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Abstract. The aim of this article is to construct examples of derivations
in finite semirings.

1. Introduction and preliminaries. The differential algebra has
been studied by many authors for the last 65 years and especially the relation-
ships between derivations and the structure of rings. The notion of the ring with
derivation is old and plays an important role in the integration of analysis, alge-
braic geometry and algebra. In 1950 J. Ritt [6], and in 1973 E. Kolchin [4], wrote
the classical books on differential algebra.

During the last few decades there has been a great deal of works con-
cerning derivations in rings, in Lie rings, in skew polynomial rings and other
algebraic structures. About derivations in semirings it is known the definition
in [2], examples and some properties in [1], examples and properties of deriva-
tions in simplicial complexes of strings, see [9], and examples and properties of
derivations in triangles, see [12] and [13].
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The endomorphism semirings of a finite semilattice are well-established,
see [8, 10, 11, 14]. Basic facts for semirings can be found in [2]. Concerning
background of simplicial complexes and combinatorics a reader is referred to [5]
and [7].

Example 3.2 in [1] shows that the map D given by D

(
a b

0 c

)
=

(
0 b

0 0

)
,

where the elements a, b, c ∈ Z
+∪{0} is a derivation. It is true only for the second

order matrices. Now we present the following example.

Example. Let UTMn(S) is the semiring ot the upper triangular matri-
ces of order n with entries from the additively idempotent semiring S. Let for
A = (aij) ∈ UTMn(S) we define D(A) = A\diag(a11, . . . , ann). For B = (bij) ∈

UTMn(S) the arbitrary element of D(AB) is

j∑

k=i

aikbkj, where 1 ≤ i ≤ k ≤ j ≤ n.

On the other hand the arbitrary element of the matrix D(A)B is
∑

1<k≤j

aikbkj.

Also the arbitrary element of the matrix AD(B) is
∑

i≤k<j

aikbkj. Since S is

an additively idempotent semiring, it follows that
∑

i<k<j

aikbkj +
∑

i<k<j

aikbkj =

∑

i<k<j

aikbkj. So D(AB) = D(A)B + AD(B) and since D is evidently linear, it

follows that D is a derivation.

This example shows the crucial role of the additively idempotent semir-
ings for the derivations in semiring theory. In Theorem 2.2. in [3] Kim, Roush
and Markowsky prove that any finite additively idempotent semiring can be rep-
resented as the endomorphism semiring of a finite chain. So, the present paper
investigate the derivations in a finite endomorphism semiring.

Following [8], we fix a finite chain Cn = ({0, 1, . . . , n− 1}, ∨) and denote
the endomorphism semiring of this chain with ÊCn For elements a0, a1, . . . , ak−1 ∈
Cn, where k ≤ n, a0 < a1 < . . . < ak−1 we denote A = {a0, a1, . . . , ak−1}. Now,
consider endomorphisms α ∈ ÊCn with Im(α) ⊆ A. The set of the all such

endomorphisms α is a maximal simplex. We denote this simplex by σ
(n)
k (A) =

σ(n){a0, a1, . . . , ak−1}. The endomorphisms α ∈ σ(n){a0, a1, . . . , ak−1} such that

α(0) = · · · = α(i0 − 1) = a0, α(i0) = · · · = α(i0 + i1 − 1) = a1, · · ·

α(i0 + · · · + ik−2) = · · · = α(i0 + · · · + ik−1 − 1) = ak−1
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we denote by α = (a0)i0(a1)i1 . . . (ak−1)ik−1
, where i0 + i1 + · · ·+ ik−1 = n.

Any endomorphism α = (a0)i0(a1)i1 . . . (ak−1)ik−1
can be represented as

sum (a0)n−i1(a1)i1 + (a0)n−i2(a2)i2 + · · ·+ (a0)n−ik−1
(ak−1)ik−1

. So the elements

of strings STR(n){a0, am}, where 1 ≤ m ≤ k − 1 form an additive base of the
simplex and these strings are called basic strings of the simplex.

2. Linearity of the projections. Let us consider the maps

∂m : σ(n){a0, a1, . . . , ak−1} → STR(n){a0, am},

where 1 ≤ m ≤ k − 1, such that for any α = (a0)i0(a1)i1 . . . (ak−1)ik−1
, where

i0 + i1 + · · ·+ ik−1 = n,

∂m(α) = (a0)i0(am)n−i0 .

