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Abstract. Let F be a finite field of charF > 3 and sl2(F ) be the Lie
algebra of traceless 2× 2 matrices over F . In this paper, we find a basis for
the Z2-graded identities of sl2(F ).

1. Introduction. The well-known Ado-Iwasawa theorem gives that
any finite-dimensional Lie algebra over an arbitrary field has a faithful finite-
dimensional representation. Briefly, any finite-dimensional Lie algebra can be
viewed as a subalgebra of a Lie algebra of square matrices under the commutator
brackets. Thus, the study of Lie algebras of matrices is of considerable interest.

A task in PI-theory is to describe the identities of sl2(F ), the Lie algebra
of traceless 2× 2 matrices over a field F of charF 6= 2. The first breakthrough in
this area was made by Razmyslov [12], who described a basis for the identities of
sl2(F ) when charF = 0. Vasilovsky [16] found a single identity for the identities
of sl2(F ) when F is an infinite field of charF 6= 2, and Semenov [13] described a
basis (with two identities) for the identities of sl2(F ) when F is a finite field of
charF > 3.

The Lie algebra sl2(F ) can be naturally graded by Z2 as follows:

sl2(F ) = (sl2(F ))0 ⊕ (sl2(F ))1,
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where (sl2(F ))0, (sl2(F ))1 contain diagonal and off-diagonal matrices, respec-
tively. A recent development in PI-theory is the description of the graded iden-
tities of sl2(F ). Using invariant theory techniques, Koshlukov [8] described the
Z2-graded identities for sl2(F ) when F is an infinite field of charF 6= 2. Several
further papers on graded identities of sl2(F ) over a field of characteristic zero
have appeared in recent years (cf. e.g., [4] and [5]).

Up till now, no basis has been found for the Z2-graded identities of sl2(F )
when F is a finite field. In the present paper we give such a basis when charF > 3.

2. Preliminaries. Let F be a fixed finite field of charF > 3 and size
|F | = q, let N = {1, 2, . . .}, let G = (Z2,+), and let L be a Lie algebra over
F . In this paper (unless otherwise stated), all vector spaces and Lie algebras
are considered over F . We denote by +̇,⊕, spanF{a1, . . . , an}, 〈a1, . . . , an〉 (where
a1, . . . , an ∈ L) the direct sum of Lie algebras, the direct sum of vector spaces, the
vector space spanned by a1, . . . , an, and the ideal generated by a1, . . . , an, respec-
tively. The associative product is represented by a dot: “·” and the commutator
“[ , ]” denotes the multiplication operation of a Lie algebra. We assume that
all commutators are left-normed, i.e., [x1, x2, . . . , xn] := [[x1, x2, . . . , xn−1], xn],
n ≥ 3. We use the convention [x1, x

k
2 ] = [x1, x2, . . . , x2], where x2 appears k

times in the expanded commutator.
We denote by gl2(F ) the Lie algebra of 2×2 matrices over F and by sl2(F )

the Lie subalgebra of traceless matrices in gl2(F ). Here, eij ∈ gl2(F ) denotes the
matrix unit whose elements are 1 in the position (i, j) and 0 otherwise.

The basic concepts of Lie algebras adopted in this paper can be found in
[6, Chapters 1 and 2]. We denote the center of L by Z(L). If x ∈ L, then adx is
the linear map defined by y 7→ [x, y]. The Lie algebra L is said to be metabelian
if it is solvable of class at most 2. As it is known, if L (over a finite field of
charF > 3) is a three-dimensional simple Lie algebra, then L ∼= sl2(F ). The
algebra L is called a Lie A-algebra if all of its nilpotent subalgebras are abelian.

