} and A_{2} are n-homogeneous C^{*}-algebras. Let $f: A_{1} \rightarrow A_{2}$ be a continuous bijection such that $f(a \cdot b)=f(a) \cdot f(b)$ and $f\left(a^{*}\right)=f(a)^{*}$. In this case, two algebras A_{1} and A_{2} are called isomorphic.
F. Krauss and T. Lawson [4] described the class of algebraic bundles over the toruses T^{2} and T^{3}.

In present work we described the classes of algebraic bundles over the two-dimensional non-oriented manifolds in the hull-kernel topology.

It is well known that every compact non-oriented two-dimensional connected manifold is homeomorphic to the connected sum P^{l} of l projective planes [5]. In particular, the projective plane P is two-dimensional non-oriented manifold.

A triple $(E ; B ; p)$ is called bundle, where E and B are topological spaces, $p: E \rightarrow B$ is a continuous surjection. The surjection p is called projection. The set $F_{x}=p^{-1}(x)$ is called fiber over the point $x \in B$. We may assume that the fiber F_{x} is homeomorphic to F_{y} for any $x, y \in B$. Note that a triple $(B \times F, B, p)$ is the bundle, where B and F are topological spaces, $p:(x, y) \rightarrow x$, where $x \in B, y \in F$.

The bundle (E, B, p) is called locally trivial with a fiber F, if each point of B has a neighbourhood U such that the bundle E over U is trivial. This means that there exists a homeomorphism $\phi: p^{-1}(U) \rightarrow U \times F$, which commute with the projections. In this case, each fiber is homeomorphic to the model fiber F.

Let U_{j} be an open covering of B such that the restrictions of the bundle E on U_{j} are trivial bundles and let ϕ_{j} be the corresponding homeomorphisms. Then the mapping $\phi_{j, i}=\phi_{j} \circ\left(\phi_{i}\right)^{-1}$ is well defined on $\left(U_{j} \cap U_{i}\right) \times F$ and $\phi_{j, i}(x, y)=$ $\left(\alpha(x), g_{x}(y)\right), y \in F$, where g_{x} are the homeomorphisms of the fiber $F, \alpha(x) \in$ $U_{j} \cap U_{i}$. Suppose the homeomorphisms g_{x} are belong to a topological subgroup G of the group of all homeomorphisms of the space F. The group G is called the structure group of the bundle. A locally trivial G-bundle (E, B, p) is called algebraic bundle, if the fiber $F=\operatorname{Mat}(n)$ and the structure group $G=\operatorname{Aut}(n)$. Here $\operatorname{Mat}(n)$ is the algebra of square matrices of order n over the complex field C. $\operatorname{Aut}(n)$ denotes the group of automorphisms for the algebra. Two algebraic bundles $\zeta_{1}=\left(E_{1}, B_{1}, p_{1}\right)$ and $\zeta_{2}=\left(E_{2}, B_{2}, p_{2}\right)$ are called isomorphic if there is a homeomorphism $\gamma: E_{1} \rightarrow E_{2}$ such that $\gamma\left(F_{x}\right)=F_{\alpha(x)}, \gamma\left(B_{1}\right)=B_{2}$. Here $\alpha: B_{1} \rightarrow B_{2}$ is a homeomorphism; F_{x} denotes the fiber over the point $x \in B_{1}$; $F_{\alpha(x)}$ denotes the fiber over the point $\alpha(x) \in B_{2}$.

Let $\beta: B \rightarrow E$ be a continuous mapping such that $p \circ \beta=\mathrm{Id}$. In this case, the mapping β is called continuous section of the bundle (E, B, p). Let $\Gamma(E)$ be the algebra of all continuous sections of the bundle. Every n-homogeneous C^{*} algebra is isomorphic to the algebra $\Gamma(E)$ for the appropriate algebraic bundle $(E, B, p)([3],[7])$.