These maps are called projections of the simplex on the basic strings.

Proposition 1. For any α, β ∈ σ(n){a0, a1, . . . , ak−1} and projection

∂m : σ(n){a0, a1, . . . , ak−1} → STR(n){a0, am},

where 1 ≤ m ≤ k − 1, it follows ∂m(α+ β) = ∂m(α) + ∂m(β).

P r o o f. We consider the endomorphisms α = (a0)i0(a1)i1 . . . (ak−1)ik−1

and
β = (a0)j0(a1)j1 . . . (ak−1)jk−1

, i0 + i1 + · · ·+ ik−1= j0 + j1 + · · · + jk−1= n.

Case 1. Let i0 ≤ j0. Then α + β = (a0)i0(a1)s1 . . . (ak−1)sk−1
, i0 + s1 +

· · · + sk−1 = n and ∂m(α+ β) = (a0)i0(am)n−i0 = ∂m(α). Since i0 ≤ j0 imply
∂m(β) = (a0)j0(am)n−j0 ≤ (a0)i0(am)n−i0 = ∂m(α) it follows ∂m(α+ β) =
∂m(α) + ∂m(β).

Case 2. Let j0 ≤ i0. After the interchanging α and β it follows that
∂m(α+ β) = ∂m(α) + ∂m(β). ✷

3. Projection on the least basic string of a simplex. Now we
consider the set

D∂1 = {α|α ∈ σ(n){a0, a1, . . . , ak−1}, α(a1) ≤ a1}.

For α, β ∈ D∂1 we find (α + β)(a1) = α(a1) + β(a1) ≤ a1 and (αβ)(a1) =
β(α(a1)) ≤ β(a1) ≤ a1. So, we prove the following lemma
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Lemma 1. The set D∂1 is a subsemiring of the semiring

σ(n){a0, a1, . . . , ak−1}.

Lemma 2. For any α, β ∈ D∂1 , it follows

(1) ∂1(αβ) = ∂1(α)β + α∂1(β).

P r o o f. Let α = (a0)i0(a1)i1 . . . (ak−1)ik−1
, β = (a0)j0(a1)j1 . . . (ak−1)jk−1

,
where i0 + i1 + · · ·+ ik−1 = j0 + j1 + · · · + jk−1 = n.

Case 1. Let β(a1) = a0 and m, 1 ≤ m ≤ k − 1, be the largest positive
integer such that β(am) = a0. Then αβ = (a0)i0+···+im(a1)s1 . . . (ak−1)sk−1

, where
i0 + · · · + im + s1 + · · · + sk−1 = n. Now ∂1(αβ) = (a0)i0+···+im(a1)n−(i0+···+im).
Clearly ∂1(α) = (a0)i0(a1)n−i0 and so ∂1(α)β = a0. Since ∂1(β) = (a0)j0(a1)n−j0

and am ≤ j0 − 1, it follows α∂1(β) = (a0)i0+···+im(a1)n−(i0+···+im) and (1) holds.

Case 2. Let β(a0) = a0 and β(a1) = a1. Then
αβ = (a0)i0(a1)s1 . . . (ak−1)sk−1

,
where i0 + s1 + · · · + sk−1 = n and ∂1(αβ) = (a0)i0(a1)n−i0 . Clearly ∂1(α) =
(a0)i0(a1)n−i0 and so ∂1(α)β = (a0)i0(a1)n−i0 . Since ∂1(β) = (a0)j0(a1)n−j0 and
j0 − 1 ≤ a1, it follows α∂1(β) = (a0)i0(a1)n−i0 and (1 ) holds.

Case 3. Let β(a0) = β(a1) = a1 and m, 1 ≤ m ≤ k−1 be the largest pos-
itive integer such that β(am) = a1. Then αβ = (a1)i0+···+im(a2)s2 . . . (ak−1)sk−1

,
where i0 + · · · + im + s2 + · · · + sk−1 = n. Now ∂1(αβ) = a1. Clearly ∂1(α) =
(a0)i0(a1)n−i0 and so ∂1(α)β = a1. Since ∂1(β) = (a0)j0(a1)n−j0 and a0 > j0 − 1,
it follows α∂1(β) = a1 and (1) holds. ✷

Theorem 1. The map ∂1 : D∂1 → STR(n){a0, a1} is a derivation. The

maximal subsemiring of σ(n){a0, a1, . . . , ak−1}, closed under the derivation ∂1 is

D∂1 .

