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Abstract. Let p be an odd prime, m ≥ 2 be an integer, and d = gcd(m, p−
1). Suppose that d divides (p − 1)/2. We define the generalized Paley
graph on p and m to be the Cayley graph whose vertex set is Zp and whose
generating set is the set of non-zero m-th powers modulo p. We derive basic
properties of these graphs. We give bounds on the isoperimetric number of
a generalized Paley graph.

1. Introduction. Throughout this paper, let Zp denote the integers
modulo a prime p and Z

×
p = Zp \ {0}.

We begin by recalling the definition of an undirected Cayley graph. Let
G be a group. Let Γ be a symmetric subset of G, that is, γ ∈ Γ if and only if
γ−1 ∈ Γ. The Cayley graph of G and Γ, denoted by Cay(G,Γ), is defined to be
the graph whose vertex set is G and where two vertices x and y are adjacent iff
y−1x ∈ Γ.
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Fig. 1. The graph X6

17

We now define generalized Paley graphs. We generalize the definition
from [1] which only considers odd m. Let p be an odd prime, m ≥ 2 be an
integer, and d = gcd(p − 1,m). Suppose that d divides (p − 1)/2. Consider the
set

Γm
p = {am | a ∈ Z

×
p }

of m-th powers of non-zero integers modulo p. We define the generalized Paley

graph Xm
p to be the Cayley graph Cay(Zp,Γ

m
p ).

We will see in Proposition 3 that the condition that d divides (p − 1)/2
ensures that the generating set for the generalized Paley graph is symmetric which
gives us an undirected graph. One may also consider directed graphs by relaxing
this restriction, but we do not do that in this paper.

For example, let p = 17 and m = 6. Then d = 2 which divides (p−1)/2 =
8. We have that Γ6

17 = {1, 2, 4, 8, 9, 13, 15, 16}. See Figure 1 for a picture of X6
17.

When m = 2 and p ≡ 1(mod 4) we get the standard definition of a Paley
graph.

Let X be a graph with vertex set V . Given a subset of vertices F , the
boundary of F , denoted by ∂F , is defined to be the set of edges of X with one
endpoint in F and one endpoint in V \F . The isoperimetric number, or Cheeger
constant, of X is defined to be

h(X) = min

{ |∂F |
|F |

∣

∣

∣

∣

F ⊆ V and 0 < |F | ≤ |V |/2
}

.
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In general it is a difficult combinatorial problem to get an exact value for
the isoperimetric number of a graph. Instead one gives approximations, which is
what we do in this paper. In particular, we generalize the following result from
[4]. Let p ≡ 1(mod 4) and m = 2. Then as mentioned above we get that X2

p is a
standard Paley graph. It was shown in [4] that

(1)
p−√

p

4
≤ h(X2

p ) ≤
p− 1

4
.

This implies that lim
p→∞

h(X2
p )/p = 1/4, where the limit is over primes congruent

to 1 modulo 4.
In this paper, we generalize equation (1) to m ≥ 2. In particular, we

derive the following proposition.

Proposition 1. Let p be an odd prime, m ≥ 2 be an integer, and d =
gcd(p− 1,m). Assume that d divides (p− 1)/2 and that d > 1. Then

p+ (1− d)
√
p

2d
≤ h(Xm

p ) ≤ (d− 1)p +Mm
√
p+ (2d − 1)

d2
.

Here Mm is the number of triples of rational numbers (α0, α1, α2) satistfying

mα0,mα1,mα2 ∈ Z, α0 + α1 + α2 ∈ Z, and 0 < α0, α1, α2 < 1.

Note that when d = 1 we have that Xm
p is a complete graph (see Propo-

sition 5) whose isoperimetric number is well-known.
See Sections 3 and 4 for a proof of Proposition 1. The lower bound of

Proposition 1 is derived using an estimate on the eigenvalues of Xm
p (which are

essentially Gauss sums). The upper bound is derived by estimating the number
of solutions to the equation xm + ym + zm = 0 modulo p.