2. Algebraic bundles over two-dimensional non-oriented

 compact connected maniolds. Suppose S^{2} be the 2 -sphere. Let us identify the opposite points of the sphere S^{2}. Suppose P be the corresponded factorspace. We say that the space P is the real projective plane. Suppose the space B is homeomorphic to the space P. In this case, we say that B is the projective plane too.Further, let us construct a connected sum of two surfaces. Suppose S_{1} and S_{2} be two surfaces such that $S_{1} \cap S_{2}$ is empty. Let us cut out two small open disks D_{1} and D_{2} from S_{1} and S_{2} correspondingly. Gluing together the borders $\delta\left(D_{1}\right)$ with $\delta\left(D_{2}\right)$ from the surfaces $S_{1} \backslash D_{1}$ and $S_{2} \backslash D_{2}$, we obtain the surface $S_{1} \sharp S_{2}$. The surface $S_{1} \sharp S_{2}$ is called the connected sum of the surfaces S_{1} and S_{2}.

Proposition 2.1 ([5]). Let L denotes a non-oriented connected compact 2-dimensional manifold. The manifold L is homeomorphic to a connected sum of projective planes.

Let P^{l} be a sphere S^{2} with l projective planes. The set P^{0} is the sphere S^{2}. Therefore we suppose that $l \geq 1$. First, consider an algebraic bundle $\zeta=$ $\left(E, P^{l}, p\right)$. Suppose the fiber $F=\operatorname{Mat}(n)$. Let $D \subset P^{l}$ is homeomorphic to the open unit disk D_{1}. Cut out the set D from the set P^{l}. The set $P^{1} \backslash D$ is homeomorphic to the cross cap M. The cross cap has homotopic class of a connected sum of two circles with one common point. This connected sum of two circles could be considered as a subset of the plane R^{2}. Therefore every algebraic bundle over M is trivial [1]. Further, represent the algebraic bundle ζ as a cluing of two bundles $\zeta / P^{1} \backslash D \underset{\nu_{12}}{\cup} \zeta / \bar{D}$. Here $\zeta / P^{1} \backslash D$ denotes the restriction of the bundle ζ to the set $P^{1} \backslash D ; \zeta / \bar{D}$ denotes the restriction of the bundle ζ to the set $\bar{D} ; \nu_{12}=\nu_{2}^{-1} \nu_{1}$ is the function of cluing generated by a mapping $\gamma_{12}^{1} \in C\left(S^{1} ; \operatorname{Aut}(n)\right)$. The restriction $\zeta / P^{1} \backslash D$ of the bundle ζ to the set $P^{1} \backslash D$ is trivial; the mapping $\nu_{1}: \zeta /{ }_{P^{1} \backslash D} \rightarrow\left(P^{1} \backslash D\right) \times \operatorname{Mat}(n)$ is a trivialization. Similarly, the restriction $\zeta /_{\bar{D}}$ is trivial; the mapping $\nu_{2}: \zeta_{\bar{D}} \rightarrow \bar{D} \times \operatorname{Mat}(n)$ is corresponded trivialization.

By construction, let the cross cap M is realized as the unit square I^{2} with conditions on its border: $u(0 ; y)=u(1 ; 1-y)$.

Suppose the mapping $\theta: \pi_{1}(\operatorname{Aut}(n)) \rightarrow Z / n Z$ be the isomorphism of groups. Now we need the next lemma.

Lemma 2.2. The mapping $f \in C(\delta M, \operatorname{Aut}(n))$ has a continuous extension $f_{1} \in C(M, \operatorname{Aut}(n))$ if and only if $\theta([f])=2 s, s \in Z$.

Proof. Let $f: \delta M \rightarrow \operatorname{Aut}(n)$ be a mapping such that $\theta([f])=2 s, s \in Z$. Let x_{0} be a point of I such that $\theta\left(f /_{\left[0, x_{0}\right] \times 1}\right)=s$. Let $\alpha: M \rightarrow M$ be a homeomorphism such that $\alpha\left(x_{0} ; 1\right)=(1 ; 1)$. We may assume that the mapping α is already used for the cross cap M. This yields that $\theta([f / I \times 1])=\theta([f / I \times 0])=s$.

Let $f_{2}(1 ; 1)$ be a representative of the class $f(1 ; 1) \in \operatorname{Aut}(n)$. Let $a \in C \backslash 0$ be the determinant of $f_{2}(1 ; 1)$. Let $f^{1}(x, y)$ be a mapping $f(x ; y) \cdot f_{2}^{-1}(0 ; 1)$. Hence $f^{1}(0 ; 1)=f(1 ; 0)=I$. Therefore it can be assumed that $f(0 ; 1)=f(1 ; 0)=I$.