P r o o f. Using Proposition 1 and Lemmas 1 and 2 we immediately prove
that ∂1 : D∂1 → STR(n){a0, a1} is a derivation. To prove the second part of the
theorem we consider three cases.

Case 1. Let β(a0) = a0 and β(a1) > a1. Then
αβ = (a0)i0(a2)s2 . . . (ak−1)sk−1

,
where i0 + s2 + · · · + sk−1 = n and ∂1(αβ) = (a0)i0(a1)n−i0 . Since ∂1(α) =
(a0)i0(a1)n−i0 , it follows ∂1(α)β = (a0)i0(a2)r2 . . . (ak−1)rk−1

, where i0+r2+ · · ·+
rk−1 = n. Now ∂1(α)β > ∂1(αβ), hence (1) does not hold.
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Case 2. Let β(a0) = a1 and β(a1) = ap, where 1 < p ≤ k − 1. Then
αβ = (a1)i0(ap)sp . . . (ak−1)sk−1

, where i0 + sp + · · ·+ sk−1 = n and ∂1(αβ) = a1.
Clearly ∂1(α) = (a0)i0(a1)n−i0 . Since β(a1) = ap, where 1 < p ≤ k − 1, then
∂1(α)β = (a1)i0(ap)n−i0 > a1 = ∂1(αβ). So, (1) does not hold.

Case 3. Let β(a0) = ap, where 1 < p ≤ k−1 and p is the largest positive
integer with this property. Then αβ = (ap)sp . . . (ak−1)sk−1

, where sp+· · ·+sk−1 =
n and in all cases ∂1(αβ) = a1. Since β(a0) = ap, where 1 < p ≤ k− 1, it follows
∂1(α)β = (ap)i0(ap+1)rp+1

. . . (ak−1)rk−1
, where i0 + rp+1 + · · · + rk−1 = n. So,

∂1(α)β > ∂1(αβ).

Hence (1) does not hold again and this completes the proof. ✷

4. Projection on a middle basic string of a simplex. Here, for
fixed m, 1 < m < k − 1, we consider the projection

∂m : σ(n){a0, a1, . . . , ak−1} → STR(n){a0, am}

such that for any α = (a0)i0(a1)i1 . . . (ak−1)ik−1
, where i0 + · · ·+ ik−1 = n,

∂m(α) = (a0)i0(am)n−i0 .

Let R1m = {α|α ∈ σ(n){a0, a1, . . . , ak−1}, α(am) = a0}.

If α, β ∈ R1m, then (α + β)(am) = α(am) + β(am) = a0 and (αβ)(am) =
β(α(am)) = β(a0) = a0. So, R1m is a subsemiring of σ(n){a0, a1, . . . , ak−1}.

Let R2m = {α|α ∈ σ(n){a0, a1, . . . , ak−1}, α(a1) ≥ a1, α(am) ≤ am}.

If α, β ∈ R2m, then (α + β)(a1) = α(a1) + β(a1) ≥ a1, (α + β)(am) =
α(am) + β(am) ≤ am, (αβ)(a1) = β(α(a1)) ≥ β(a1) ≥ a1 and (αβ)(am) =
β(α(am)) ≤ β(am) ≤ am. So, R2m is a subsemiring of σ(n){a0, a1, . . . , ak−1}.

Now for α ∈ R1m and β ∈ R2m we obtain:

• (α+ β)(a1) = α(a1)+ β(a1) = a0 + β(a1) ≥ a1, (α+ β)(am) = α(am) +
β(am) = a0 + β(am) ≤ am. Hence α+ β ∈ R2m.

• Let β(a0) = a0. Then (αβ)(am) = β(α(am)) = β(a0) = a0. Hence
αβ ∈ R1m.

• Let β(a0) ≥ a1. Then (αβ)(a1) = β(α(a1)) = β(a0) ≥ a1 and (αβ)(am) =
β(α(am)) = β(a0) ≤ β(am) ≤ am. Hence αβ ∈ R2m.

• (βα)(am) = α(β(am)) ≤ α(am) = a0. Hence βα ∈ R1m.

