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ABSTRACT. We consider algebraic bundles over two-dimensional compact
non-oriented connected manifold. Every non-oriented compact manifold can
be realized as sphere S? with k projective planes on it. Let P* be the sphere
S? with k projective planes. Let ¢ be algebraic bundle over P* with fiber
Mat(n). If n = 2m+1 then the bundle ( is trivial. If n = 2m then there are
two non-isomorphic algebraic bundles over P* with fiber Mat(n). J. Fell,
J. Tomiyama, M. Takesaki showed in 1961 the correspondence between the
classes of algebraic bundles and n-homogeneous C*-algebras. Hence we can
classify non-isomorphic n-homogeneous C*-algebras over P¥.

1. Introduction. Let A be a n-homogeneous C*-algebra. The “n-
homogeneous” means that all its irreducible representations are n-dimensional.
Suppose that the space of primitive ideals of the algebra A be a two-dimensional
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compact non-oriented manifold. J. Fell [3], I. Tomiyama and M. Takesaki [7]
described any n-homogeneous C*-algebra as algebra of all continuous sections
I'(¢) for appropriate algebraic bundle (.

Suppose A; and As are n-homogeneous C*-algebras. Let f: A; — As be
a continuous bijection such that f(a-b) = f(a)- f(b) and f(a*) = f(a)*. In this
case, two algebras A1 and A, are called isomorphic.

F. Krauss and T. Lawson [4] described the class of algebraic bundles over
the toruses T2 and T°.

In present work we described the classes of algebraic bundles over the
two-dimensional non-oriented manifolds in the hull-kernel topology.

It is well known that every compact non-oriented two-dimensional con-
nected manifold is homeomorphic to the connected sum Plofl projective planes
[5]. In particular, the projective plane P is two-dimensional non-oriented mani-
fold.

A triple (E; B;p) is called bundle, where E and B are topological spaces,
p: E — B is a continuous surjection. The surjection p is called projection. The
set F, = p '(z) is called fiber over the point z € B. We may assume that the
fiber F, is homeomorphic to F), for any =,y € B. Note that a triple (B x F, B, p)
is the bundle, where B and F' are topological spaces, p : (z,y) — z, where
reB,yeF.

The bundle (E, B, p) is called locally trivial with a fiber F, if each point
of B has a neighbourhood U such that the bundle E over U is trivial. This means
that there exists a homeomorphism ¢ : p~(U) — U x F, which commute with
the projections. In this case, each fiber is homeomorphic to the model fiber F'.

Let U; be an open covering of B such that the restrictions of the bundle £
on Uj are trivial bundles and let ¢; be the corresponding homeomorphisms. Then
the mapping ¢;; = ¢; o (¢;)" " is well defined on (U;NU;) x F and ¢j(z,y) =
(a(x),9.(y)),y € F, where g, are the homeomorphisms of the fiber F', a(z) €
U; N U;. Suppose the homeomorphisms g, are belong to a topological subgroup
G of the group of all homeomorphisms of the space F'. The group G is called
the structure group of the bundle. A locally trivial G-bundle (E, B,p) is called
algebraic bundle, if the fiber F' = Mat(n) and the structure group G = Aut(n).
Here Mat(n) is the algebra of square matrices of order n over the complex field
C. Aut(n) denotes the group of automorphisms for the algebra. Two algebraic
bundles (; = (E1, B1,p1) and (o = (Fs, By, p2) are called isomorphic if there is
a homeomorphism v : Ey — FEa such that v(Fy) = Fy), 7(B1) = Bz. Here
« : Bi — By is a homeomorphism; F, denotes the fiber over the point = € By;
Fy(z) denotes the fiber over the point a(z) € Bs.
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Let 5 : B — E be a continuous mapping such that po = Id. In this case,
the mapping § is called continuous section of the bundle (E, B,p). Let I'(E) be
the algebra of all continuous sections of the bundle. Every n-homogeneous C*-
algebra is isomorphic to the algebra I'(E) for the appropriate algebraic bundle

(£, B,p) (3], [7)-

2. Algebraic bundles over two-dimensional non-oriented
compact connected maniolds. Suppose S? be the 2-sphere. Let us identify
the opposite points of the sphere S?. Suppose P be the corresponded factor-
space. We say that the space P is the real projective plane. Suppose the space
B is homeomorphic to the space P. In this case, we say that B is the projective
plane too.

