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Abstract. We consider algebraic bundles over two-dimensional compact
non-oriented connected manifold. Every non-oriented compact manifold can
be realized as sphere S2 with k projective planes on it. Let P k be the sphere
S2 with k projective planes. Let ζ be algebraic bundle over P k with fiber
Mat(n). If n = 2m+1 then the bundle ζ is trivial. If n = 2m then there are
two non-isomorphic algebraic bundles over P k with fiber Mat(n). J. Fell,
J. Tomiyama, M. Takesaki showed in 1961 the correspondence between the
classes of algebraic bundles and n-homogeneous C∗-algebras. Hence we can
classify non-isomorphic n-homogeneous C∗-algebras over P k.

1. Introduction. Let A be a n-homogeneous C∗-algebra. The “n-
homogeneous” means that all its irreducible representations are n-dimensional.
Suppose that the space of primitive ideals of the algebra A be a two-dimensional
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compact non-oriented manifold. J. Fell [3], I. Tomiyama and M. Takesaki [7]
described any n-homogeneous C∗-algebra as algebra of all continuous sections
Γ(ζ) for appropriate algebraic bundle ζ.

Suppose A1 and A2 are n-homogeneous C∗-algebras. Let f : A1 → A2 be
a continuous bijection such that f(a · b) = f(a) · f(b) and f(a∗) = f(a)∗. In this
case, two algebras A1 and A2 are called isomorphic.

F. Krauss and T. Lawson [4] described the class of algebraic bundles over
the toruses T 2 and T 3.

In present work we described the classes of algebraic bundles over the
two-dimensional non-oriented manifolds in the hull-kernel topology.

It is well known that every compact non-oriented two-dimensional con-
nected manifold is homeomorphic to the connected sum P l of l projective planes
[5]. In particular, the projective plane P is two-dimensional non-oriented mani-
fold.

A triple (E;B; p) is called bundle, where E and B are topological spaces,
p : E → B is a continuous surjection. The surjection p is called projection. The
set Fx = p−1(x) is called fiber over the point x ∈ B. We may assume that the
fiber Fx is homeomorphic to Fy for any x, y ∈ B. Note that a triple (B×F,B, p)
is the bundle, where B and F are topological spaces, p : (x, y) → x, where
x ∈ B, y ∈ F .

The bundle (E,B, p) is called locally trivial with a fiber F , if each point
of B has a neighbourhood U such that the bundle E over U is trivial. This means
that there exists a homeomorphism φ : p−1(U) → U × F , which commute with
the projections. In this case, each fiber is homeomorphic to the model fiber F .

Let Uj be an open covering of B such that the restrictions of the bundle E
on Uj are trivial bundles and let φj be the corresponding homeomorphisms. Then
the mapping φj,i = φj ◦ (φi)

−1 is well defined on (Uj ∩ Ui) × F and φj,i(x, y) =
(α(x), gx(y)), y ∈ F , where gx are the homeomorphisms of the fiber F , α(x) ∈
Uj ∩ Ui. Suppose the homeomorphisms gx are belong to a topological subgroup
G of the group of all homeomorphisms of the space F . The group G is called
the structure group of the bundle. A locally trivial G-bundle (E,B, p) is called
algebraic bundle, if the fiber F = Mat(n) and the structure group G = Aut(n).
Here Mat(n) is the algebra of square matrices of order n over the complex field
C. Aut(n) denotes the group of automorphisms for the algebra. Two algebraic
bundles ζ1 = (E1, B1, p1) and ζ2 = (E2, B2, p2) are called isomorphic if there is
a homeomorphism γ : E1 → E2 such that γ(Fx) = Fα(x), γ(B1) = B2. Here
α : B1 → B2 is a homeomorphism; Fx denotes the fiber over the point x ∈ B1;
Fα(x) denotes the fiber over the point α(x) ∈ B2.
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Let β : B → E be a continuous mapping such that p◦β = Id. In this case,
the mapping β is called continuous section of the bundle (E,B, p). Let Γ(E) be
the algebra of all continuous sections of the bundle. Every n-homogeneous C∗-
algebra is isomorphic to the algebra Γ(E) for the appropriate algebraic bundle
(E,B, p) ([3], [7]).

2. Algebraic bundles over two-dimensional non-oriented

compact connected maniolds. Suppose S2 be the 2-sphere. Let us identify
the opposite points of the sphere S2. Suppose P be the corresponded factor-
space. We say that the space P is the real projective plane. Suppose the space
B is homeomorphic to the space P . In this case, we say that B is the projective
plane too.