When m = 2 we get that Proposition 1 gives essentially the same result as
equation (1). Suppose that p ≡ 1(mod 4) and m = 2. Then d = gcd(p − 1, 2) =
2. The integer M2 is the number of triplets of rational numbers (α0, α1, α2)
satistfying the following conditions: 2α0, 2α1, 2α2 ∈ Z, α0 + α1 + α2 ∈ Z and
0 < α0, α1, α2 < 1. This implies that M2 = 0. In this case, Proposition 1
becomes

(2)
p−√

p

4
≤ h(X2

p ) ≤
p+ 3

4
,

which is asymptotically equivalent to equation (1).
We now consider the case when m = 3. Suppose that p is an odd prime.

If p ≡ 0(mod 3) or p ≡ 2(mod 3), then d = gcd(p − 1, 3) = 1. This does not
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Table 1. Approximate values where m = 3 and p ≡ 1(mod 3)

lower bound γ-bound upper bound
p from Prop (1) h(X3

p
) from Prop (2) from Prop (1)

7 0.28475 0.6667 0.66667 2.69906
13 0.964816 1.6667 2 4.24568
19 1.7137 ? 3.55556 5.74642

104, 743 17, 349.3 ? 17, 465.8 23, 348.7
104, 827 17, 363.2 ? 17, 529.3 23, 367.4
1, 299, 709 216, 238 ? 216, 659 289, 078
2, 750, 161 457, 807 ? 458, 707 611, 516

satisfy Proposition 1. Indeed, we will see in Proposition 5 that when d = 1 we
get a complete graph, whose isoperimetric number is known. Now consider the
infinite family of generalized Paley graphs X3

p where p ≡ 1(mod 3). In this case
d = gcd(p − 1, 3) = 3 which divides (p − 1)/2. The integer M3 is the number
of triplets of rational numbers (α0, α1, α2) satistfying the following conditions:
3α0, 3α1, 3α2 ∈ Z, α0 + α1 + α2 ∈ Z and 0 < α0, α1, α2 < 1. This implies that
M3 = 2. Proposition 1 gives that

(3)
p− 2

√
p

6
≤ h(X3

p ) ≤
2p + 2

√
p+ 5

9

See Table 1 for some example calculations of equation (3).
One can try other values of m. For example, any odd power m and

p ≡ 1(mod m) give d = m in equation (1).
We derive a second upper bound for h(Xm

p ), which we call the γ-bound.
This result is a generalization of the α-bound given in [4] for regular Paley graphs
(m = 2). The γ-bound appears to give a better upper bound than Proposition 1
does. However, it is harder to deal with and is not in closed form.

In Proposition 3 it is shown that Γm
p is a symmetric subset of Zp iff

d|(p − 1)/2, and therefore we can write it as

Γm
p = {γ1, γ2, · · · , γk,−γk, · · · ,−γ2,−γ1}

where k =
p− 1

2d
and 0 ≤ γi ≤ (p− 1)/2. The proof of the following Proposition

is given in Section 5.

Proposition 2 (The γ-bound). The isoperimetric number of a general-

ized Paley graph satisfies the bound

h(Xm
p ) ≤ 4

p− 1

k
∑

i=1

γi
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where Γm
p = {γ1, γ2, . . . , γk,−γk, . . . ,−γ2,−γ1} and k =

p− 1

2d
are as above.

Note that when calculating the sum in Proposition 2 we think of the γi as
integers, not integers modulo p. For example, we have that Γ6

17 = {1, 2, 4, 8, 9, 13,
15, 16} where γ1 = 1, γ2 = 2, γ3 = 4, γ4 = 8. Thus,

h(X6
17) ≤

4

17− 1
(1 + 2 + 4 + 8) = 3.75.

See Table 1 for some sample calculations of the γ-bound.
At the very end of the paper we give an upper bound on h(Xm

p ) using
Proposition 2 and a worse case distribution argument for the sizes of the elements
in the first half of Γm

p . The argument leads to the following upper bound:

(4) h(Xm
p ) ≤ (2d− 1)p + (4d− 4d2 + 1)

2d2
.