Let $S_{1}(x ; y)$ be a function such that $S_{1}(x, y)=1+x(a-1)$, ifa $>$ $0 ; S_{1}(x, y)=1+x(|a|-1) \exp (\pi i x(6-6 y))$, ifa<0; $(x \in I, y \in[5 / 6 ; 1])$. Therefore $S_{1}(0 ; y)=1, y \in[5 / 6 ; 1]$ and $S_{1}(1 ; 5 / 6)=a, S_{1}(x ; y) \neq 0, x \in[0 ; 1], y \in$ $[5 / 6 ; 1]$. Let $f_{1}(x ; y)$ be a mapping $f(x ; y) / S_{1}(x ; y), x \in[0 ; 1], y \in[5 / 6 ; 1]$. Thus $f_{1}(0 ; 5 / 6)=I$. Let $\operatorname{det} f_{1}(1 ; 5 / 6)$ be a determinant for a representative of the class $f_{1}(1 ; 5 / 6) \in \operatorname{Aut}(n)$. Therefore $\operatorname{det} f_{1}(1 ; 5 / 6)=1$. Let $f_{1,2}(1 ; 5 / 6)$ be a representative for the class $f_{1}(1 ; 5 / 6) \in \operatorname{Aut}(n)$. Let $p(t)$ be a path in $S L_{n}(C)$ such that $p(0)=I, p(1)=f_{1,2}(1 ; 5 / 6)$.

To each point

$$
(x ; y) \in\left[\left[0,1-\sqrt{1 / 36-(y-2 / 3)^{2}}\right] ;[2 / 3,5 / 6]\right]
$$

assign $f_{1}(x ; y)=f_{1}\left(x /\left(1-\sqrt{1 / 36-(y-2 / 3)^{2}}\right) ; y\right)$. To each point $(x ; y)$ such that $\sqrt{(x-1)^{2}+(y-2 / 3)^{2}} \leq 1 / 6$ assign $f_{1}(x ; y)=p^{*}\left(6 \sqrt{(x-1)^{2}+(y-2 / 3)^{2}}\right)$. Therefore $f_{1}(0 ; 2 / 3)=I=f_{1}(1 ; 2 / 3)$. Let $T(\exp (2 \pi i s x) I)$ be the appropriate class in the group $\operatorname{Aut}(n)$ for each $x \in[0 ; 1]$. Let $\Gamma(t)$ be a homotopy between $f_{1} /_{(I \times 2 / 3)}$ and $T(\exp (2 \pi i s x) I), x \in[0 ; 1]$. Notice that $\left[f_{1} /_{(I \times 2 / 3)}\right]=$ $[\exp (2 \pi i s x)]=\theta^{-1}(s)$. This means that

$$
\Gamma(0)=f_{1} /(I \times 2 / 3), \Gamma(1)=T(\exp (2 \pi i s x) I), \Gamma(t) \in \operatorname{Aut}(n), t \in[0 ; 1]
$$

For each point $(x ; y) \in I \times[1 / 2 ; 2 / 3]$ assign $f_{1}(x ; y)=\Gamma(-6 y+4)$. Therefore $f_{1} /(I \times 1 / 2)=T(\exp (2 \pi i s x) I)$. In the same way, we extend f_{1} to the lower half of the square.

Conversely, let we have a mapping $f_{1} \in C(M, \operatorname{Aut}(n))$. It can be shown in the usual way that the middle line of a cross cap is the circle S^{1} but with two movings on it. Let us construct a homotopy $\Gamma(t)$ between $f_{1} / \delta M$ and the restriction of f_{1} to the middle line on the cross cap. For each point $(x ; y) \in$ $I \times[1 / 2 ; 1]$ assign $\Gamma(t)=f_{1}(x ; 1-t / 2)$. In the same way, for each point $(x ; y) \in$ $I \times[0 ; 1 / 2]$ assign $\Gamma(t)=f_{1}(x ; t / 2)$. Let $S=\theta\left(\left[f_{1} /(I \times 1 / 2)\right]\right)$. Hence $\theta\left(\left[f_{1} / \delta M\right]\right)=$
$2 \theta\left(\left[f_{1} /_{(I \times 1 / 2)}\right]\right)=2 s,\left(f_{1}(0 ; 1 / 2)=f_{1}(1 ; 1 / 2)\right)$. This concludes the proof of the lemma.