Further, let us construct a connected sum of two surfaces. Suppose S1

and S2 be two surfaces such that S1∩S2 is empty. Let us cut out two small open
disks D1 and D2 from S1 and S2 correspondingly. Gluing together the borders
δ(D1) with δ(D2) from the surfaces S1\D1 and S2\D2, we obtain the surface
S1♯S2. The surface S1♯S2 is called the connected sum of the surfaces S1 and S2.

Proposition 2.1 ([5]). Let L denotes a non-oriented connected compact

2-dimensional manifold. The manifold L is homeomorphic to a connected sum of

projective planes.

Let P l be a sphere S2 with l projective planes. The set P 0 is the sphere
S2. Therefore we suppose that l ≥ 1. First, consider an algebraic bundle ζ =
(E,P l, p). Suppose the fiber F = Mat(n). Let D ⊂ P l is homeomorphic to
the open unit disk D1. Cut out the set D from the set P l. The set P 1\D
is homeomorphic to the cross cap M . The cross cap has homotopic class of a
connected sum of two circles with one common point. This connected sum of
two circles could be considered as a subset of the plane R2. Therefore every
algebraic bundle over M is trivial [1]. Further, represent the algebraic bundle ζ
as a cluing of two bundles ζ/P 1\D ∪

ν12
ζ/D̄. Here ζ/P 1\D denotes the restriction

of the bundle ζ to the set P 1\D; ζ/D̄ denotes the restriction of the bundle ζ
to the set D̄; ν12 = ν−1

2 ν1 is the function of cluing generated by a mapping
γ112 ∈ C(S1; Aut(n)). The restriction ζ/P 1\D of the bundle ζ to the set P 1\D is

trivial; the mapping ν1 : ζ/P 1\D → (P 1\D)×Mat(n) is a trivialization. Similarly,
the restriction ζ/D̄ is trivial; the mapping ν2 : ζD̄ → D̄×Mat(n) is corresponded
trivialization.

By construction, let the cross cap M is realized as the unit square I2 with
conditions on its border: u(0; y) = u(1; 1 − y).
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Suppose the mapping θ : π1(Aut(n)) → Z/nZ be the isomorphism of
groups. Now we need the next lemma.

Lemma 2.2. The mapping f ∈ C(δM,Aut(n)) has a continuous exten-

sion f1 ∈ C(M,Aut(n)) if and only if θ([f ]) = 2s, s ∈ Z.

P r o o f. Let f : δM → Aut(n) be a mapping such that θ([f ]) = 2s, s ∈ Z.
Let x0 be a point of I such that θ(f/[0,x0]×1) = s. Let α : M → M be a
homeomorphism such that α(x0; 1) = (1; 1). We may assume that the mapping α
is already used for the cross cap M . This yields that θ([f/I×1]) = θ([f/I×0]) = s.

Let f2(1; 1) be a representative of the class f(1; 1) ∈ Aut(n). Let a ∈ C\0
be the determinant of f2(1; 1). Let f

1(x, y) be a mapping f(x; y)·f−1
2 (0; 1). Hence

f1(0; 1) = f(1; 0) = I. Therefore it can be assumed that f(0; 1) = f(1; 0) = I.
Let S1(x; y) be a function such that S1(x, y) = 1 + x(a − 1), ifa >

0;S1(x, y) = 1 + x(|a| − 1) exp(πix(6− 6y)), ifa < 0; (x ∈ I, y ∈ [5/6; 1]). There-
fore S1(0; y) = 1, y ∈ [5/6; 1] and S1(1; 5/6) = a, S1(x; y) 6= 0, x ∈ [0; 1], y ∈
[5/6; 1]. Let f1(x; y) be a mapping f(x; y)/S1(x; y), x ∈ [0; 1], y ∈ [5/6; 1]. Thus
f1(0; 5/6) = I. Let detf1(1; 5/6) be a determinant for a representative of the
class f1(1; 5/6) ∈ Aut(n). Therefore detf1(1; 5/6) = 1. Let f1,2(1; 5/6) be a rep-
resentative for the class f1(1; 5/6) ∈ Aut(n). Let p(t) be a path in SLn(C) such
that p(0) = I, p(1) = f1,2(1; 5/6).