If m = 2 and p ≡ 1(mod 4), then equation (4) becomes h(X2
p ) ≤

3p

8
− 7

8
. If m = 3

and p ≡ 1(mod 3), then equation (4) becomes h(X3
p ) ≤ 5p

18
− 23

18
. Comparing

these results to (2) and (3) which were derived from Proposition 1, we see that
Proposition 1 gives a better upper bound for the isoperimetric number. However,
looking at Table 1 we see that the γ-bound seems to give a much better upper
bound than Proposition 1. Perhaps if one got a better approximation on the
worst case for the sizes of the elements in the first half of Γm

p , then one could
get a much better explicit upper bound for h(Xm

p ) using the γ-bound. Perhaps
this method could lead to an asymptotic formula for lim

p→∞
h(Xm

p )/p as p goes to

infinity for m > 2.

2. Basic properties of generalized Paley graphs. In this section
we collect together various facts about generalized Paley graphs.

Proposition 3. Let p be an odd prime, let m ≥ 2 be an integer, let

d = gcd(m, p− 1). Let m = 2na for some odd integer a and n ≥ 0. The following

are equivalent.

(1) Γm
p is symmetric.

(2) −1 ∈ Γm
p .

(3) d | p− 1

2
.
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(4) p ≡ 1(mod 2n+1).

P r o o f. (1) ⇐⇒ (2): Suppose Γm
p is symmetric. Note that 1 = 1m ∈

Γm
p . So, −1 ∈ Γm

p . Conversely, suppose −1 ∈ Γm
p . Then −1 = am for some

a ∈ Z
×
p . If x ∈ Γm

p with x = bm and b ∈ Z
×
p , then −x = (ab)m ∈ Γm

p .

(2) ⇐⇒ (3): Since Z×
p is a cyclic group under multiplication there exists

g ∈ Z
×
p where Z

×
p = 〈g〉 = {1, g, g2, g3, . . . , gp−2}. Since Zp is a field there are

only two solutions to the equation x2 − 1 = (x− 1)(x+1) = 0. These are 1 = g0

and −1 = g(p−1)/2. Note that −1 ∈ Γm
p if and only if (gi)m = g(p−1)/2 for some

integer i if and only if im ≡ p− 1

2
(mod p−1). From [15, pg. 62], ax ≡ b(mod m)

has solutions for x if and only if gcd(a,m) | b. Thus, im ≡ p− 1

2
(mod p − 1) if

and only if d | p− 1

2
.

(3) =⇒ (4): Suppose that d | p− 1

2
. Recall that m = 2na where a is

odd. Let p−1 = 2kb for some k, b ∈ Z where b is odd. Suppose that n ≥ k. Then
d = gcd(m, p − 1) = gcd(2na, 2kb) = 2kc for some integer c. But then d would

not divide
p− 1

2
= 2k−1b. Thus n < k. Therefore, p ≡ 1(mod 2n+1).

(4) =⇒ (2): Recall that m = 2na where a is odd. Suppose p ≡
1(mod 2n+1). Then p − 1 = 2n+1k for some integer k. Since Z

×
p is cyclic there

exists g ∈ Z
×
p where Z

×
p = 〈g〉 = {1, g, g2, g3, . . . , gp−2}. If we let y = g

p−1

2 ,

then y 6= 1. Also y2 = gp−1 = 1. Since Zp is a field the only solutions to

z2 − 1 = (z + 1)(z − 1) = 0 are z = 1 and z = −1. Thus, y = g
p−1

2 = −1. If we

let w = g
p−1

2n+1 , then wm = g
p−1

2n+1 2
na = g

p−1

2
a = (−1)a = −1. So −1 ∈ Γm

p . ✷

The proof of the following lemma is left to the reader.

Lemma 4. Let m be a positive integer, p be an odd prime, and d =
gcd(m, p − 1). Define the function φ : Z×

p → Z×
p by φ(x) = xm. Then φ is

d-to-one.

The facts in the following proposition are proved in [1] for odd m, but in
a different way than we present here. [1] also discusses the case where p is not
prime, in which case the generalized Paley graph can sometimes be disconnected.