Let P_{k} be a sphere S^{2} with k handles. Hence P_{k} is a oriented twodimensional manifold.

Lemma 2.3. Let S^{1} be a border $\delta\left(P_{k} \backslash D\right)$ for the set $\left.P_{k} \backslash D\right)$. Let f : $S^{1} \rightarrow \operatorname{Aut}(n)$ be a continuous mapping. Let $[f]$ be a class of f in $\pi_{1}(\operatorname{Aut}(n))$. There is a extension for f to a continuous mapping $f^{*}: P_{k} \backslash D \rightarrow \operatorname{Aut}(n)$ if and only if $\theta([f])=0$.

Lemma 2.4. A mapping $f \in C\left(\delta\left(P^{k} \backslash M\right)\right.$, Aut $\left.(n)\right)(k \geq 2)$ has an extension $f_{1} \in C\left(P^{k} \backslash M, \operatorname{Aut}(n)\right)$ if and only if $\theta([f])=2 s, s \in Z$. If $k=1$ then the equality $\theta([f])=0$ should has a place

Proof. The proof is by induction on k.

1. Let k be 1. In this case, $P^{1} \backslash M$ is homeomorphic to $P^{1} \backslash D$. By using the Lemma 2.3, we obtain the statement.

Let k be 2. The space $P^{2} \backslash M=M_{1}$ is homeomorphic to the cross cap M. By using the Lemma 2.2, we obtain that the mapping $f \in C\left(\delta\left(P^{2} \backslash M\right)\right.$, Aut $\left.(n)\right)$ has an extension $f \in C\left(M_{1}, \operatorname{Aut}(n)\right)$.

The induction hypothesis. Suppose the lemma is true for all $k \leq m$.
The step of induction. Let ζ denote an algebraic bundle over P^{m+1}. Let M_{1} be a projective plane on $P^{m+1} \backslash M$. Denote by L_{1} the set $\delta\left(M_{1}\right) \bigcap\left(P^{m+1} \backslash M\right)$. The set L_{1} is homeomorphic to the unit interval I. Therefore $P^{m+1} \backslash M=$ $\left(P^{m} \backslash M_{1}\right) \bigcup M_{2}$, where M_{2} is homeomorphic to the cross cap and $\left(P^{m} \backslash M_{1}\right) \bigcap M_{2}=L_{1}$.

Let $f \in C(\delta M \rightarrow \operatorname{Aut}(n))\left(\delta M=S^{1}\right)$ is a continuous mapping. Suppose f has an extension to $f_{1} \in C\left(\left(P^{m+1} \backslash M\right)\right.$, $\left.\operatorname{Aut}(n)\right)$. Therefore $\theta\left(\left[f_{1} /\left(S_{1} \cup L_{1}\right)\right]\right)=$ $2 s, \theta\left(\left[f_{1} /\left(S_{2} \cup L_{1}\right)\right]\right)=2 r$ and $\theta\left(\left[f / \delta_{M}\right]\right)=\theta\left(f_{1} /_{\left(S_{1} \cup L_{1}\right)}\right)+\theta\left(\left[f_{1} /\left(S_{2} \cup L_{1}\right)\right]\right)=2 s+$ $2 r=2(s+r)$.

Conversely, suppose $\theta([f / \delta M])=2 s$. Suppose $L_{1}(t), S_{1}(t)$ be parametrizations for L_{1} and S_{1} for $t \in[0 ; 1]$. Define $f_{1}\left(L_{1}(t)\right)=f\left(S_{1}(t)\right)$ for each $t \in[0 ; 1]$. Hence $\theta\left(f_{1} /_{\left(S_{1} \cup L_{1}\right)}\right)=0, \theta\left(f /_{\left(S_{1} \cup L_{1}\right)}\right)=2 s$. It follows that there is an extension for f_{1} to $P^{m+1} \backslash\left(M \cup M_{1}\right)$ and M_{1} by Lemma 2.2 and induction hypothesis. This completes the proof.