To each point

(x; y) ∈ [[0, 1 −
√

1/36 − (y − 2/3)2]; [2/3, 5/6]]

assign f1(x; y) = f1(x/(1 −
√

1/36 − (y − 2/3)2); y). To each point (x; y) such
that

√

(x− 1)2 + (y − 2/3)2 ≤ 1/6 assign f1(x; y) = p∗(6
√

(x− 1)2 + (y − 2/3)2).
Therefore f1(0; 2/3) = I = f1(1; 2/3). Let T (exp(2πisx)I) be the appropri-
ate class in the group Aut(n) for each x ∈ [0; 1]. Let Γ(t) be a homotopy
between f1/(I×2/3) and T (exp(2πisx)I), x ∈ [0; 1]. Notice that [f1/(I×2/3)] =

[exp(2πisx)] = θ−1(s). This means that

Γ(0) = f1/(I×2/3), Γ(1) = T (exp(2πisx)I), Γ(t) ∈ Aut(n), t ∈ [0; 1].

For each point (x; y) ∈ I × [1/2; 2/3] assign f1(x; y) = Γ(−6y + 4). Therefore
f1/(I×1/2) = T (exp(2πisx)I). In the same way, we extend f1 to the lower half of
the square.

Conversely, let we have a mapping f1 ∈ C(M,Aut(n)). It can be shown
in the usual way that the middle line of a cross cap is the circle S1 but with
two movings on it. Let us construct a homotopy Γ(t) between f1/δM and the
restriction of f1 to the middle line on the cross cap. For each point (x; y) ∈
I × [1/2; 1] assign Γ(t) = f1(x; 1 − t/2). In the same way, for each point (x; y) ∈
I × [0; 1/2] assign Γ(t) = f1(x; t/2). Let S = θ([f1/(I×1/2)]). Hence θ([f1/δM ]) =
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2θ([f1/(I×1/2)]) = 2s, (f1(0; 1/2) = f1(1; 1/2)). This concludes the proof of the
lemma. ✷

Let Pk be a sphere S2 with k handles. Hence Pk is a oriented two-
dimensional manifold.

Lemma 2.3. Let S1 be a border δ(Pk\D) for the set Pk\D). Let f :
S1 → Aut(n) be a continuous mapping. Let [f ] be a class of f in π1(Aut(n)).
There is a extension for f to a continuous mapping f∗ : Pk\D → Aut(n) if and

only if θ([f ]) = 0.

Lemma 2.4. A mapping f ∈ C(δ(P k\M),Aut(n))(k ≥ 2) has an exten-

sion f1 ∈ C(P k\M,Aut(n)) if and only if θ([f ]) = 2s, s ∈ Z. If k = 1 then the

equality θ([f ]) = 0 should has a place

P r o o f. The proof is by induction on k.

1. Let k be 1. In this case, P 1\M is homeomorphic to P 1\D. By using
the Lemma 2.3, we obtain the statement.

Let k be 2. The space P 2\M = M1 is homeomorphic to the cross cap M .
By using the Lemma 2.2, we obtain that the mapping f ∈ C(δ(P 2\M),Aut(n))
has an extension f ∈ C(M1,Aut(n)).

The induction hypothesis. Suppose the lemma is true for all k ≤ m.

The step of induction. Let ζ denote an algebraic bundle over Pm+1. Let

M1 be a projective plane on Pm+1\M . Denote by L1 the set δ(M1)
⋂

(Pm+1\M).

The set L1 is homeomorphic to the unit interval I. Therefore Pm+1\M =

(Pm\M1)
⋃

M2, where M2 is homeomorphic to the cross cap and

(Pm\M1)
⋂

M2 = L1.

Let f ∈ C(δM → Aut(n))(δM = S1) is a continuous mapping. Suppose
f has an extension to f1 ∈ C((Pm+1\M),Aut(n)). Therefore θ([f1/(S1∪L1

)]) =
2s, θ([f1/(S2∪L1)]) = 2r and θ([f/δM ]) = θ(f1/(S1∪L1)) + θ([f1/(S2∪L1)]) = 2s +
2r = 2(s + r).