Further, let us construct a connected sum of two surfaces. Suppose S;
and S be two surfaces such that 57 M Ss is empty. Let us cut out two small open
disks D1 and D, from S; and S correspondingly. Gluing together the borders
d(D1) with 0(D3) from the surfaces S1\D; and S2\D2, we obtain the surface
S11S2. The surface S99 is called the connected sum of the surfaces S; and Ss.

Proposition 2.1 ([5]). Let L denotes a non-oriented connected compact
2-dimensional manifold. The manifold L is homeomorphic to a connected sum of
projective planes.

Let P! be a sphere S? with [ projective planes. The set PY is the sphere
S2. Therefore we suppose that I > 1. First, consider an algebraic bundle ¢ =
(E,P'.p). Suppose the fiber F' = Mat(n). Let D C P' is homeomorphic to
the open unit disk D;. Cut out the set D from the set P'. The set P\D
is homeomorphic to the cross cap M. The cross cap has homotopic class of a
connected sum of two circles with one common point. This connected sum of
two circles could be considered as a subset of the plane R%. Therefore every
algebraic bundle over M is trivial [1]. Further, represent the algebraic bundle ¢
as a cluing of two bundles (/p1\p VLlJ2 ¢/p- Here (/p1\p denotes the restriction

of the bundle ¢ to the set P'\D; ¢/p denotes the restriction of the bundle ¢
to the set D; vio = vy 'y1 is the function of cluing generated by a mapping
Y1y € C(S'; Aut(n)). The restriction ¢/p1\p of the bundle ¢ to the set P\D is
trivial; the mapping v1 : {/p1\p — (P\D) x Mat(n) is a trivialization. Similarly,
the restriction (/p is trivial; the mapping v5 : (5 — D x Mat(n) is corresponded
trivialization.

By construction, let the cross cap M is realized as the unit square I? with
conditions on its border: u(0;y) = u(1;1 —y).
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Suppose the mapping 0 : 7 (Aut(n)) — Z/nZ be the isomorphism of
groups. Now we need the next lemma.

Lemma 2.2. The mapping f € C(6M,Aut(n)) has a continuous exten-
sion f1 € C(M,Aut(n)) if and only if 6([f]) = 2s,s € Z.

Proof. Let f:dM — Aut(n) be a mapping such that 6([f]) = 2s,s € Z.
Let zo be a point of I such that 0(f/jgzx1) = s Let @« : M — M be a
homeomorphism such that a(zg;1) = (1;1). We may assume that the mapping «
is already used for the cross cap M. This yields that 0([f/1x1]) = 0([f/1x0]) = s

Let f2(1;1) be a representative of the class f(1;1) € Aut(n). Let a € C\0
be the determinant of fo(1;1). Let f'(z,y) be a mapping f(x;y)-f5 *(0;1). Hence
f1(0;1) = f(1;0) = I. Therefore it can be assumed that f(0;1) = f(1;0) =

Let Si(x;y) be a function such that Si(z,y) = 1+ x(a — 1),ifa >
0; S1(z,y) = 1+ x(la] — 1) exp(miz(6 — 6y)),ifa < 0;(z € I,y € [5/6;1]). There-
fore S1(0;y) = 1,y € [5/6;1] and S1(1;5/6) = a,Si(x;y) # 0,z € [0;1],y €
[5/6;1]. Let fi(x;y) be a mapping f(z;y)/S1(z;y),z € [0;1],y € [5/6;1]. Thus
f1(0;5/6) = I. Let detfi(1;5/6) be a determinant for a representative of the
class fi1(1;5/6) € Aut(n). Therefore detf1(1;5/6) = 1. Let f12(1;5/6) be a rep-
resentative for the class fi(1;5/6) € Aut(n). Let p(¢) be a path in SL,(C) such
that p(0) = T, p(1) = fu2(1; 5/6).