For an additively written group G, a Lie algebra L is said to be G-graded
(a graded Lie algebra or graded by G) when there exist subspaces {Lg}g∈G ⊂ L
such that L =

⊕
g∈G Lg, and [Lg1 , Lg2 ] ⊂ Lg1+g2 for any g1, g2 ∈ G. G-graded

associative algebras are defined in the same way. In that context, {Lg}g∈G is said
to be a grading for L. An element a is called homogeneous when a ∈

⋃
g∈G Lg and

a 6= 0 is homogeneous of G-degree g when a ∈ Lg. A Lie algebra homomorphism
φ : L1 → L2 of two G-graded Lie algebras L1 and L2 is G-graded if φ(L1g) ⊂ L2g

for all g ∈ G. Two gradings on L {Lg}g∈G and {L′

g}g∈G on L are called isomorphic
when there exists a G-graded isomorphism φ : L → L such that φ(Lg) = L′

g for
all g ∈ G. An ideal I ⊂ L is graded when I =

⊕
g∈G(I ∩ Lg) and we define
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graded Lie subalgebras similarly. Likewise, if I is a graded ideal of L, then
CL(I) = {a ∈ L|[a, I] = {0}} is also a graded ideal of L. Furthermore, Z(L), the
n-th term of descending central series Ln, and the n-th term of derived series L(n)

are graded ideals of L. We use the convention that L1 = L and L(1) = [L,L].

Let L be a finite-dimensional Lie algebra. Denote by Nil(L) the greatest
nilpotent ideal of L and by Rad(L) the greatest solvable ideal of L. Clearly,
when L is a Lie A-algebra, Nil(L) is the unique maximal abelian ideal of L.
Furthermore, when L is a Lie A-algebra, tehn every subalgebra and every factor
algebra of L are also A-algebras (see [15, Lemma 2.1] and [10, Lemma 1]).

The next theorem is a structural result on solvable Lie A-algebras.

Theorem 2.1 (Towers, [15, Theorem 3.5]). Let L be a (finite-dimensional)
solvable Lie A-algebra (over an arbitrary field F ) of derived length n+1 with nil-
radical Nil(L). Moreover, let K be an ideal of L and B a minimal ideal of L.
Then we have the following:

• K = (K ∩An)⊕ (K ∩An−1)⊕ · · · ⊕ (K ∩A0);

• Nil(L) = An+̇(An−1 ∩Nil(L))+̇ · · · +̇(A0 ∩Nil(L));

• Z(L(i)) = Nil(L) ∩Ai for each 0 ≤ i ≤ n;

• B j Nil(L) ∩Ai for some 0 ≤ i ≤ n,

where An = L(n), An−1, . . . , A0 are abelian subalgebras of L defined in the proof
of [15, Corollary 3.2].

Remark 2.2. In vertue of Theorem 2.1, we can prove that, if L =⊕
g∈G Lg is a (finite-dimensional) solvable graded Lie A-algebra (over an ar-

bitrary field F ) of derived length n + 1 with nilradical Nil(L) , then Nil(L) is
a graded ideal. Moreover, if L is a finite-dimensional metabelian Lie A-algebra
(over an arbitrary field), then Nil(L) = [L,L] +· Z(L).

A finite-dimensional Lie algebra L is called semisimple if Rad(L) = {0}.
Recall that L (finite-dimensional and nonsolvable) has a Levi decomposition when
there exists a semisimple subalgebra S 6= {0} (called a Levi subalgebra) such that
L is a semidirect product of S and Rad(L). We now present a result.

Proposition 2.3 (Premet and Semenov, [10, Proposition 2] , adapted).
Let L be a finite-dimensional Lie A-algebra over a finite field F of charF > 3.
Then,

• [L,L] ∩ Z(L) = {0};
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• L has a Levi decomposition. Moreover, each Levi subalgebra S is represented
as a direct sum of F -simple ideals in S, each one of which splits over some
finite extension of the ground field into a direct sum of the ideals isomorphic
to sl2(F ).

A Lie algebra L is said to be G-simple if [L,L] 6= {0}, and L does not
have any proper nontrivial graded ideals.

By mimicking the arguments of Pagon, Repovš, and Zaicev in [11, Lemma
2.1; Section 3; Proposition 3.1, items (i) and (ii)], we have the following.

Proposition 2.4. Let L be a finite-dimensional graded Lie algebra. The
ideal Rad(L) is a graded ideal. If L is G-simple, then L is a direct sum of simple
Lie algebras. If L is a direct sum of simple Lie algebras, then L is a direct sum
of G-simple Lie algebras.