Let D∂m = R1m ∪R2m. Thus we have proved

Lemma 3. The set D∂m is a subsemiring of the semiring

σ(n){a0, a1, . . . , ak−1}.
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Lemma 4. For any α, β ∈ D∂m , it follows

(2) ∂m(αβ) = ∂m(α)β + α∂m(β).

P r o o f. Let α = (a0)i0(a1)i1 . . . (ak−1)ik−1
and β = (a0)j0(a1)j1 . . .

(ak−1)jk−1
, where i0 + i1 + · · ·+ ik−1 = j0 + j1 + · · ·+ jk−1 = n.

Case 1. Let β ∈ R1m. Then β(am) = a0. Let p, m ≤ p ≤ k − 1, be the
largest positive integer such that β(ap) = a0. Since ap ≤ j0 − 1 < ap+1, it follows
αβ = (a0)i0+···+ip(a1)s1 . . . (ak−1)sk−1

, where i0 + · · · + ip + s1 + · · · + sk−1 = n.
Hence ∂m(αβ) = (a0)i0+···+ip(am)n−(i0+···+ip). Clearly ∂m(α) = (a0)i0(am)n−i0

and then ∂m(α)β = a0. On the other hand ∂m(β) = (a0)j0(am)n−j0 . Since
ap ≤ j0 − 1 < ap+1, it follows α∂m(β) = (a0)i0+···+ip(am)n−(i0+···+ip) and (2)
holds.

Case 2. Let β ∈ R2m. Then β(a1) ≥ a1 and β(am) ≤ am.

Case 2-1. Let β(a0) = a0, β(a1) ≥ a1, β(am) = ap ≤ am. Then αβ =
(a0)i0(a1)s1 . . . (ak−1)sk−1

, i0 + s1 + · · ·+ sk−1 = n and ∂m(αβ) = (a0)i0(am)n−i0 .
Clearly ∂m(α) = (a0)i0(am)n−i0 and so ∂m(α)β = (a0)i0(ap)n−i0 . Since ∂m(β) =
(a0)j0(am)n−j0 and a0 ≤ j0 − 1 < a1, it follows α∂m(β) = (a0)i0(am)n−i0 and (2)
holds.

Case 2-2. Let β(a0) ≥ a1, β(am) = aq ≤ am. Then αβ = (a1)s1 . . .
(ak−1)sk−1

, where s1 + · · · + sk−1 = n, and ∂m(αβ) = am. Clearly ∂m(α) =
(a0)i0(am)n−i0 and so ∂m(α)β = (ap)i0(aq)n−i0 , where β(a0) = ap and p ≤ q.
Since ∂m(β) = am, it follows α∂m(β) = am and (2) holds. ✷

Theorem 2. The map ∂m : D∂m → STR(n){a0, a1}, where 1 < m < k − 1,
is a derivation. The semiring D∂m is the maximal subsemiring of the simplex

σ(n){a0, a1, . . . , ak−1}, closed under the derivation ∂m.

P r o o f. From Proposition 1 and Lemmas 3 and 4 we prove that ∂m :
D∂m → STR(n){a0, am} is a derivation. In the second part we consider four cases.

Case 1. Let p, 1 ≤ p < m be the largest positive integer such that
β(ap) = a0 and q, p < q ≤ m be the least positive integer such that β(am) = aq.
Then αβ = (a0)i0+···+ip(a1)s1 . . . (ak−1)sk−1

, where i0+· · ·+ip+s1+· · ·+sk−1 = n

and ∂m(αβ) = (a0)i0+···+ip(am)n−(i0+···+ip). Since ∂m(α) = (a0)i0(am)n−i0 then
∂m(α)β = (a0)i0(aq)n−i0 . On the other hand ∂m(β) = (a0)j0(am)n−j0 . Since
ap ≤ j0 − 1 < ap+1, it follows α∂m(β) = (a0)i0+···+ip(am)n−(i0+···+ip).
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Case 1-1. Let q ≤ m. Then

∂m(α)β + α∂m(β) = (a0)i0(aq)n−i0 + (a0)i0+···+ip(am)n−(i0+···+ip) =

(a0)i0(aq)i1+···+ip(am)n−(i0+···+ip) > (a0)i0+···+ip(am)n−(i0+···+ip) = ∂m(αβ).

