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Abstract. In this paper we describe all pairs of binary vectors (u,v) such
that the set of vectors obtained by t deletions in v is a subset of the set
of vectors obtained by t deletions in u for t = 1, 2. Such pairs play an
important role for finding the value of L2(n, t), the maximum cardinality of
binary t-deletion-correcting codes of length n

1. Introduction. When a binary message is transmitted through a
noisy channel some of its symbols may change. The receiver needs reliable tools
for recovering the message. This is done by adding some extra symbols (called
check symbols) to the original message and the result is a longer message. The
set of all such messages is called an error-correcting code. One of the main goals
of coding theory is finding codes with good error-correcting capabilities.

Another possible distortion of the message is the loss of some of its sym-
bols or insertion of some extra symbols. In this case the receiver gets shorter or
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longer message and he does not know which of the symbols were lost or inserted.
Deletion-correcting codes and insertion-correcting codes are designed to correct
such deletions or insertions. Levenshtein has shown [5] that deletion-correcting
codes and insertion-correcting codes are essentially the same objects. In this
paper we consider only deletion-correcting codes. A code is called t-deletion-
correcting if it corrects any t deletions. For more information and useful results
the reader is referred to [2, 3, 5, 6, 7, 9, 10, 11, 12].

Example 1. Consider the binary code C = {00000, 11111, 00011, 11000,
10101, 01110}. For a given codeword we may delete any of its five symbols. As
a result we obtain a set of vectors of length 4. Direct verification shows that all
six sets obtained from the six codewords are disjoint. Therefore C is 1-deletion-
correcting code.

Definition 1. The Levenshtein distance dL(x,y) of two binary vectors is

defined as the minimum number of deletions and insertions needed to transform

x into y.

For example, dL(0100, 110101) = 4. Note that in the above definition the
vectors x and y do not need to be of the same length.

Definition 2. Deletion distance dd(u,v) between two vectors u and v

of equal length is defined as one-half of the smallest number of deletions and

insertions needed to change u to v, [10].

For example, dd(00000, 11111) = 5 whereas dd(00011, 10101) = 2. It is
clear that for vectors u and v of equal length we have

dd(u,v) =
1

2
dL(u,v).

For a given code C the deletion distance dd(C) is defined as

dd(C) = min{dd(u,v) | u,v ∈ C,u 6= v}.

For any two distinct codewords u and v from t-deletion-correcting code C of
length n we have dd(u,v) > t (or, equivalently dL(u,v) > 2t).

Denote by L2(n, t) the maximum cardinality of a binary t-deletion-correct-
ing code C of length n. A binary t-deletion-correcting code C of length n and
cardinality L2(n, t) is called optimal.

For a binary vector u of length n denote by Dt(u) the set of all vectors
of length n− t obtained from u by deleting t entries in u. In other words, Dt(u)
contains all subsequences of u of length n− t.



Deletion-correcting codes and dominant vectors 279

The size of Dt(u) depends on u. The minimal size of Dt(u) equals 1 and
is achieved only for u = pn where p ∈ {0, 1}. The problem of finding the maximal
size of Dt(u) is discussed in [1, 8].

A code C is t-deletion-correcting code if the sets Dt(u) for u ∈ C are
disjoint. Further, if the sets Dt(u) for u ∈ C partition the set Fn−t

q then the code
is called perfect.

As in the case of error-correcting codes the two main research problems
for deletion-correcting codes are:

1. For given n and t find L2(n, t), the maximum cardinality of a binary
t-deletion-correcting code of length n.

2. When L2(n, t) is known, find all distinct (in some sense) optimal codes.

In general, finding the value of L2(n, t) is an open problem in coding
theory. The efforts are concentrated on specific values of n and t. Tables with
known values of L2(n, t) for different n and t can be found in [3] and [4].