Proposition 5. Let m be a positive integer, p be an odd prime, and

d = gcd(m, p − 1) where d | p− 1

2
. Then

(1) |Γm
p | = p− 1

d
.
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(2) Xm
p is

p− 1

d
-regular.

(3) Xm
p is connected.

(4) Xm
p is the complete graph iff d = 1.

(5) Xm
p is the cycle graph iff d =

p− 1

2
.

P r o o f. Let φ be the group homomorphism of Z×
p from Lemma 4. By

Lemma 4 we have that |Γm
p | = |Z×

p |/|ker(φ)| =
p− 1

d
.

Xm
p is

p− 1

d
-regular since Xm

p is a Cayley graph. This implies that Xm
p is

complete iff d = 1. Similarly this shows that Xm
p is the cycle graph iff d =

p− 1

2
.

It is easy to see that Xm
p is connected: since 1 ∈ Γm

p we have that the
cycle with vertices 0, 1, 2, 3, . . . , p− 2, p − 1, 0 is contained in the graph. ✷

We now mention a special case of a well-studied problem for Cayley
graphs. Two Cayley graphs on the same group Cay(G,S) and Cay(G,T ) are
isomorphic if there exists a group isomorphism σ of G such that Sσ = T . A
group G is called a CI-group if the converse is also true. See the survey [13] for
more information. It was shown in [5] that Zp is a CI-group. The following two
propositions are special cases of these results and the proofs are left to the reader.

Proposition 6. Let p be a prime and m1 > 1 and m2 > 1 be integers.

Suppose that d1 = gcd(m1, p − 1) and d2 = gcd(m2, p − 1) and both d1 and d2

divide
p− 1

2
. Then Xm1

p and Xm2
p are isomorphic as graphs if and only if d1 = d2.

In particular, note that Xd1
p is isomorphic to Xm1

p .

Proposition 7. Let p be a fixed odd prime. A complete list of non-

isomorphic generalized Paley graphs of size p is given by the graphs Xm
p where m

is a divisor of (p − 1)/2.

3. An eigenvalue lower bound. In this section we give a proof of
the lower bound given in Proposition 1. Throughout this section, let p be an
odd prime, m > 1 be an integer, and d = gcd(p − 1,m). Assume that d divides
(p − 1)/2.

Since Xm
p is a connected regular graph, by [11, pg. 12] we know that the

eigenvalues of Xm
p are real. The next Proposition shows that the eigenvalues of

Xm
p are essentially Gauss sums and we give an upper bound for them.
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Proposition 8. Let ep(x) = e
2πix
p . The eigenvalues of Xm

p are given by

λa =
1

d

(

p−1
∑

n=0

ep(an
m)− 1

)

, where a = 0, 1, . . . , p− 1.

One has λ0 =
p− 1

d
. In addition for each a = 1, 2, . . . , p− 1 we have that

λa ≤ (m− 1)
√
p− 1

d
.

P r o o f. Let λ be an eigenvalue of Xm
p . There exists 0 ≤ a ≤ p − 1

where λ =
∑

γ∈Γm
p

ep(aγ). (See [3, pg. 183] or [11, pg. 195]).) If a = 0, the formula

follows. Suppose that 0 < a. By Lemma 4, for each γ ∈ Γm
p , |φ−1(γ)| = d, and

so there are d elements x1, x2, . . . , xd in Z×
p for which φ(xi) = γ. So,

λ =
∑

γ∈Γm
p

ep(aγ) =
1

d

p−1
∑

n=1

ep(an
m).

Note that

1

d

p−1
∑

n=1

ep(an
m) =

1

d

(

p−1
∑

n=0

ep(an
m)− 1

)

.

The Gauss sum

p−1
∑

n=0

ep(an
m) can be bounded above (see [9, pg. 1]) by

p−1
∑

n=0

ep(an
m) ≤ (m− 1)

√
p. Therefore,

λ =
1

d

(

p−1
∑

n=0

ep(an
m)− 1

)

≤ (m− 1)
√
p− 1

d
. ✷

We now give a proof of the lower bound given in Proposition 1. A known
inequality (see [2] and [6], or [11, pg. 31]) tells us that if X is a k-regular graph,
then

(5)
k − λ1(X)

2
≤ h(X),
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where λ1(X) is the second largest eigenvalue of X. Since d = gcd(m, p − 1) =
gcd(d, p − 1), Xm

p and Xd
p must be isomorphic graphs by Proposition 6, and so

by Proposition 8 we have that

(6) λ1(X
m
p ) = λ1(X

d
p ) ≤

(d− 1)
√
p− 1

d
.