Case 1-2. Let q > m. Then

∂m(α)β + α∂m(β) = (a0)i0(aq)n−i0 + (a0)i0+···+ip(am)n−(i0+···+ip) =

(a0)i0(aq)n−i0 > (a0)i0+···+ip(am)n−(i0+···+ip) = ∂m(αβ).

Hence, (2) does not hold.

Case 2. Let β(a0) = a0, β(a1) ≥ a1 and β(am) = ap, where m <

p ≤ k − 1. Then αβ = (a0)i0(a1)s1 . . . (ak−1)sk−1
, i0 + s1 + · · · + sk−1 = n and

∂m(αβ) = (a0)i0(am)n−i0 . Since ∂m(α) = (a0)i0(am)n−i0 , it follows ∂m(α)β =
(a0)i0(ap)n−i0 > (a0)j0(am)n−j0 = ∂m(αβ) and (2) does not hold.

Case 3. Let β(a0) = ap, where 1 ≤ p ≤ m and β(am) = aq, where
m < q ≤ k − 1. Then αβ = (ap)sp . . . (ak−1)sk−1

, where sp + · · · + sk−1 = n, and
∂m(αβ) = am. Clearly ∂m(α) = (a0)i0(am)n−i0 and so ∂m(α)β = (ap)i0(aq)n−i0 .
Since ∂m(β) = am, it follows α∂m(β) = am. Thus we have

∂m(α)β + α∂m(β) = (ap)i0(aq)n−i0 + am = (am)i0(aq)n−i0 > am = ∂m(αβ).

Hence, (2) does not hold.

Case 4. Let β(a0) = ap, where m < p ≤ k − 1 and β(am) = aq,
where p ≤ q ≤ k − 1. Then αβ = (ap)sp . . . (ak−1)sk−1

, where sp + · · · + sk−1 =
n, and ∂m(αβ) = am. Since ∂m(α) = (a0)i0(am)n−i0 , it follows ∂m(α)β =
(ap)i0(aq)n−i0 > am = ∂m(αβ). Hence (2) does not hold again and this com-
pletes the proof of the theorem. ✷

5. Projection on the biggest basic string of a simplex. Let

S1 = {α|α ∈ σ(n){a0, a1, . . . , ak−1}, α(ak−1) = a0}.

For α, β ∈ S1 we have (α + β)(ak−1) = α(ak−1) + β(ak−1) = a0 and
(αβ)(ak−1) = β(α(ak−1)) = β(a0) = a0. So, S1 is a subsemiring of
σ(n){a0, a1, . . . , ak−1}.

Let us consider the set S2 = {α|α ∈ σ(n){a0, a1, . . . , ak−1}, α(a1) ≥ a1}.
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If α, β ∈ S2, it follows (α+ β)(a1) = α(a1) + β(a1) ≥ a1 and (αβ)(a1) =
β(α(a1)) ≥ β(a1) ≥ a1. So, S2 is a subsemiring of σ(n){a0, a1, . . . , ak−1}.

Now, for α ∈ S1 and β ∈ S2 it follows
• (α+ β)(a1) = α(a1) + β(a1) = a0 + β(a1) ≥ a1, hence α+ β ∈ S2.
• Let β(a0) = a0. Now, (αβ)(ak−1) = β(α(ak−1)) = β(a0) = a0, so

αβ ∈ S1.
• Let β(a0) ≥ a1. Now, (αβ)(a1) = β(α(a1)) = β(a0) ≥ a1, so αβ ∈ S2.
• Let α(β(a1)) = α(a1). Now, (βα)(a1) = α(β(a1)) = α(a1) = a0, so,

αβ ∈ S1.
• Let α(β(a1)) > α(a1). Now, (βα)(a1) = α(β(a1)) > α(a1) = a0, so,

(βα)(a1) ≥ a1 and αβ ∈ S2.
Let D∂k−1

= S1 ∪ S2. Thus we have proved

Lemma 5. The set D∂k−1
is a subsemiring of the semiring

σ(n){a0, a1, . . . , ak−1}.

Lemma 6. For any α, β ∈ D∂k−1
, it follows

(3) ∂k−1(αβ) = ∂k−1(α)β + α∂k−1(β).

P r o o f. Let α = (a0)i0(a1)i1 . . . (ak−1)ik−1
and β = (a0)j0(a1)j1 . . .