2. Preliminaries. Any permutation of coordinates of a given code
C does not alter its error-correcting capabilities. On the contrary, for deletion-
correcting codes a permutation of coordinates, in general, does not result in a code
with the same deletion-correcting properties. Nevertheless, there are two simple
observations that describe when two deletion-correcting codes are essentially the
same and allow to adopt different notion for equivalence. First, we may read the
codewords backwards and second, we may change 0 and 1. This leads to the
following

Definition 3. Two deletion-correcting codes C1 and C2 are equivalent if

one of the following is true:

1. (u1, u2, . . . , un) ∈ C1 if and only if (u1, u2, . . . , un) ∈ C2;

2. (u1, u2, . . . , un) ∈ C1 if and only if (un, un−1, . . . , u1) ∈ C2;

3. (u1, u2, . . . , un) ∈ C1 if and only if (un, un−1, . . . , u1) ∈ C2.

Here, for x ∈ {0, 1} the element x ∈ {0, 1} is such that {x, x} = {0, 1}.

In finding the exact value of L2(n, t) usually at some stage an exhaus-
tive computer search is performed. As in any computer search a good pruning
technique is required. It turns out that when choosing the codewords of optimal
deletion-correcting code some of the vectors may be left out.

Definition 4. We say that a vector u is t-dominant if there exists a

vector v such that u 6= v and Dt(v) ⊆ Dt(u). Alternatively, v is t-subordinate

of u when u is t-dominant over v.
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It is clear that if u is t-dominant over v then for any s > t the vector u

is s-dominant over the vector v. If a codeword u is t-dominant over the vector v
then

(C \ {u}) ∪ {v}

is also t-deletion-correcting code. In other words a dominant codeword may be
replaced by its subordinate vector. Hence, in computer search we may exclude
all dominant vectors from consideration. Therefore it is important to know all
pairs of vectors (u,v) such that Dt(v) ⊆ Dt(u).

Furthermore, we may assume that an optimal code C includes the vectors
0n and 1n as codewords. Indeed, for p ∈ {0, 1}:

• if pn−t ∈ Dt(u) for a codeword u then, as above, replace u by pn and

• if pn−t 6∈ Dt(u) for any codeword u then C ∪ {pn} is t-deletion-correcting
code, i.e. C is not optimal.

A code C is called basic if it does not contain dominant vectors. In the
lights of the last two definitions the main problems for deletion-correcting codes
become:

1. For certain n and t find L2(n, t);
2. Find all inequivalent basic optimal codes.

3. Results. As explained in the previous section knowing the pairs of
t dominant vectors plays an important role in finding L2(n, t). In what follows
we describe all pairs of binary vectors (u,v) such that u is t-dominant over v for
t = 1 and t = 2.

For the two trivial cases v = 0n, v = 1n and for any t we have:

• if v = 0n then u is t-dominant over v if and only if u 6= v and wt(u) ≤ t;

• if v = 1n then u is t-dominant over v if and only if u 6= v and wt(u) ≥ n−t.

In what follows the vector u = (u1, u2, . . . , un) is t-dominant over v =
(v1, v2, . . . , vn) and {p, q} = {0, 1}. We begin with a useful observation.

Proposition 1. Let n ≥ 2 be positive integer. Consider two vectors x

and y of lengths n and n − 1 respectively. If any single deletion changes x to y

then all entries in x and y are equal.

P r o o f. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn−1) and choose a
positive integer k such that 1 ≤ k ≤ n−1. By deleting xk we have that xk+1 = yk
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and by deleting xk+1 we infer that xk = yk. Therefore xk = xk+1 = yk for any
k = 1, 2, . . . , n − 1 which implies that x1 = x2 = · · · = xn = y1 = y2 = · · · =
yn−1. ✷

Remark. The above proposition is true also for vectors x and y of
lengths n ≥ 3 and n − 2, respectively, when the result of any two deletions in x

is y. The proof is straightforward.

First, we describe all 1-dominant vectors.

Proposition 2. Let u be 1-dominant over v and v 6= 0n, 1n. Then

u = pm−1qpqn−m−1 and v = pmqn−m for some positive integer m.