We know Xm
p is

p− 1

d
-regular by Proposition 5, so combining equations (5) and

(6) gives us that

h(Xm
p ) ≥

p−1
d − (d−1)

√
p−1

d

2
=

p+ (1− d)
√
p

2d
.

4. An upper bound by estimating solutions to x
m + y

m +

z
m = 0 modulo p. In this section we give a proof of the upper bound given

in Proposition 1. Throughout this section, let p be an odd prime, m > 1 be an
integer, and d = gcd(p − 1,m). Assume that d divides (p − 1)/2. Let Γ = Γm

p .

Let Γ = Z
×
p \ Γ.

Note that if F is a subset of Zp with |F | ≤ p/2 then h(Xm
p ) ≤ |∂F |/|F |.

Therefore, h(Xm
p ) ≤ |∂Γ|/|Γ|. We now estimate this ratio to get an upper bound

on h(Xm
p ). We assume that d > 1 so that |Γ| < p/2. (Note that if d = 1, then

Xm
p is the complete graph whose isoperimetric number is known.)

We first take a look at the structure of Xm
p . Please refer to Figure 2

during this discussion. Note that by the definition of a generalized Paley graph,
a vertex x is adjacent to 0 if and only if x ∈ Γ. Recall that every element of Γ
has degree (p − 1)/d. Therefore, we have the following equation

(7) |Γ| · p− 1

d
= |∂Γ|+ 2(number of edges internal to Γ),

where the term on the left side of the equation counts one for each endpoint of
an edge that lands in Γ. There is a 2 on the right side of the equation is because
each edge that is internal to Γ is counted twice on the left side of the equation.

Let

S = {(x, y, z)|x, y, z ∈ Z
×
p and xm + ym + zm = 0}

and N denote the size of S. Using the facts that every element of Γ is an m-th
power, −1 ∈ Γ, and every element of Γ can be represented by exactly d different
elements of the form am where a ∈ Z

×
p , one can derive that

2(number of edges internal to Γ) =
|S|
d3

=
N

d3
.
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Fig. 2

Since |Γ| = (p− 1)/d, we have that equation (7) becomes

(8) |∂Γ| =
(

p− 1

d

)2

− N

d3
.

We now go about estimating the value of N .
Let

Ŝ = {(x, y, z)|x, y, z ∈ Zp and xm + ym + zm = 0}

and N̂ denote the size of Ŝ. Then N̂ = N + 1 + 3|T | where T = {(a, b) | a, b ∈
Z
×
p and am + bm = 0}. Suppose that a, b ∈ Z

×
p with am + bm = 0 and −1 = um

where u ∈ Z
×
p . Then am = (ub)m. Conversely if b ∈ Z

×
p then by Lemma 4 there

are exactly d elements a ∈ Z
×
p with am = (ub)m. Thus, |T | = d(p−1). Therefore,

N = N̂ − 1− 3d(p − 1).

Weil [18] showed that there exists a positive integer Mm, depending only
on m, with |N̂ − p2| ≤ Mm(p − 1)p1/2. Moreover, he showed that Mm is the
number of triples of rational numbers (α0, α1, α2) satistfying the three conditions

mα0,mα1,mα2 ∈ Z, α0 + α1 + α2 ∈ Z, and 0 < α0, α1, α2 < 1.

(Another derivation of the above is given as Theorem 5 in [10, pgs. 102–103],
however they give a different way to calculate Mm.) This gives that

N ≥ p2 −Mmp3/2 +Mmp1/2 − 1− 3d(p − 1).
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Plugging this into equation (8) yields

h(Xm
p ) ≤ |∂Γ|

|Γ| ≤
(

p− 1

d

)2

− p2 −Mmp3/2 +Mmp1/2 − 1− 3d(p − 1)

d3
.