(ak−1)jk−1
, where i0 + i1 + · · ·+ ik−1 = j0 + j1 + · · ·+ jk−1 = n.

Case 1. Let β ∈ S1. Then β(a0) = · · · = β(ak−1) = a0. Then αβ = a0
and ∂k−1(αβ) = a0. Clearly ∂k−1(α) = (a0)i0(ak−1)n−i0 and so ∂k−1(α)β = a0.
Since ∂k−1(β) = a0, it follows α∂k−1(β) = a0 and (3) holds.

Case 2. Let β ∈ S2. Then β(a1) ≥ a1.

Case 2-1. Let β(a0) = a0, β(a1) ≥ a1 and β(ak−1) = am, where 1 ≤
m ≤ k − 1. Then αβ = (a0)i0(a1)s1 . . . (ak−1)sk−1

, where i0 + s1 + · · ·+ sk−1 = n

and ∂k−1(αβ) = (a0)i0(ak−1)n−i0 . Clearly ∂k−1(α) = (a0)i0(ak−1)n−i0 and then
∂k−1(α)β = (a0)i0(am)n−i0 . On the other hand ∂k−1(β) = (a0)j0(ak−1)n−j0 and
since j0 − 1 < a1, it follows α∂k−1(β) = (a0)i0(ak−1)n−i0 and (3) holds.

Case 2-2. Let β(a0) ≥ a1. Then αβ ≥ a1 and ∂k−1(αβ) = ak−1. Since
∂k−1(β) = ak−1, it follows α∂k−1(β) = ak−1. Hence

∂k−1(α)β + α∂k−1(β) = ∂k−1(α)β + ak−1 = ak−1 = ∂3(αβ)

and (3) holds. ✷
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Theorem 3. The map ∂k−1 : D∂k−1
→ STR(n){a0, ak−1} is a derivation.

The maximal subsemiring of σ(n){a0, a1, . . . , ak−1}, closed under the derivation

∂k−1 is D∂k−1
.

P r o o f. Using Proposition 1 and Lemmas 5 and 6 we prove that ∂k−1 :
D∂k−1

→ STR(n){a0, ak−1} is a derivation. In the second part we consider two
cases.

Case 1. Let β(ak−1) = ak−1 andm, 1 ≤ m ≤ k−1, be the largest positive
integer such that β(am) = a0. Then αβ = (a0)i0+···+im(a1)s1 . . . (ak−1)sk−1

, where
i0+· · ·+im+s1+· · ·+sk−1 = n. Now ∂k−1(αβ) = (a0)i0+···+im(ak−1)n−(i0+···+im).
Since ∂k−1(α) = (a0)i0(ak−1)n−i0 , it follows ∂k−1(α)β = (a0)i0(ak−1)n−i0 >

∂k−1(αβ), hence, (3) does not hold.

Case 2. Let β(ap) = a0 and β(ak−1) < aq, where 1 ≤ p < k − 1
and 1 ≤ q < k − 1. Then αβ = (a0)i0+···+ip(a1)s1 . . . (aq)sq , where i0 + · · · +
ip + s1 + · · · + sq = n and ∂k−1(α)β = (a0)i0+···+ip(ak−1)n−(i0+···+ip). Clearly
∂k−1(α) = (a0)i0(ak−1)n−i0 . Then ∂k−1(α)β = (a0)i0(aq)n−i0 . Since ∂k−1(β) =
(a0)j0(ak−1)n−j0 and ap ≤ j0 − 1 < ap+1, then

α∂k−1(β) = (a0)i0+···+ip(ak−1)n−(i0+···+ip).
Thus we have

∂k−1(α)β + α∂k−1(β) = (a0)i0(aq)n−i0 + (a0)i0+···+ip(ak−1)n−(i0+···+ip) =

(a0)i0(aq)i1+···+ip(ak−1)n−(i0+···+ip) > (a0)i0+···+ip(ak−1)n−(i0+···+ip) = ∂k−1(αβ),

hence (3) does not hold and this completes the proof. ✷

Remark. It is possible to extend Section 2 for 1 ≤ m ≤ k − 1. Then
R11 ∪ R21 = D∂1 and also R1 k−1 = S1, R2 k−1 = S2. But, now the new Lemma
4 and new Theorem 2 will be consisting much more cases and we “can’t see the
wood for the trees”.
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