3. Graded identities and varieties of graded Lie algebras.
Let X = {Xg = {xg1, . . . , x

g
n, . . .} | g ∈ G} be a family of pairwise-disjoint enu-

merable sets, where Xg denotes the variables of G-degree g. Let F 〈X〉 be the free
associative unital algebra and let L(X) be the Lie subalgebra of F 〈X〉 generated
by X. It is known that L(X) is isomorphic to the free Lie algebra with a set
of free generators X. The algebras L(X) and F 〈X〉 have a natural G-grading.
A graded ideal I ⊂ L(X) invariant under all graded endomorphisms is called a
graded verbal ideal. Let S ⊂ L(X) be a nonempty set. The graded verbal ideal
generated by S, 〈S〉T , is defined as the intersection of all verbal ideals containing
S. A polynomial f ∈ L(X) is called a consequence of h ∈ L(X) when f ∈ 〈h〉T ,
and it is called a graded polynomial identity for a graded Lie algebra L if f van-
ishes on L whenever the variables from Xg are substituted by elements of Lg for
all g ∈ G. We denote by IdG(L) the set of all graded identities of L. The variety
determined by S ⊂ L(X) is denoted by

V(S) = {A is a G-graded Lie algebra | IdG(A) ⊃ 〈S〉T }.

The variety generated by a graded Lie algebra L is denoted by

varG(L) = {A is a G-graded Lie algebra | IdG(L) ⊂ IdG(A)}.

We say that a class of graded Lie algebras {Li}i∈Γ, where Γ is an index set,
generates V(S) when 〈S〉T =

⋂
i∈Γ IdG(Li).

We denote by Id(L) the set of all ordinary polynomial identities of a Lie
algebra L, and by var(L) the variety generated by L. The variety of metabelian
Lie algebras over F is denoted by A2. A set S ⊂ L(X) of ordinary polynomials



sl2 over a finite field 225

(respectively graded polynomials) is called a basis for the ordinary identities
(respectively graded identities) of a Lie algebra (respectively a graded Lie algebra)
A when S generates Id(A) as a verbal ideal (respectively IdG(A) as a graded verbal
ideal).

Example 3.1. In 1990’s, Semenov ([13, Proposition 1]) proved that

Sem1(x1, x2) = (x1)f(ad(x2)), f(t) = tq
2+2 − t3,

Sem2(x1, x2) = [x1, x2]− [x1, x2, x
q2−1
1 ]− [x1, x

q
2]

+[x1, x2, x
q2−1
1 , xq−1

2 ] + [x1, x2, x
q2

1 − x1, [x1, x2]
q−2, xq

2

2 − x2]

−[x2, ([x
q2

1 − x1, x2])
q, xq

2
−2

2 − xq−2
2 ].

are polynomial identities of sl2(F ).

A finite-dimensional ordinary (respectively graded) Lie algebra L is criti-
cal if var(L) (respectively varG(L)) is not generated by all proper subquotients of
L. It is monolithic if it contains a single ordinary (respectively graded) minimal
ideal. This single ideal is called the monolith of L. It is known that if L is an
ordinary (respectively graded) critical Lie algebra, then L is monolithic. Notice
that if L = ⊕g∈GLg is a critical ordinary Lie algebra, then L is critical also as a
G-graded Lie algebra.

Example 3.2. If L is a critical abelian (ordinary or graded) Lie algebra,
then dimL = 1. If L is a two-dimensional (nonabelian) metabelian Lie algebra,
then L is critical. Furthermore, sl2(F ) is a critical Lie algebra.

Proposition 3.3. Let L =
⊕

g∈G Lg be a finite-dimensional (nonabelian)
metabelian graded Lie A-algebra over an arbitrary field F . If L is monolithic, then
Nil(L) = [L,L].

P r o o f. According to Theorem 2.1, Nil(L) = [L,L]+̇Z(L). By hypoth-
esis, L is monolithic. Thus, Z(L) = {0} and Nil(L) = [L,L]. ✷

The next theorem describes the relationship between critical metabelian
Lie A-algebras and monolithic Lie A-algebras.

Theorem 3.4 (Sheina, [14, Theorem 1]). A finite-dimensional monolithic
Lie A-algebra L over an arbitrary finite field is critical if and only if its derived
algebra cannot be represented as a sum of two ideals strictly contained within it.