P r o o f. Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn). For n = 2
the result is trivial, so let n ≥ 3. Assume first that u1 6= v1 and let v1 = p,
u1 = q. Any deletion of vi for i ≥ 2 results in a vector w ∈ D1(u) with first
coordinate v1 6= u1. This is possible only if w is obtained from u by deleting its
first coordinate and u2 = v1 = p. Proposition 1 applied for x = (v2, . . . , vn) and
y = (u3, . . . , un) implies that v2 = v3 = · · · = vn = u3 = · · · = un. Since v 6= pn

we infer that

(1) u = qpqn−2 and v = pqn−1.

It is easy to check that u is 1-dominant over v. In this case m = 1.

Assume u = (p, . . . , p, uk+1, . . . , un) and v = (p, . . . , p, vk+1, . . . , vn) where
k ≥ 1 and uk+1 6= vk+1.

If vk+1 = q then uk+1 = p. By deleting the first coordinate in v we obtain
a vector w with k-th coordinate equals to q. Note that all vectors from D1(u)
have their first k entries equal to p. Therefore w 6∈ D1(u), a contradiction.

Hence, vk+1 = p and uk+1 = q. Since v 6= pn we have that n ≥ k + 2.
By deleting vi for arbitrary i ≥ k + 2 we obtain a vector w with first k + 1
entries equal to p. The only way to obtain such a vector by 1 deletion in u

is to have uk+2 = p and to delete uk+1 = q. If n = k + 2 then u = pn−2qp,
v = pn−1q, and this pair is equivalent to the pair described in (1). If n ≥ k + 3
then Proposition 1 applied for x = (vk+2, . . . , vn) and y = (uk+3, . . . , un) implies
that vk+2 = · · · = vn = uk+3 = · · · = un. Since v 6= pn we conclude that
v = pk+1qn−k−1 and u = pkqpqn−k−2. In this case m = k + 1. ✷

All pairs u and v such that u is 1-dominant over v are presented in
Table 1.
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Table 1

u v

1. wt(u) = 1 0n

2. wt(u) = n− 1 1n

3. pm−1qpqn−m−1 pmqn−m

We proceed now with the case t = 2. Since the case v = pn is clear in
what follows we assume that v 6= pn.

For n = 3 up to equivalence we have: v = ppq and u 6= p3, q3,v or
v = pqp and u 6= p3, q3,v.

For n = 4 we have that up to equivalence there exist 5 choices for v,
namely: pppq, ppqp, ppqq, pqpq and pqqp. For any of these instances it is easy to
enumerate all vectors u that are 2-dominant over v.

Let n ≥ 5 be a positive integer and u = (u1, u2, . . . , un) be 2-dominant
over v = (v1, v2, . . . , vn). Denote k = min{i | ui 6= vi} and s = max{i | ui 6= vi}
where k ≤ s. Up to equivalence we split the proof in three cases depending on k

and s.

Case A. k = s, i.e., d(u,v) = 1;

Case B. k = 1 and s = n, i.e., u1 6= v1 and un 6= vn;

Case C. k 6= s and k > 1, i.e., u1 = v1.

Remark. Up to equivalence the case k = 1, s < n and s 6= k is a part
of C by considering (un, un−1, . . . , u1) and (vn, vn−1, . . . , v1) instead of u and v.

Propositions 3, 4 and 5 settle the cases A, B and C, respectively.

Proposition 3. If u is 2-dominant over v and d(u,v) = 1 then up to

equivalence u = pmqpn−m−2q and v = pn−1q or u = pmqpn−m−3qp and v =
pn−2qp for some integer m ≥ 0.