To each point

(z;9) € [[0,1 - \/1/36 — (v —2/3)%};[2/3,5/6]]

assign f1(z;y) = filz/(1 — \/1/36 — (y — 2/3)2)73/). To each point (:L‘ y) such
that \/(z — 1)2 + (y — 2/3)2 <1/6 ass1gn fi(z;y) = p*(6y/(x — 1)2 —2/3)2).
Therefore f1(0;2/3) = I = f1(1;2/3). Let T(exp(27rzsx) ) be the appropri—

ate class in the group Aut(n) for each = € [0;1]. Let I'(f) be a homotopy
between f1/(rx2/3) and T'(exp(2misz)l),z € [0;1]. Notice that [f1/(rx2/3)] =
[exp(2misz)] = 7' (s). This means that

['(0) = f1/(1x2/3), T(1) = T(exp(2misz)I), T(t) € Aut(n),t € [0;1].
For each point (z;y) € I x [1/2;2/3] assign fi(z;y) = I'(—6y + 4). Therefore
f1/(rx1/2) = T(exp(2misx)I). In the same way, we extend f1 to the lower half of
the square.

Conversely, let we have a mapping f; € C(M, Aut(n)). It can be shown
in the usual way that the middle line of a cross cap is the circle S' but with
two movings on it. Let us construct a homotopy I'(¢) between f1/0M and the
restriction of f; to the middle line on the cross cap. For each point (z;y) €
I x [1/2;1] assign I'(t) = fi(z;1 —t/2). In the same way, for each point (x;y) €
1 [0;1/2] assign T(£) = f1(5/2). Let S = 0(f1/ 11 Hence 0([f1/su]) =
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20([f1/(1x1/2)]) = 2s,(f1(0;1/2) = f1(1;1/2)). This concludes the proof of the
lemma. O

Let P, be a sphere S? with k handles. Hence Py is a oriented two-
dimensional manifold.

Lemma 2.3. Let S' be a border §(P,\D) for the set P,\D). Let f :
S' — Aut(n) be a continuous mapping. Let [f] be a class of f in w1 (Aut(n)).
There is a extension for f to a continuous mapping f* : P \D — Aut(n) if and

only if 6([f]) = 0.

Lemma 2.4. A mapping f € C(§(P*\M), Aut(n))(k > 2) has an exten-
sion fi € C(PM\M, Aut(n)) if and only if ([f]) = 2s,s € Z. If k =1 then the
equality O([f]) = 0 should has a place

Proof. The proof is by induction on k.

1. Let k be 1. In this case, P\ M is homeomorphic to P'\D. By using
the Lemma 2.3, we obtain the statement.

Let k be 2. The space P2\M = M is homeomorphic to the cross cap M.
By using the Lemma 2.2, we obtain that the mapping f € C(6(P?\M), Aut(n))
has an extension f € C(M;, Aut(n)).

The induction hypothesis. Suppose the lemma is true for all k¥ < m.

The step of induction. Let ¢ denote an algebraic bundle over P™ L. Let
M, be a projective plane on P™ 1\ M. Denote by L; the set (M) ﬂ(Pm‘H\M).
The set L; is homeomorphic to the unit interval I. Therefore P™\M =
(P™\ M) U My, where My is homeomorphic to the cross cap and

(P™\My) (| Mz = L.
Let f € C(6M — Aut(n))(0M = S') is a continuous mapping. Suppose
f has an extension to f; € C((P™™\M), Aut(n)). Therefore O([f1/(s,uL)]) =
[

25,0([f1/(suLn)]) = 2r and O([f /sn]) = 0(f1/(s,0L1)) + O0([f1/ (s,0L0)]) = 25 +
2r =2(s +r).

Conversely, suppose 0([f/sar]) = 2s. Suppose Li(t), S1(t) be parametriza-
tions for L; and S; for t € [0;1]. Define f1(L1(t)) = f(S1(t)) for each ¢ € [0;1].
Hence 0(f1/(s,ur,)) = 0,0(f/(s,uL,)) = 2s. It follows that there is an extension

for fi to P™\(M U M;) and M; by Lemma 2.2 and induction hypothesis. This
completes the proof. O

Theorem 2.5. Let ¢; and Cy are algebraic bundles over P*(k > 1). The
bundles (1 and (2 are isomorphic if and only if 0([f1/sm)) £ 0([f2/s0]) = 2s,
se€Z.
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Proof. Let v : (1 — (2 be isomorphism. It generates an homeo-
morphism « : P¥ — P¥ for the bases of bundles ¢; and (. Cut out the cross
cap M from Pk Let Vig = u;lul be a function of cluing for the bundle (;
over (Pk\M) UM. Let pjp = 1)2_11)1 be a function of cluing for the bundle (s,
over (PM\a(M)) U (M), uy : ¢/ (PF\M) — (P*\M) x Mat(n),uy : ¢ /(M) —

(M)_x Mat(n), v1 : G/(PP\a(M)) — (P"\a(M)) x Mat(n),vs : (o/(a(M)) —
(a(M)) x Mat(n).