A locally finite Lie algebra is a Lie algebra for which every finitely gen-
erated subalgebra is finite. A variety of Lie algebras (respectively graded Lie
algebras) is said to be locally finite when every finitely generated Lie algebra
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(respectively graded Lie algebra) has finite cardinality. It is known that a va-
riety generated by a finite Lie algebra (respectively a graded finite Lie algebra)
is locally finite. As in the ordinary case, if a variety of graded Lie algebras is
locally finite, then it is generated by its critical algebras. For more details about
varieties of Lie algebras, see [1, Chapters 4 and 7].

The next result will be useful for our purposes.

Theorem 3.5 (Semenov, [13, Proposition 2]). Let B be a variety of or-
dinary Lie algebras over a finite field F . If there exists a polynomial

f(t) = a1t+ · · ·+ ant
n ∈ F [t]

such that
yf(adx) := a1[y, x] + · · ·+ an[y, x

n] ∈ Id(B),

then B is a locally finite variety.

Let L1 and L2 be two graded (finite-dimensional) Lie algebras, and I1 ⊂
L1 and I2 ⊂ L2 be graded ideals. We say that I1 (in L1) is similar to I2 (in
L2) (I1 E A1 ∼ I2 E A2) if there exist isomorphisms α1 : I1 → I2 and α2 :
L1/CL1

(I1) → L2/CL2
(I2) such that for all a ∈ I1 and b+CL1

(I1) ∈ L1/CL1
(I1):

α1([a, c]) = [α1(a), d],

where c+ CL1
(I1) = b+ CL1

(I1) and d+ CL2
(I2) = α2(b+ CL1

(I1)).
By proceeding as in [9, cf. pages 162 to 166], we have the following.

Proposition 3.6. If two critical graded Lie algebras L1 and L2 generate
the same variety, then their monoliths are similar.

4. Z2-graded identities of sl2(F ). From now on, we denote by
Y = {y1, y2, . . .} the even variables and by Z = {z1, , z2, . . .} the odd variables.

Lemma 4.1. Let sl2(F ) be the Lie algebra of traceless 2×2 matrices over
F endowed with the natural Z2-grading. The following polynomials are graded
identities of sl2(F )

[y1, y2], [z1, y
q
1]− [z1, y1].

P r o o f. It is clear that [y1, y2] ∈ IdG(sl2(F )), because the diagonal is
commutative. Choose ai = λ11,ie11 − λ11,ie22 and bj = λ12,je12 + λ21,je21. Then

[bj, a
q
i ] = λq

11,i[bj, h
q] = λq

11,i((−2)qλ12,je12 + 2qλ21,je21)

= λ11,i(−2λ12,je12 + 2λ21,je21) = [bj, ai].
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Thus, [z1, y
q
1]− [z1, y1] ∈ IdG(sl2(F )). The proof is complete. ✷

We now cite two papers. First we present a corollary of Bahturin, Ko-
chetov, and Montgomery [2].

Proposition 4.2 ([2, Corollary 1]). Let R = Mn(F ), charF = p > 0,
p 6= 2. Let G be an elementary abelian p-group. Suppose that R =

⊕
g∈G Rg is a

grading on R(−). Then R =
⊕

g∈G Rg is a grading on R if and only if 1 ∈ R0.

Remark 4.3. Here, 1 denotes the identity matrix of Mn(F ), and 0 de-
notes the neutral element of G (recall that G is written additively).

In this paper, F is a finite field of charF = p > 3 and size q. So, there
exists b ∈ F − {0} which is not a perfect square.

Notice that if sl2(F ) = (sl2(F ))0 ⊕ (sl2(F ))1 is a Z2-grading on sl2(F ),
then ((sl2(F ))0 ⊕F (e11 + e22))⊕ (sl2(F ))1 is a Z2-grading on gl2(F ). By Propo-
sition 4.2, ((sl2(F ))0 ⊕ F (e11 + e22))⊕ (sl2(F ))1 is a Z2-grading on M2(F ). The
next proposition describes the Z2-gradings on M2(F ).

Proposition 4.4 (Khazal, Boboc, and Dǎscǎlescu, [7, Theorem 1.1],
adapted). Let F be a field of charF 6= 2. Then any Z2-grading of M2(F ) is
isomorphic to one of the following:

• (M2(F )0,M2(F )1) = (M2(F ), 0);

• (M2(F )0,M2(F )1) = (Fe11 ⊕ Fe22, Fe12 ⊕ Fe21);

• (M2(F )0,M2(F )1)

= (F (e11 + e22) ⊕ F (e12 + be21), F (e11 − e22) ⊕ F (e12 − be21)), where
b ∈ F − F 2.