P r o o f. Since d(u,v) = 1 we have that there exists a positive integer k
such that ui = vi for i 6= k and uk = q, vk = p. The number of elements q in u is
with one more than the corresponding entries in v. Therefore if there exist two
or more entries q in v then the vector w obtained by deleting two elements q in v

has at least three elements q less than u. Therefore w 6∈ D2(u). Since v 6= pn we
conclude that v = pbqpn−b−1 for some integer b for which 0 ≤ b ≤ n − 1. Up to
equivalence u = pk−1qpb−kqpn−b−1. If n− b− 1 ≥ 2 then the deletion of the last
two symbols from v gives a vector not in D2(u). Thus, n− b− 1 = 0 or 1 and we
obtain u = pmqpn−m−2q and v = pn−1q or u = pmqpn−m−3qp and v = pn−2qp.
It is easy to check that in both cases u is 2-dominant over v. ✷
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Proposition 4. Let u be 2-dominant over v and u1 6= v1, un 6= vn. Then

up to equivalence u = qpqn−4pq and v = pqn−2p or u = qpn−3qp and v = pn−1q.

P r o o f. Without loss of generality we may assume v1 = p and u1 = q.
1. Let vn = p and un = q. The deletion of any two elements from

v2, v3, . . . , vn−1 gives a vector from D2(u) with first coordinate v1 = p and last
coordinate vn = p. Such a vector can be obtained from u only if we delete
u1 = q and un = q. Therefore u2 = un−1 = p and any two deletions from
(v2, v3, . . . , vn−1) imply (u3, u4, . . . , un−2). It follows from the remark after Propo-
sition 2 that v2 = v3 = · · · = vn−1 = u3 = u4 = · · · = un−2. Since v 6= pn we
have that u = qpqn−4pq and v = pqn−2p. A direct verification shows that indeed
u is 2-dominant over v.

2. Let vn = q and un = p. As in the previous case we conclude that
u2 = p, un−1 = q and v2 = v3 = · · · = vn−1 = u3 = · · · = un−2. Up to
equivalence u = qpn−3qp, v = pn−1q and it is easy to see that u is 2-dominant
over v. ✷

Proposition 5. Let u be 2-dominant over v, u1 = v1 and k 6= s where

k = min{i | ui 6= vi} and s = max{i | ui 6= vi}. Then up to equivalence all such

vectors u and v are presented in the following table.

u v

1. pqpm−1qpqn−m−3 pqpmqn−m−2

2. pqmpqpn−m−3 pqm+1pn−m−2

3. p2qpn−3 pqpn−2

4. pm−2qppqpn−m−2 pmqpn−m−1

5. pm−1qpqpn−m−2 pmqpn−m−1

6. pn−4qppq pn−2qp

7. pn−3qpq pn−2qp

8. pmqpn−m−3qp pn−1q

9. pm−2qpqpqn−m−2 pmqn−m

10. pm−2qppqqn−m−2 pmqn−m

11. pn−2qp pn−1q

12. pn−3qp2 pn−1q

13. pm−1qpqpqn−m−3 pmqpqn−m−2

14. pn−3q2p pn−2q2

15. pn−4qppq pn−3q2p

16. pn−4qpqp pn−3qpq

17. pm−1qn−m−1pq pmqn−m−1p

18. pm−1qn−mp pmqn−m
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P r o o f. Without loss of generality we may assume v1 = u1 = p. Note
that since k 6= s we have d(u,v) > 1.

1. If v2 = q and u2 = q then the deletion of v1 and an arbitrary vi
for i ≥ 3 implies the deletion of u1 in u. Thus u without its first 2 entries is
1-dominant over v without its first 2 entries. Hence, u = pqu1 and v = pqv1

where u1 is 1-dominant over v1 and d(u1,v1) > 1. Therefore the pair (u1,v1)
is equivalent to one of the pairs from Table 1 and d(u1,v1) > 1. Only the
third entry in Table 1 satisfies d(u1,v1) > 1. Hence, we obtain the following
pairs: u = pqpm−1qpqn−m−3 and v = pqpmqn−m−2; u = pqmpqpn−m−3 and
v = pqm+1pn−m−2. In both cases we have that u is 2-dominant over v.