Simplifying the above equation yields the upper bound given in Proposition 1.

5. The γ-bound. In this section we give a proof of Proposition 2 and
a derivation of equation (4). Throughout this section, let p be an odd prime,
m > 1 be an integer, and d = gcd(p− 1,m). Assume that d divides (p− 1)/2.

We generalize the α-bound from [4] (where m = 2) to generalized Paley
graphs (m ≥ 2). The proof is almost exactly the same, however we have consid-
erably rewritten the details of the proof to make it easier to understand and to
simpify it. We have changed the name to the γ-bound as we use γ instead of α
in this version of the proof.

Note that for each γ ∈ Zp we have that −γ = p - γ. Recall that |Γm
p | =

p− 1

d
. Since Γm

p is symmetric we may arrange its elements in increasing order.

For the remainder of this section we will use the following notation

Γm
p = {γ1, γ2, . . . , γk,−γk, . . . ,−γ2,−γ1}

where k =
p− 1

2d
and 1 ≤ γi ≤

p− 1

2
. Note that γ1 = 1 and −γ1 = p− 1.

The following is what we call the adjacency table for Xm
p . The top row

lists the vertices of Xm
p and below each vertex v is a column that contains the

vertices that v it is adjacent to.

0 1 2 · · · p− 1

1 2 3 · · · 0
γ2 γ2 + 1 γ2 + 2 · · · γ2 − 1
γ3 γ3 + 1 γ3 + 2 · · · γ3 − 1
...

...
...

...
...

γk γk + 1 γk + 2 · · · γk − 1
−γk −γk + 1 −γk + 2 · · · −γk − 1
...

...
...

...
...

−γ3 −γ3 + 1 −γ3 + 2 · · · −γ3 − 1
−γ2 −γ2 + 1 −γ2 + 2 · · · −γ2 − 1
p− 1 0 1 · · · p− 2
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We will now use the adjacency table for Xm
p to get a bound on h(Xm

p ).

We will do this by considering a special set. This set is F = {0, 1, 2, . . . , p− 3

2
}.

We will use the table to get formula for the size of ∂F . Once we have done this
we will be able to bound h(Xm

p ) by using the formula h(Xm
p ) ≤ |∂F |/|F |.

Proposition 9. Let F =

{

0, 1, 2, . . . ,
p− 3

2

}

be as above. Consider the

row of the adjacency table for Xm
p that begins with γi where 1 ≤ i ≤ k. The row

corresponding to γi of the adjacency table for Xm
p contributes exactly γi edges to

the boundary set ∂F.

P r o o f. When looking at the row correspoding to γi we need to scan

the entries from the column with header 0 to the column with header
p− 3

2
and

count how many entries are greater than
p− 3

2
. Each entry that we find that is

greater than
p− 3

2
will contribute an edge to ∂F . Notice that as we move from

left to right in the table each entry increases by one each time we move right.

Suppose we are in the row corresponding to γi. We break the proof into

two cases: γi 6=
p− 1

2
and γi =

p− 1

2
.

We begin with the first case. Assume that γi 6=
p− 1

2
. Then γi ≤

p− 3

2
.

Suppose we start at the column with header 0 and scan one by one to the right

until we arrive at the entry
p− 3

2
in some column β. So far we have not found

any entries that contribute an edge to ∂F . Since
p− 3

2
is in row γi and column

β we have that
p− 3

2
= γi + β. So, β =

p− 3

2
− γi. Scanning from column 0 to

column β we have encountered β +1 entries. Note that |F | = p− 1

2
. So we have

exactly
p− 1

2
− (β + 1) =

p− 1

2
−
(

p− 3

2
− γi + 1

)

= γi

entries left to consider in our scan of columns headed by elements of F . The

remaining entries in the table consist of the elements
p− 3

2
+1 to

p− 3

2
+ γi. By

definition we know that γi ≤ p− 1

2
. Therefore

p− 3

2
+ γi ≤ p− 2 < p. Hence as

we scan the remaining entries we never pass p−1 and cycle back to 0. Therefore,
each of the remaining γi entries contributes an edge to ∂F , which is what we
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wanted to prove.