Remark 4.5. It is well known that (F −{0}, ·) is a cyclic group of order
q − 1. By elementary theory of groups, for every divisor d of q − 1, there exists
a unique subgroup H ′ of (F − {0}, ·) of order d. Let H be the subgroup of order
q−1
2 . It is easy to see that there exists b′ ∈ (F −F 2)∩ (F −H). Finally, note that

[(e11 − e22), (e12 + b′e21)] 6= [(e11 − e22), (e12 + b′e21), . . . , (e12 + b′e21)],

where (e12 + b′e21) appears q times in the expanded commutator.

Proposition 4.6. Let sl2(F ) = (sl2(F ))0 ⊕ (sl2(F ))1 be a Z2-grading on
sl2(F ) having the following characteristics:

• dim(sl2(F ))0 = 1,
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• [a, cq] = [a, c] for all a ∈ (sl2(F ))1 and c ∈ F (e11 + e22)⊕ (sl2(F ))0.

Then the Z2-gradings ((sl2(F ))0, (sl2(F ))1) and (F (e11 − e22), Fe12 ⊕ Fe21) are
isomorphic.

P r o o f. First, note that (((sl2(F ))0 ⊕ F (e11 + e22))⊕ (sl2(F ))1) is a Z2-
grading on gl2(F ). According to Proposition 4.2, (((sl2(F ))0 ⊕ F (e11 + e22)) ⊕
(sl2(F ))1) is a Z2-grading on M2(F ). It is clear that this grading on M2(F )
is not isomorphic to the first grading presented in Proposition 4.4. Notice also
that (F (e11+ e22)⊕ (sl2(F ))0, (sl2(F ))1) cannot be isomorphic to the third grad-
ing presented in Proposition 4.4, because [z1, y1] = [z1, y

q
1] is not a polynomial

identity for M2(F ) endowed with the third grading (Remark 4.5). According to
Proposition 4.4, there exists a Z2-graded isomorphism φ : M2(F ) → M2(F ) such
that

φ((sl2(F ))0 ⊕ F (e11 + e22)) = Fe11 ⊕ Fe22 and φ((sl2(F ))1) = Fe12 ⊕ Fe21.

Note that φ : gl2(F ) → gl2(F ) is an isomorphism of Lie algebras and φ(sl2(F )) =
sl2(F ). Thus, ((sl2(F ))0, (sl2(F ))1) and (F (e11 − e22), Fe12 ⊕ Fe21) are isomor-
phic. The proof is complete. ✷

Henceforth we consider only sl2(F ) and Fe11 ⊕ Fe12 endowed with the
natural grading by (Z2,+). Recall that Sem1(x1, x2),Sem2(x1, x2) ∈ Id(sl2(F )).
We denote by S the set of the following polynomials

Sem1(y1 + z1, y2 + z2),Sem2(y1 + z1, y2 + z2), [y1, y2], and [z1, y
q
1] = [z1, y1].

Corollary 4.7. The variety V(S) is locally finite.

P r o o f. Let L = L0⊕L1 ∈ V(S) be a finitely generated algebra. By the
definition of S, Sem1(y1 + z1, y2 + z2) ∈ IdG(L). Hence, Sem1(x1, x2) ∈ Id(L).
So, by Theorem 3.5, it follows that L is a finite Lie algebra. ✷

Corollary 4.8. Let L ∈ V(S) be a finite-dimensional Lie algebra. Then
every nilpotent subalgebra of L is abelian.

P r o o f. From the definition of S, it follows that Sem2(x1, x2) ∈ Id(L).
Let M 6= {0} be a nilpotent (unnecessarily graded) subalgebra of L. If M t = {0}
for a positive integer t ≤ q + 1, it is clear that M is abelian. If the index
of nilpotency is equal to q + 2, then M/Z(M) is abelian. Consequently, M is
abelian. Induction on the index of nilpotency will give the desired result. ✷

It is well known that a verbal ideal (and, respectively, a graded verbal
ideal) over an infinite field is multihomogeneous. This fact can be weakened, as
stated in the next lemma.
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Lemma 4.9. Let I be a graded verbal ideal over a field of size q. If
f(x1, . . . , xn) ∈ I and 0 ≤ degx1

f, . . . , degxn
f < q, then each multihomogeneous

component of f belongs to I as well.