Conversely, suppose θ([f/δM ]) = 2s. Suppose L1(t), S1(t) be parametriza-
tions for L1 and S1 for t ∈ [0; 1]. Define f1(L1(t)) = f(S1(t)) for each t ∈ [0; 1].
Hence θ(f1/(S1∪L1)) = 0, θ(f/(S1∪L1)) = 2s. It follows that there is an extension

for f1 to Pm+1\(M ∪M1) and M1 by Lemma 2.2 and induction hypothesis. This
completes the proof. ✷

Theorem 2.5. Let ζ1 and ζ2 are algebraic bundles over P k(k ≥ 1). The

bundles ζ1 and ζ2 are isomorphic if and only if θ([f1/δM ]) ± θ([f2/δM ]) = 2s,
s ∈ Z.
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P r o o f. Let γ : ζ1 → ζ2 be isomorphism. It generates an homeo-
morphism α : P k → P k for the bases of bundles ζ1 and ζ2. Cut out the cross
cap M from P k. Let ν12 = u−1

2 u1 be a function of cluing for the bundle ζ1
over (P k\M) ∪ M . Let µ12 = v−1

2 v1 be a function of cluing for the bundle ζ2
over (P k\α(M)) ∪ α(M ), u1 : ζ1/(P

k\M) → (P k\M) ×Mat(n), u2 : ζ1/(M ) →
(M ) × Mat(n), v1 : ζ2/(P

k\α(M)) → (P k\α(M)) × Mat(n), v2 : ζ2/(α(M )) →
(α(M ))×Mat(n).

Let β : P k → P k be a homeomorphism such that α(M ) = M and
the orientation of α(δ(M )) ∼= S1 is not changed. We have β(M ) = M and
β(P k\M) = P k\M .

Denote by β1 the extension of β to an isomorphism of trivial bundles
β1 : ζ2/(P k\α(M )) → ζ2/(P k\M). Define by β2 the extension of β to an isomorphism

β2 : ζ2/α(M ) → ζ2/M of trivial bundles.

Define the mapping µ12∗ : ζ2/δ(P k\M) → ζ2/δ(M ) such that the next dia-

gram is commutative:





ζ2/(P k\α(M)) →µ12 ζ2/(α(M ))

↓ β1 ↓ β2
ζ2/(P k\M) →µ12∗ ζ2/M





It follows that the bundle β1(ζ2/(P k\α(M))) ∪
µ12∗

β2(ζ2/α(M )) is isomorphic

to the bundle ζ2. Denote by β3 this isomorphism.
The isomorphism β3 ◦ γ : ζ1 → ζ2 generates an homeomorphism β ◦ α :

P k → P k such that β ◦ α(δ(M )) = δ(M ). The restriction of the bundle ζ1 to
the set P k\M is trivial. Hence the isomorphism β3 ◦ γ generates a mapping β5 ∈
C(P k\M,Aut(n)). For each fiber Fx we have β5(x)(Fx) = β3 ◦ γ(Fx),x ∈ P k\M .
For each x ∈ M the isomorphism β3 ◦γ generates a mapping β6 ∈ C(M,Aut(n)).
For each fiber Fx we have β6(x)(Fx) = β3 ◦ γ(Fx), x ∈ M . Therefore γ4(β ◦
α(x))β5(x) = β6(x) · γ(x). It follows that

(2.1) θ([γ4(β ◦ α(x))]) + θ([β5(x)]) = θ([β6(x)]) + θ([γ3(x)])

The mappings β5(x) and β6(x) are well-defined on the sets P k\M and M .
Therefore θ([β5(x)]) = 2r (r = 0 for k = 1 by Lemma 2.3), by Lemma 2.4. We
get θ([β6(x)]) = 2m(m ∈ Z). The equality 2.1 is equivalent to the next equality:

(2.2) θ([γ4(β ◦ α(x))]) = θ([γ3(x)]) + 2(m− r)

Further, suppose the homeomorphism β ◦α changed the orientation for the circle
δ(M ). Therefore θ([γ4(β ◦ α(x))]) = −θ([γ4(x)]).

Suppose the homeomorphism β ◦α doesn’t changed the orientation of the
circle δ(M ). This yields that θ([γ4]) = ±θ([γ3]) + 2(m − r). In the converse
case, suppose that θ([γ4]) = ±θ([γ3]) + 2s, s ∈ Z. First let θ([γ4]) = −θ([γ3]) +
2s. Let α : P k → P k be a homeomorphism such that α(M ) = M . Suppose
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that α does not changes the orientation of the circle S1 = δ(M ). Let ν1 :
ζ2/(P k\M) → (P k\M)×Mat(n) be an isomorphism of bundles that generates the

homeomorphism α on P k\M . Let γ1 = v−1
1 ◦ u1 is an isomorphism of bundles

ζ2/P k\M → (P k\M) × Mat(n). The isomorphism u1 : ζ1/(P k\M) → (P k\M) ×
Mat(n) produces the identity homeomorphism I for the bases of the bundles. Let
the isomorphism γ1 produces a mapping γ5 ∈ C(P k\M,Aut(n)). Therefore the
mapping ν12 ◦ γ1 ◦ µ

−1
12 : ζ1/δM → ζ2/δM is isomorphism for the trivial bundles.