Let 8 : P* — P* be a homeomorphism such that (M) = M and
the orientation of a(§(M)) = S! is not changed. We have 3(M) = M and
B(PM\M) = PF\ M.

Denote by 1 the extension of 8 to an isomorphism of trivial bundles
B : CQ/(Pk\a(H)) — Cg/(Pk\H). Define by 35 the extension of 5 to an isomorphism
B : Cg/a(ﬁ) — (2/37 of trivial bundles.

Define the mapping 2% : C2/5(pr\ a1y — Cg/é(ﬁ) such that the next dia-
/a2 G/ o)
gram is commutative: + 51 1 B
G/ =" Gfir

It follows that the bundle B1(C2/(pr\a(rr))) ug*ﬁg(@/a(ﬁ)) is isomorphic
to the bundle (5. Denote by S5 this isomorphism.

The isomorphism f3 oy : {1 — (2 generates an homeomorphism o « :
P* — P* such that § o a(6(M)) = §(M). The restriction of the bundle ¢; to
the set Pk\M is trivial. Hence the isomorphism (3 oy generates a mapping 85 €
C(P*\M, Aut(n)). For each fiber F, we have B5(x)(F,) = B30~(F,),x € PP\M.
For each 2 € M the isomorphism (3 0 generates a mapping B¢ € C(M, Aut(n)).
For each fiber F, we have Bg(x)(F,) = B3 0 y(Fy),xr € M. Therefore v4(8 o
a(x))Bs(x) = Bs(z) - v(x). It follows that

(2.1) 0([74(B o a(x))]) + 0([B5(x)]) = 0([B6(x)]) + O([y3(x)])

The mappings f5(z) and fBg(z) are well-defined on the sets P\ M and M.
Therefore 0([f5(x)]) = 2r (r = 0 for k = 1 by Lemma 2.3), by Lemma 2.4. We
get 0([Bs(z)]) = 2m(m € Z). The equality 2.1 is equivalent to the next equality:

(2:2) 0([va(B o afx))]) = O([r3(x)]) + 2(m —r)
Further, suppose the homeomorphism o« changed the orientation for the circle
d(M). Therefore 6([v4(8 o a(x))]) = —0([ya(x)])-

Suppose the homeomorphism 5o« doesn’t changed the orientation of the
circle §(M). This yields that 6([y4]) = £60([y3]) + 2(m — 7). In the converse
case, suppose that 0([y4]) = £0([y3]) + 2s,s € Z. First let 0([y4]) = —0([y3]) +

2s. Let o : P — P* be a homeomorphism such that a(M) = M. Suppose
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that o does not changes the orientation of the circle S' = §(M). Let vy :
G/ (pr\ary — (P*\M) x Mat(n) be an isomorphism of bundles that generates the

homeomorphism o on P*\M. Let ~; = v ' 6wy is an isomorphism of bundles
Cof posar — (P*\M) x Mat(n). The isomorphism u; : C1/(pr ) — (PF\M) x
Mat(n) produces the identity homeomorphism [ for the bases of the bundles. Let
the isomorphism ~; produces a mapping 75 € C(P*\M, Aut(n)). Therefore the
mapping v 01 © ,uf; 1 G/ s — G2 / 537 is isomorphism for the trivial bundles.
The homeomorphism a changed the orientation of the circle S' = 6M. Hence
0([ya(ax)]) = —0([ya(w)]). Therefore §([ya(aw)s5(x)- (v3(2)) ™)) = 8([yalaz)])+
0([vs(2)]) + 0([s(@) ) = —0([nl) = O(ls]) + 2r = 2m + 20 + 2r. We get
0([ys(z)]) = 2r,7 € Z by Lemma 2.4. In addition, 6([ys(z)™']) = —0([y5(z)]).
Therefore there is an extension of v4(ax) - y5(x) - (v3(z)) ™! to 47 € C(M, Aut(n))
by Lemma 2.4.