Lemma 4.10. If L = spanF{e11, e12} ⊂ gl2(F ), then the Z2-graded iden-
tities of L follow from

[y1, y2], [z1, z2] and [z1, y
q
1]− [z1, y1].

P r o o f. It is clear that L satisfies the identities [y1, y2], [z1, z2] and [z1, y
q
1]−

[z1, y1]. We shall prove that the reverse inclusion holds true. Let f be a polyno-
mial identity of L. We may write

f = g + h,

where h ∈ 〈[y1, y2], [z1, z2], [z1, y
q
1] − [z1, y1]〉 and g(x1, . . . , xn) ∈ IdG(L), with

0 ≤ degx1
g, . . . , degxn

g < q. In this way, we may suppose that g is a multiho-
mogeneous polynomial. If g(y1) = α1y1 or g(z1) = α2z1 we can easily see that
α1 = α2 = 0. In the other case, we may assume that

g(z1, y1, . . . , yl) = α3[z1, y
a1
1 , . . . , yall ], 1 ≤ a1, . . . , al < q.

However, g(e12, e11, . . . , e11) is a nonzero multiple scalar of e12, and consequently,
α3 = 0. Hence, f = h and the proof is complete. ✷

Lemma 4.11. Let L = L0 ⊕ L1 ∈ A2 ∩ V(S) be a critical Lie A-algebra.
Then

L ∈ varG(spanF {e11, e12}).

P r o o f. According to Lemma 4.10, it is sufficient to prove that L satisfies
the identity [z1, z2].

By assumption, L is critical and therefore L is monolithic. If L is abelian,
then dimL = 1. In this case L = L0

∼= spanF {e11} or L = L1
∼= spanF{e12}.

In the sequel, we suppose that L is nonabelian. From Proposition 3.3, we
have [L,L] = Nil(L) = [L1, L1] ⊕ [L0, L1]. From the identity [z1, y1] = [z1, y

q
1],

{0} = [L1, [L1, L1]] = −[L1, L1, L1]. So, by the identity Sem2(y1 + z1, y2 + z2),
we have [z1, z2] ∈ IdG(spanF{e11, e12}), as required. The proof is complete. ✷

Corollary 4.12. A2∩varG(sl2(F )),A2∩V(S) and varG(spanF{e11, e12})
coincide.

P r o o f. First, notice that A2 ∩ varG(sl2(F )) ⊂ A2 ∩ V(S) which is a
locally finite variety. By Lemma 4.11, all critical algebras of A2 ∩V(S) belong to

varG(spanF{e11, e12}) ⊂ A2 ∩ varG(sl2(F )).
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Therefore, A2 ∩ V(S) ⊂ varG(spanF{e11, e12}). Thus, we have

A2 ∩ varG(sl2(F )) = A2 ∩ V(S) = varG(spanF {e11, e12}). ✷

Lemma 4.13. Let L be a critical solvable Lie A-algebra belonging to
V(S). Then L is metabelian.

P r o o f. Let L ∈ V(S) be a critical (nonabelian) solvable Lie algebra with
monolith W . By Proposition 2.3, we have [L,L] ∩ Z(L) = {0}. Consequently,
Z(L) = {0}. Notice that Z(CL(Nil(L))) = Nil(L). If Nil(L)1 = L1, then L is
metabelian. Now, we suppose that Nil(L)1  L1. We assert that Nil(L)0 = {0}.
Suppose, on the contrary, that there exists a 6= 0 ∈ Nil(L)0. Hence, there exists
b ∈ L1 − Nil(L)1 such that [b, a] 6= 0, because Z(L) = {0}. However, [b, a] =
[b, aq] = 0. This is a contradiction. Thus, [L1,Nil(L)] = {0}. Consequently
CL(Nil(L)) ⊃ L1 ∪ [L1, L1]. By Proposition 2.3

Z(CL(Nil(L))) ∩ [CL(Nil(L)), CL(Nil(L))] = {0}.