Suppose that we are in the second case, that is γi =
p− 1

2
. Then every

element in row γi starting from column 0 to column
p− 3

2
corresponds to an

element that is not in F and hence contributes an edge to ∂F . This gives us

γi =
p− 1

2
entries that contribute and edge to ∂F . ✷

We now prove that the adjacency table has a symmetric property.

Proposition 10. F =

{

0, 1, 2, . . . ,
p− 3

2

}

be as above. The row begin-

ning with entry −γi of the adjacency table for Xm
p contributes the same number

of edges to ∂F as does the row beginning with entry γi.

P r o o f. Consider the row corresponding to −γi. As in Proposition 9,

we only need to inspect the entries from column 0 to column
p− 3

2
. As we do

this we count the number of entries that are greater than
p− 3

2
.

Suppose first that γi =
p− 1

2
. Then in this case, −γi =

p+ 1

2
. Thus,

every element from column 0 to column
p− 3

2
corresponds to an element that is

not in F . Hence, we count |F | = p+ 1

2
= γi entries that correspond to edges in

∂F .

Now suppose that 1 ≤ γi ≤
p− 3

2
and again consider the row correspond-

ing to −γi. We start in the column with 0 and scan until we reach p− 1 in some
column headed with say β. Doing this we have counted β+1 entries. Since p− 1
is in row −γi and column β we have that p − 1 = −γi + β. This gives us that
β + 1 = γi. So we have scanned exactly γi entries so far. Since β = γi − 1 and

1 ≤ γi ≤
p− 3

2
we know that 0 ≤ β ≤ p− 5

2
. That is, β is an element of F and we

still have at least one more entry in our row to scan to the right of column β. Since
we have scanned exactly γi entries so far, the remaining entries to scan correspond

to entry 0 in column β+1 to entry (p− 1) +

(

p− 1

2
− γi

)

=
p− 3

2
− γi ≤

p− 5

2

in column
p− 3

2
. Thus the remaining entries are all in F and hence do not con-

tribute any edges to ∂F . Therefore, in this case we get exactly γi entries in row
−γi that correspond to an edge in ∂F . ✷
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Proposition 11. Let F =

{

0, 1, 2, . . . ,
p− 3

2

}

and

Γm
p = {γ1, γ2, . . . , γk,−γk, . . . ,−γ2,−γ1}

where k =
p− 1

2d
as above. Then

|∂F | = 2
k
∑

i=1

γi,

P r o o f. This follows from Proposition 9 and Proposition 10. ✷

We can now derive the γ-bound given in Proposition 2.

Let F =

{

0, 1, 2, . . . ,
p− 3

2

}

. By Proposition 11 and the fact that |F | = p− 1

2
we see that

h(Xm
p ) ≤ |∂F |

|F | =

2
k
∑

i=1
γi

p−1
2

=
4

p− 1

k
∑

i=1

γi.

We now derive equation (4) from the introduction. Recall that 1 ≤ γk ≤
p− 1

2
, that is, the γk are all trapped in the first half of Z×

p . Therefore, the worst

that the γ-bound can be is if all the γk are grouped together as close as possible

to (p − 1)/2. Since γ1 = 1, if all the remaining γk are grouped up next to
p− 1

2

then we would have that

k
∑

i=1

γk is less than or equal to

1 +

(

p− 1

2
− (k − 2)

)

+

(

p− 1

2
− (k − 3)

)

+ · · ·+
(

p− 1

2
− 1

)

+
p− 1

2
.

Using the formula

a+ (a+ 1) + (a+ 2) + · · ·+ (a+ n) = a(n+ 1) +
n(n+ 1)

2

with a =
p− 1

2
− (k − 2) and n = k − 2 we get that

h(Xm
p ) ≤ 4

p− 1

(

1 +

[

p− 1

2
− (k − 2)

]

[k − 1] +
(k − 2)(k − 1)

2

)
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=
2d(2 + p)− p− 4d2 + 1

2d2

=
(2d− 1)p + (4d− 4d2 + 1)

2d2
.
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