Define an isomorphism o : (1 /37 = (/37 by the rule (z;y) — (a(x);y7(x)-
y), (x € M,y € F,). The isomorphism 7, is agreed with conditions of cluing for
the bundles (; and (o. Let v : (1 — (s is defined by v, on Cl/pk\M and by 9 on
C1/77- Hence v is the necessary isomorphism between the bundles ¢; and ¢». Sec-
ondly let 0([v4]) = 0([33]). Let o be identity homeomorphism I : P¥ — P*. As
before, we construct the mapping v4(ax) - y5(z) - (y3(x)) ™t € C(S!, Aut(n)) such
that 8((1(az) - 15(2) - (13(2)) 1)) = 0(a(aw)]) + 0(135(2)]) + 6((rs(2)) 1)) =
0([v4]) — 0([y3]) + 2r=2m + 2] + 2r. Therefore we can extend the mapping
Yalax) - vs5(z) - (y3(2)) 7 to 77 € C(M,Aut(n)). The mapping ;7 generates
an isomorphism 7, : (1/57 — C2/57 that is agreed with conditions of cluing for
the bundles (; and (. Also, 5 is agreed with isomorphism ;. This means that
~v1 and o generate an isomorphism « : (; — (3. This completes the proof. O

Theorem 2.6. Let { be algebraic bundle over two-dimensional non-orient-
ed manifold P*. Let the fiber F, be Mat(n). If n = 2m then there are two non-
isomorphic algebraic bundles over P*. If n = 2m+1 then the bundle ¢ is trivial.
It is isomorphic to the product-bundle P* x Mat(n).

Proof. Letn = 2m. Consider the members of Z/nZ. Let p: ( = Z/nZ
be the connection between algebraic bundles and Z/nZ = m(Aut(n)) that was
constructed in the proof of the theorem 2.5. Two algebraic bundles (; and (s are
isomorphic if and only if

(2.3) p(C1) £ plGa) = 21,1 € Z/nZ
The next elements from Z/nZ satisty 2.3:

(2.4) (0;2;4;6;...;2m — 2)
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Let
(2.5) (1;3;5;...;2m — 1)
be the second class of elements from Z/nZ. Two elements from the set 2.4 are
generated by isomorphic algebraic bundles ¢; and {». Two elements from 2.5 are
generated by isomorphic bundles. Let ¢; and ¢, be algebraic bundles over P* such
that p(¢1) € 2.4 and p({2) € 2.5. Hence (7 is not isomorphic to the bundle (.
Secondly let n = 2m+1. Let ¢; and (» be algebraic bundles over P¥ with
fiber Mat(n). Suppose p(¢1) = 0,p((2) = 1. Then p(¢2) +2m =2m +1 =0 in
Z/nZ. Therefore (7 is isomorphic to (3, by theorem 2.5.
This shows that every bundle ¢ over P* with fiber Mat(n) is isomorphic
to (1 or (5. Therefore ( is trivial. This concludes the proof. O

Acknowledgements. The author would like to thank Professor Ana-
tolii Antonevich for useful discussions.

REFERENCES

[1] A. ANTONEVICH, N. KRUPNIK. On trivial and non-trivial n-homogeneous
C*-algebras. Integral Equations Oper. Theory 38, 2 (2000), 172-189.

[2] S. DisNEY, I. RAEBURN. Homogeneous C*-algebras whose spectra are tori.
J. Aust. Math. Soc., Ser. A 38 (1985), 9-39.

[3] J. M. G. FELL. The structure of algebras of operator fields. Acta Math. 106,
3-4 (1961), 233-280.

[4] F. Krauss, T. C. LAWSON. Examples of homogeneous C*-algebras. Mem.
Am. Math. Soc. 148 (1974), 153-164.

[5] W. MAaSSEY. Algebraic topology: An introduction. 4th corr. print. Graduate
Texts in Mathematics vol. 56. New York—Heidelberg—Berlin, Springer-Verlag,
1977.

[6] M. A. NAIMARK. Normirovannye kol’tsa [Normed rings]. Moscow, Nauka,
1968 (in Russian).

[7] J. ToMmryaAmMA, M. TAKESAKI. Applications of fibre bundles to the certain
class of C*-algebras. Tohoku Math. J. (2) 13 (1961), 498-522.

Chair of Higher Mathematics N1

Belarusian National Technical University

ul. Hmelnizkogo 9, 220045, Minsk, Belarus Received May 15, 2014
e-mail: mvs7777770gmail.com Revised June 11, 2015