Hence, [CL(Nil(L)), CL(Nil(L))] = {0}. So, L(2) = {0} and the proof is com-
plete. ✷

Lemma 4.14. Let L be a critical nonsolvable Lie A-algebra belonging to
V(S). Then L is G-simple.

P r o o f. Let W be the monolith of L. We claim that L is semisimple.
Suppose on the contrary that Rad(L) 6= {0}. Thus, W ⊂ Rad(L) ∩ [L,L]. The
nontrivial subspace W is an abelian ideal and it is contained in L(n), where n is
the least nonnegative integer such that L(n) = L(n+1). According to Proposition
2.3, [L,L] ∩ Z(L) = {0}. So Z(L) = {0} and [L,W ] = W . The identities [y1, y2]
and [z1, y1] = [z1, y

q
1] mean that the subspace W0 = {0}. Notice that [W, [L,L]] =

{0} = [W,L(n)] and Z(L(n)) ⊃ W . By Proposition 2.3, Z(L(n)) ∩ L(n) = {0}.
This is a contradiction, so L is semisimple. By Propositions 2.3 and 2.4, L is
a direct sum of G-simple Lie algebras. Given that L is monolithic, we conclude
that L is G-simple. ✷

The next lemma was proved by Drensky in [3, Lemma, page 991 of the
English translation].

Lemma 4.15. Let V be a finite-dimensional vector space over F and let
A be an abelian Lie algebra of the linear transformations φ : V → V , where each
φ satisfies the equality

φq = φ.
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Then, every φ ∈ A is diagonalizable.

Definition 4.16. Let L be a finite-dimensional Lie algebra with a diag-
onalizable operator T : L → L. We denote by V (T ) a basis of L formed by the
eigenvectors of T . Moreover, we denote V (T )λ = {v ∈ V (T ) | T (v) = λ · v}. We
denote EV (w) the eigenvalue associated with the eigenvector w ∈ V (T ).

Let L ∈ V(S) be a finite-dimensional Lie algebra. It is not difficult to
see that ad(L0) = {ada : L → L | a ∈ L0} is an abelian subalgebra of linear
transformations of L. Moreover, (ada0)

p = ada0 for all a0 ∈ L0. By Lemma 4.15,
we have the following.

Corollary 4.17. Let L ∈ V(S) be a finite-dimensional Lie algebra. Let
a0 ∈ L0. Then there exists V (ada0) ⊂ L0 ∪ L1.

Proposition 4.18. Let L ∈ V(S) be a finite-dimensional G-simple alge-
bra. Let a0 ∈ L0. Then there exists V (ada0) ⊂ L0 ∪ L1. Moreover, V (ada0)0 ∩
L1 = ∅ for any basis V (ada0) ⊂ L0 ∪ L1.

P r o o f. According to Corollary 4.17, there exists V (ada0) ⊂ L0 ∪ L1.
Let b1, b2 ∈ V (ada0) ∩ L1. Notice that if [b1, b2] 6= 0, then

EV (b1) = −EV (b2).
It is clear that 〈a0〉 is a graded ideal, and that it is equal to L. Notice

also that L = spanF {[a0, b1, . . . , bn]|b1, . . . , bn ∈ V (ada0), n ≥ 1}.
If there was a nonzero element b ∈ V (ada0)0 ∩ L1, we could easily check

that [a0, b1, b] = 0 for any b1 ∈ V (ad(a0)). More generally, by an inductive
argument and routine calculations, we would have [a0, b1, . . . , bn, b] = 0 for any
n ≥ 1 and b1, . . . , bn ∈ V (ada0). However, an element such as b cannot be,
because Z(L) = {0}. So, V (ada0)0 ∩ L1 = ∅. ✷

Lemma 4.19. Let L ∈ V(S) be a critical nonsolvable algebra, then L ∼=
sl2(F ).

P r o o f. First of all, notice that dimL0 ≥ 1 and dimL1 ≥ 2. According
to Lemma 4.14 L is G-simple. Let a0 ∈ L0. By Proposition 4.18, there exists
V (ada0) = {b1, . . . , bn} ⊂ L0 ∪ L1. Moreover, V (ada0)0 ∩ L1 = ∅.