Theorem 2.5. Let ζ_{1} and ζ_{2} are algebraic bundles over $P^{k}(k \geq 1)$. The bundles ζ_{1} and ζ_{2} are isomorphic if and only if $\theta\left(\left[f_{1} / \delta M\right]\right) \pm \theta\left(\left[f_{2} / \delta M\right]\right)=2 s$, $s \in Z$.

Proof. Let $\gamma: \zeta_{1} \rightarrow \zeta_{2}$ be isomorphism. It generates an homeomorphism $\alpha: P^{k} \rightarrow P^{k}$ for the bases of bundles ζ_{1} and ζ_{2}. Cut out the cross cap M from P^{k}. Let $\nu_{12}=u_{2}^{-1} u_{1}$ be a function of cluing for the bundle ζ_{1} over $\left(P^{k} \backslash M\right) \cup \bar{M}$. Let $\mu_{12}=v_{2}^{-1} v_{1}$ be a function of cluing for the bundle ζ_{2} over $\left(P^{k} \backslash \alpha(M)\right) \cup \alpha(\bar{M}), u_{1}: \zeta_{1} /\left(P^{k} \backslash M\right) \rightarrow\left(P^{k} \backslash M\right) \times \operatorname{Mat}(n), u_{2}: \zeta_{1} /(\bar{M}) \rightarrow$ $(\bar{M}) \times \operatorname{Mat}(n), v_{1}: \zeta_{2} /\left(P^{k} \backslash \alpha(M)\right) \rightarrow\left(P^{k} \backslash \alpha(M)\right) \times \operatorname{Mat}(n), v_{2}: \zeta_{2} /(\alpha(\bar{M})) \rightarrow$ $(\alpha(\bar{M})) \times \operatorname{Mat}(n)$.

Let $\beta: P^{k} \rightarrow P^{k}$ be a homeomorphism such that $\alpha(\bar{M})=\bar{M}$ and the orientation of $\alpha(\delta(\bar{M})) \cong S^{1}$ is not changed. We have $\beta(\bar{M})=\bar{M}$ and $\beta\left(P^{k} \backslash M\right)=P^{k} \backslash M$.

Denote by β_{1} the extension of β to an isomorphism of trivial bundles $\beta_{1}: \zeta_{2} /{ }_{\left(P^{k} \backslash \alpha(\bar{M})\right)} \rightarrow \zeta_{2} /_{\left(P^{k} \backslash \bar{M}\right)}$. Define by β_{2} the extension of β to an isomorphism $\beta_{2}: \zeta_{2} /{ }_{\alpha(\bar{M})} \rightarrow \zeta_{2} / \bar{M}$ of trivial bundles.

Define the mapping $\mu_{12} *: \zeta_{2} / \delta\left(P^{k} \backslash M\right) \rightarrow \zeta_{2} / \delta(\bar{M})$ such that the next diagram is commutative: $\left(\begin{array}{clc}\zeta_{2} /\left(P^{k} \backslash \alpha(M)\right) & \rightarrow^{\mu_{12}} & \zeta_{2} /(\alpha(\bar{M})) \\ \downarrow \beta_{1} & & \downarrow \beta_{2} \\ \zeta_{2} /\left(P^{k} \backslash M\right) & \rightarrow^{\mu_{12} *} & \zeta_{2} / \bar{M}\end{array}\right)$

It follows that the bundle $\beta_{1}\left(\zeta_{2} /\left(P^{k} \backslash \alpha(M)\right)\right) \underset{\mu_{12} *}{\cup} \beta_{2}\left(\zeta_{2} / \alpha(\bar{M})\right)$ is isomorphic to the bundle ζ_{2}. Denote by β_{3} this isomorphism.