The homeomorphism α changed the orientation of the circle S1 = δM . Hence
θ([γ4(αx)]) = −θ([γ4(x)]). Therefore θ([γ4(αx)·γ5(x)·(γ3(x))

−1]) = θ([γ4(αx)])+
θ([γ5(x)]) + θ([γ3(x)

−1]) = −θ([γ4]) − θ([γ3]) + 2r = 2m + 2l + 2r. We get
θ([γ5(x)]) = 2r, r ∈ Z by Lemma 2.4. In addition, θ([γ5(x)

−1]) = −θ([γ5(x)]).
Therefore there is an extension of γ4(αx) ·γ5(x) · (γ3(x))

−1 to γ7 ∈ C(M,Aut(n))
by Lemma 2.4.

Define an isomorphism γ2 : ζ1/M → ζ2/M by the rule (x; y) → (α(x); γ7(x)·
y), (x ∈ M,y ∈ Fx). The isomorphism γ2 is agreed with conditions of cluing for
the bundles ζ1 and ζ2. Let γ : ζ1 → ζ2 is defined by γ1 on ζ1/P k\M and by γ2 on
ζ1/M . Hence γ is the necessary isomorphism between the bundles ζ1 and ζ2. Sec-
ondly let θ([γ4]) = θ([γ3]). Let α be identity homeomorphism I : P k → P k. As
before, we construct the mapping γ4(αx) · γ5(x) · (γ3(x))

−1 ∈ C(S1,Aut(n)) such
that θ([γ4(αx) · γ5(x) · (γ3(x))

−1]) = θ([γ4(αx)]) + θ([γ5(x)]) + θ([(γ3(x))
−1]) =

θ([γ4]) − θ([γ3]) + 2r=2m + 2l + 2r. Therefore we can extend the mapping
γ4(αx) · γ5(x) · (γ3(x))

−1 to γ7 ∈ C(M,Aut(n)). The mapping γ7 generates
an isomorphism γ2 : ζ1/M → ζ2/M that is agreed with conditions of cluing for
the bundles ζ1 and ζ2. Also, γ2 is agreed with isomorphism γ1. This means that
γ1 and γ2 generate an isomorphism γ : ζ1 → ζ2. This completes the proof. ✷

Theorem 2.6. Let ζ be algebraic bundle over two-dimensional non-orient-

ed manifold P k. Let the fiber Fx be Mat(n). If n = 2m then there are two non-

isomorphic algebraic bundles over P k. If n = 2m+1 then the bundle ζ is trivial.

It is isomorphic to the product-bundle P k ×Mat(n).

P r o o f. Let n = 2m. Consider the members of Z/nZ. Let ρ : ζ → Z/nZ
be the connection between algebraic bundles and Z/nZ ∼= π1(Aut(n)) that was
constructed in the proof of the theorem 2.5. Two algebraic bundles ζ1 and ζ2 are
isomorphic if and only if

(2.3) ρ(ζ1)± ρ(ζ2) = 2l, l ∈ Z/nZ

The next elements from Z/nZ satisfy 2.3:

(2.4) (0; 2; 4; 6; . . . ; 2m− 2)
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Let

(2.5) (1; 3; 5; . . . ; 2m− 1)

be the second class of elements from Z/nZ. Two elements from the set 2.4 are
generated by isomorphic algebraic bundles ζ1 and ζ2. Two elements from 2.5 are
generated by isomorphic bundles. Let ζ1 and ζ2 be algebraic bundles over P

k such
that ρ(ζ1) ∈ 2.4 and ρ(ζ2) ∈ 2.5. Hence ζ1 is not isomorphic to the bundle ζ2.

Secondly let n = 2m+1. Let ζ1 and ζ2 be algebraic bundles over P k with
fiber Mat(n). Suppose ρ(ζ1) = 0, ρ(ζ2) = 1. Then ρ(ζ2) + 2m = 2m + 1 = 0 in
Z/nZ. Therefore ζ1 is isomorphic to ζ2, by theorem 2.5.

This shows that every bundle ζ over P k with fiber Mat(n) is isomorphic
to ζ1 or ζ2. Therefore ζ is trivial. This concludes the proof. ✷
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