Let −λ1 ≤ · · · ≤ −λm < 0 < λm ≤ · · · ≤ λ1 be the eigenvalues associated
with the eigenvectors of V (ada0). Notice that

L0 =

m∑

i=1

spanF {[V (ada0)λi
, V (ada0)−λi

]}.

Without loss of generality, suppose that spanF {[V (ada0)λ1
, V (ada0)−λ1

]} 6= {0}.
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We assert that spanF{[V (ada0)λ1
, V (ada0)−λ1

]} ⊕ spanF {V (ada0)λ1
} is a subal-

gebra of L.
In fact, let a ∈ V (ada0)λ1

and b ∈ spanF {[V (ada0)λ1
, V (ada0)−λ1

]}. Con-

sider [a, b] =
n∑

i=1
αibi. So,

[a, b, a0] = −
n∑

i=1

αi ·EV (bi)bi.

On the other hand,

[a, b, a0] = −λ1[a, b] = −λ1(

n∑

i=1

αibi).

Hence
(−EV (bj) · αj + λ1 · αj)bj = 0.

Consequently, if αj 6= 0, then λ1 = EV (bj).
Similarly, the subspace

spanF {[V (ada0)λ1
, V (ada0)−λ1

]} ⊕ spanF{V (ada0)−λ1
}

is a subalgebra. Notice that

spanF{[V (ada0)λ1
, V (ada0)−λ1

]} ⊕ spanF{V (ada0)λ1
} ⊕ spanF{V (ada0)−λ1

}

is a graded ideal of L.
Therefore, L0 = spanF {V (ada0)0} = spanF {[V (ada0)λ1

, V (ada0)−λ1
]}

and the subspace L1 is equal to spanF{V (ada0)λ1
} ⊕ spanF {V (ada0)−λ1

}.
Notice that spanF {V (ada0)λ1

} is an irreducible L0-module, because L is
G-simple. Moreover, it is not difficult to see that L0 ⊕ spanF{V (ada0)λ1

} is a
monolithic metabelian Lie algebra with monolith spanF {V (ada0)λ1

} when viewed
as ordinary Lie algebra. Notice that

[L0 ⊕ spanF{V (ada0)λ1
}, L0 ⊕ spanF{V (ada0)λ1

}] = spanF {V (ada0)λ1
}

cannot be represented by the sum of two ideals strictly contained within it. By
Theorem 3.4, L0 ⊕ spanF {V (ada0)λ1

} is critical when viewed as an ordinary Lie
algebra. Thus, it is critical when viewed as a graded algebra as well.

Following the arguments of Lemma 4.10, we can prove that

IdG(L0 ⊕ spanF{V (ada0)λ1
}) = 〈[y1, y2], [z1, y1]− [z1, y

q
1], [z1, z2]〉T .
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Consequently, it follows from Proposition 3.6 that spanF{V (ada0)λ1
} is a one-

dimensional vector space. Analogously, we have dim(spanF {V (ada0)−λ1
}) = 1.

Therefore, L0 ⊕ spanF {V (ada0)λ1
} ⊕ spanF{V (ada0)−λ1

} is a three-dimensional
G-simple Lie algebra. So, L is simple and isomorphic to sl2(F ) (as ordinary Lie
algebras). Hence, by Proposition 4.6, L ∼= sl2(F ) (as graded Lie algebras), where
sl2(F ) is naturally graded by Z2. The proof is complete. ✷

5. Main theorem. We now prove the main theorem of this paper.

Theorem 5.1. Let F be a field of char(F ) > 3 and size |F | = q. The
Z2-graded identities of sl2(F ) follow from

[y1, y2],Sem1(y1 + z1, y2 + z2),Sem2(y1 + z1, y2 + z2), and [z1, y1]− [z1, y
q
1].

P r o o f. It is clear that varG(sl2(F )) ⊂ V(S). To prove that the reverse
inclusion holds, it is sufficient to prove that all critical algebras of V(S) are also
critical algebras of varG(sl2(F )). According to Corollary 4.12, A2 ∩ V(S) =
A2 ∩ varG(sl2(F )). By Lemma 4.13, any critical solvable Lie algebra of V(S)
is metabelian. By Lemma 4.19, any critical nonsolvable Lie algebra of V(S)
is isomorphic to sl2(F ). Therefore, V(S) ⊂ varG(sl2(F )), and the theorem is
proved. ✷
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