The isomorphism $\beta_{3} \circ \gamma: \zeta_{1} \rightarrow \zeta_{2}$ generates an homeomorphism $\beta \circ \alpha$: $P^{k} \rightarrow P^{k}$ such that $\beta \circ \alpha(\delta(\bar{M}))=\delta(\bar{M})$. The restriction of the bundle ζ_{1} to the set $P^{k} \backslash M$ is trivial. Hence the isomorphism $\beta_{3} \circ \gamma$ generates a mapping $\beta_{5} \in$ $C\left(P^{k} \backslash M, \operatorname{Aut}(n)\right)$. For each fiber F_{x} we have $\beta_{5}(x)\left(F_{x}\right)=\beta_{3} \circ \gamma\left(F_{x}\right), x \in P^{k} \backslash M$. For each $x \in \bar{M}$ the isomorphism $\beta_{3} \circ \gamma$ generates a mapping $\beta_{6} \in C(\bar{M}, \operatorname{Aut}(n))$. For each fiber F_{x} we have $\beta_{6}(x)\left(F_{x}\right)=\beta_{3} \circ \gamma\left(F_{x}\right), x \in \bar{M}$. Therefore $\gamma_{4}(\beta \circ$ $\alpha(x)) \beta_{5}(x)=\beta_{6}(x) \cdot \gamma(x)$. It follows that

$$
\begin{equation*}
\theta\left(\left[\gamma_{4}(\beta \circ \alpha(x))\right]\right)+\theta\left(\left[\beta_{5}(x)\right]\right)=\theta\left(\left[\beta_{6}(x)\right]\right)+\theta\left(\left[\gamma_{3}(x)\right]\right) \tag{2.1}
\end{equation*}
$$

The mappings $\beta_{5}(x)$ and $\beta_{6}(x)$ are well-defined on the sets $P^{k} \backslash M$ and \bar{M}. Therefore $\theta\left(\left[\beta_{5}(x)\right]\right)=2 r(r=0$ for $k=1$ by Lemma 2.3), by Lemma 2.4. We get $\theta\left(\left[\beta_{6}(x)\right]\right)=2 m(m \in Z)$. The equality 2.1 is equivalent to the next equality:

$$
\begin{equation*}
\theta\left(\left[\gamma_{4}(\beta \circ \alpha(x))\right]\right)=\theta\left(\left[\gamma_{3}(x)\right]\right)+2(m-r) \tag{2.2}
\end{equation*}
$$

Further, suppose the homeomorphism $\beta \circ \alpha$ changed the orientation for the circle $\delta(\bar{M})$. Therefore $\theta\left(\left[\gamma_{4}(\beta \circ \alpha(x))\right]\right)=-\theta\left(\left[\gamma_{4}(x)\right]\right)$.

Suppose the homeomorphism $\beta \circ \alpha$ doesn't changed the orientation of the circle $\delta(\bar{M})$. This yields that $\theta\left(\left[\gamma_{4}\right]\right)= \pm \theta\left(\left[\gamma_{3}\right]\right)+2(m-r)$. In the converse case, suppose that $\theta\left(\left[\gamma_{4}\right]\right)= \pm \theta\left(\left[\gamma_{3}\right]\right)+2 s, s \in Z$. First let $\theta\left(\left[\gamma_{4}\right]\right)=-\theta\left(\left[\gamma_{3}\right]\right)+$ $2 s$. Let $\alpha: P^{k} \rightarrow P^{k}$ be a homeomorphism such that $\alpha(\bar{M})=\bar{M}$. Suppose
that α does not changes the orientation of the circle $S^{1}=\delta(\bar{M})$. Let ν_{1} : $\zeta_{2} /{ }_{\left(P^{k} \backslash M\right)} \rightarrow\left(P^{k} \backslash M\right) \times \operatorname{Mat}(n)$ be an isomorphism of bundles that generates the homeomorphism α on $P^{k} \backslash M$. Let $\gamma_{1}=v_{1}^{-1} \circ u_{1}$ is an isomorphism of bundles $\zeta_{2} / P^{k} \backslash M \rightarrow\left(P^{k} \backslash M\right) \times \operatorname{Mat}(n)$. The isomorphism $u_{1}: \zeta_{1} /{ }_{\left(P^{k} \backslash M\right)} \rightarrow\left(P^{k} \backslash M\right) \times$ Mat (n) produces the identity homeomorphism I for the bases of the bundles. Let the isomorphism γ_{1} produces a mapping $\gamma_{5} \in C\left(P^{k} \backslash M\right.$, Aut $\left.(n)\right)$. Therefore the mapping $\nu_{12} \circ \gamma_{1} \circ \mu_{12}^{-1}: \zeta_{1} / \delta \bar{M} \rightarrow \zeta_{2} / \delta \bar{M}$ is isomorphism for the trivial bundles. The homeomorphism α changed the orientation of the circle $S^{1}=\delta M$. Hence $\theta\left(\left[\gamma_{4}(\alpha x)\right]\right)=-\theta\left(\left[\gamma_{4}(x)\right]\right)$. Therefore $\theta\left(\left[\gamma_{4}(\alpha x) \cdot \gamma_{5}(x) \cdot\left(\gamma_{3}(x)\right)^{-1}\right]\right)=\theta\left(\left[\gamma_{4}(\alpha x)\right]\right)+$ $\theta\left(\left[\gamma_{5}(x)\right]\right)+\theta\left(\left[\gamma_{3}(x)^{-1}\right]\right)=-\theta\left(\left[\gamma_{4}\right]\right)-\theta\left(\left[\gamma_{3}\right]\right)+2 r=2 m+2 l+2 r$. We get $\theta\left(\left[\gamma_{5}(x)\right]\right)=2 r, r \in Z$ by Lemma 2.4. In addition, $\theta\left(\left[\gamma_{5}(x)^{-1}\right]\right)=-\theta\left(\left[\gamma_{5}(x)\right]\right)$. Therefore there is an extension of $\gamma_{4}(\alpha x) \cdot \gamma_{5}(x) \cdot\left(\gamma_{3}(x)\right)^{-1}$ to $\gamma_{7} \in C(\bar{M}, \operatorname{Aut}(n))$ by Lemma 2.4.

Define an isomorphism $\gamma_{2}: \zeta_{1} / \bar{M} \rightarrow \zeta_{2} / \bar{M}$ by the rule $(x ; y) \rightarrow\left(\alpha(x) ; \gamma_{7}(x)\right.$. $y),\left(x \in \bar{M}, y \in F_{x}\right)$. The isomorphism γ_{2} is agreed with conditions of cluing for the bundles ζ_{1} and ζ_{2}. Let $\gamma: \zeta_{1} \rightarrow \zeta_{2}$ is defined by γ_{1} on $\zeta_{1} / P^{k} \backslash M$ and by γ_{2} on ζ_{1} / \bar{M}. Hence γ is the necessary isomorphism between the bundles ζ_{1} and ζ_{2}. Secondly let $\theta\left(\left[\gamma_{4}\right]\right)=\theta\left(\left[\gamma_{3}\right]\right)$. Let α be identity homeomorphism $I: P^{k} \rightarrow P^{k}$. As before, we construct the mapping $\gamma_{4}(\alpha x) \cdot \gamma_{5}(x) \cdot\left(\gamma_{3}(x)\right)^{-1} \in C\left(S^{1}, \operatorname{Aut}(n)\right)$ such that $\theta\left(\left[\gamma_{4}(\alpha x) \cdot \gamma_{5}(x) \cdot\left(\gamma_{3}(x)\right)^{-1}\right]\right)=\theta\left(\left[\gamma_{4}(\alpha x)\right]\right)+\theta\left(\left[\gamma_{5}(x)\right]\right)+\theta\left(\left[\left(\gamma_{3}(x)\right)^{-1}\right]\right)=$ $\theta\left(\left[\gamma_{4}\right]\right)-\theta\left(\left[\gamma_{3}\right]\right)+2 r=2 m+2 l+2 r$. Therefore we can extend the mapping $\gamma_{4}(\alpha x) \cdot \gamma_{5}(x) \cdot\left(\gamma_{3}(x)\right)^{-1}$ to $\gamma_{7} \in C(\bar{M}, \operatorname{Aut}(n))$. The mapping γ_{7} generates an isomorphism $\gamma_{2}: \zeta_{1} / \bar{M} \rightarrow \zeta_{2} / \bar{M}$ that is agreed with conditions of cluing for the bundles ζ_{1} and ζ_{2}. Also, γ_{2} is agreed with isomorphism γ_{1}. This means that γ_{1} and γ_{2} generate an isomorphism $\gamma: \zeta_{1} \rightarrow \zeta_{2}$. This completes the proof.

Theorem 2.6. Let ζ be algebraic bundle over two-dimensional non-oriented manifold P^{k}. Let the fiber F_{x} be $\operatorname{Mat}(n)$. If $n=2 m$ then there are two nonisomorphic algebraic bundles over P^{k}. If $n=2 m+1$ then the bundle ζ is trivial. It is isomorphic to the product-bundle $P^{k} \times \operatorname{Mat}(n)$.

Proof. Let $n=2 m$. Consider the members of $Z / n Z$. Let $\rho: \zeta \rightarrow Z / n Z$ be the connection between algebraic bundles and $Z / n Z \cong \pi_{1}(\operatorname{Aut}(n))$ that was constructed in the proof of the theorem 2.5. Two algebraic bundles ζ_{1} and ζ_{2} are isomorphic if and only if

$$
\begin{equation*}
\rho\left(\zeta_{1}\right) \pm \rho\left(\zeta_{2}\right)=2 l, l \in Z / n Z \tag{2.3}
\end{equation*}
$$

The next elements from $Z / n Z$ satisfy 2.3 :

$$
\begin{equation*}
(0 ; 2 ; 4 ; 6 ; \ldots ; 2 m-2) \tag{2.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
(1 ; 3 ; 5 ; \ldots ; 2 m-1) \tag{2.5}
\end{equation*}
$$

be the second class of elements from $Z / n Z$. Two elements from the set 2.4 are generated by isomorphic algebraic bundles ζ_{1} and ζ_{2}. Two elements from 2.5 are generated by isomorphic bundles. Let ζ_{1} and ζ_{2} be algebraic bundles over P^{k} such that $\rho\left(\zeta_{1}\right) \in 2.4$ and $\rho\left(\zeta_{2}\right) \in 2.5$. Hence ζ_{1} is not isomorphic to the bundle ζ_{2}.

Secondly let $n=2 m+1$. Let ζ_{1} and ζ_{2} be algebraic bundles over P^{k} with fiber $\operatorname{Mat}(n)$. Suppose $\rho\left(\zeta_{1}\right)=0, \rho\left(\zeta_{2}\right)=1$. Then $\rho\left(\zeta_{2}\right)+2 m=2 m+1=0$ in $Z / n Z$. Therefore ζ_{1} is isomorphic to ζ_{2}, by theorem 2.5.

This shows that every bundle ζ over P^{k} with fiber $\operatorname{Mat}(n)$ is isomorphic to ζ_{1} or ζ_{2}. Therefore ζ is trivial. This concludes the proof.

Acknowledgements. The author would like to thank Professor Anatolii Antonevich for useful discussions.

REFERENCES

[1] A. Antonevich, N. Krupnik. On trivial and non-trivial n-homogeneous C^{*}-algebras. Integral Equations Oper. Theory 38, 2 (2000), 172-189.
[2] S. Disney, I. Raeburn. Homogeneous C^{*}-algebras whose spectra are tori. J. Aust. Math. Soc., Ser. A 38 (1985), 9-39.
[3] J. M. G. FELL. The structure of algebras of operator fields. Acta Math. 106, 3-4 (1961), 233-280.
[4] F. Krauss, T. C. Lawson. Examples of homogeneous C^{*}-algebras. Mem. Am. Math. Soc. 148 (1974), 153-164.
[5] W. Massey. Algebraic topology: An introduction. 4th corr. print. Graduate Texts in Mathematics vol. 56. New York-Heidelberg-Berlin, Springer-Verlag, 1977.
[6] M. A. Naimark. Normirovannye kol'tsa [Normed rings]. Moscow, Nauka, 1968 (in Russian).
[7] J. Tomiyama, M. Takesaki. Applications of fibre bundles to the certain class of C^{*}-algebras. Tôhoku Math. J. (2) $\mathbf{1 3}$ (1961), 498-522.

Chair of Higher Mathematics N1
Belarusian National Technical University
ul. Hmelnizkogo 9, 220045, Minsk, Belarus
Received May 15, 2014
e-mail: mvs777777@gmail.com

[^0]: 2010 Mathematics Subject Classification: Primary 46L05, Secondary 19K99.
 Key words: n-homogeneous C^{*}-algebras, algebraic bundle, two-dimensional manifold, classification of C^{*}-algebras, operator algebras.