2. If v2 = q and u2 = p then the deletion of v1 and arbitrary vi for i ≥ 3
results a vector w ∈ D2(u) with first coordinate v2 = q. To obtain w from u

by two deletions we should have u3 = q and we have to delete u1 and u2. We
obtain that a single deletion in (v3, v4, . . . , vn) gives (u4, u5, . . . , un). Proposition
1 implies that v3 = · · · = vn = u4 = · · · = un. Thus, u = ppqpn−3 and v = pqpn−2

or u = ppqn−2 and v = pqn−1. For both pairs u is 2-dominant over v but only
for the first pair we have d(u,v) > 1.

Let v2 = p and assume p = v1 = v2 = · · · = vm 6= vm+1 = q for some
m ≥ 2. If u1 = u2 = · · · = um = p the deletion of v1 and v2 implies the deletion
of two of the first m elements in u. Thus, u = v, a contradiction.

We conclude that k ≤ m and then u1 = · · · = uk−1 = p and uk = q.
For p ∈ {0, 1} and a vector w denote by np(w) the number of entries p

in the vector w.

• If nq(v) > nq(u) then delete two elements p from v and let w be the
resulting vector. Since nq(w) > nq(u) we have that w 6∈ D2(u).

• If nq(v) < nq(u) then np(v) > np(u). If nq(v) ≥ 2, i.e., there exist at
least two entries q in v then we delete two elements q from v and obtain
a contradiction as above. Therefore v = pmqpn−m−1 and nq(u) = 2 (if
nq(u) ≥ 3 the deletion of a symbol p and the symbol q in v gives a con-
tradiction). If um+1 = q then k = s, a contradiction. Assume first that
n−m− 1 ≥ 2. If ui = q for i 6= k and i ≤ m then, as above, the deletion
of vn−1 = p and vn = p gives a contradiction. Thus, for some i > m+1 we
have ui = q. It is easy to see that up to equivalence there exist two choices
for u: u = pm−2qppqpn−m−2 and u = pm−1qpqpn−m−2. If n − m − 1 = 1
then v = pn−2qp, u = pn−4qppq or u = pn−3qpq and if n−m− 1 = 0 then
v = pn−1q and u = pmqpn−m−3qp.

• Let nq(v) = nq(u). Note that in this case the deleted symbols from v are
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identical to the deleted symbols from u. If m ≥ k + 2 the deletion of the
first two entries in v gives a contradiction. If m = k + 1 then if there
exists i > m + 1 such that vi = p then the deletion of v1 and vi implies
a contradiction. Thus, v = pmqn−m and then for n − m ≥ 2 we have
u = pm−2qpqpqn−m−2 or u = pm−2qppqqn−m−2. For n − m = 1 we have
v = pn−1q and u = pn−2qp or u = pn−3qp2.

Let m = k. If there exist at least two entries p in (vm+2, . . . , vn) then the
deletion of these two elements gives a contradiction.

If un = vn = p then we may show as above that vn−1 = p and we have at
least two entries p in (vm+2, . . . , vn), a contradiction.

If un = vn = q then the same observations as above but starting from the
right to the left imply that u = pm−1qwpqb and v = pmqhpqb+1. If h

is not empty then the deletion of any two elements from qhp implies the
deletion of um and un−b. Proposition 1 gives that all entries in qhp are
equal which is not true. Therefore h is empty and then v = pmqpqn−m−2

and u = pm−1qum+1um+2pq
n−m−3. Since nq(v) = nq(u) we have that

{um+1, um+2} = {p, q}. Only one of the two cases gives 2-dominant vectors,
namely u = pm−1qpqpqn−m−3 and v = pmqpqn−m−2.

It remains to consider the case un 6= vn. If n ≤ m + 3 then an easy
enumeration gives:

– u = pn−2qp and v = pn−1q for n = m+ 1;

– u = pn−3q2p and v = pn−2q2 for n = m+ 2;

– u = pn−4qppq and v = pn−3q2p; u = pn−4qpqp and v = pn−3qpq for
n = m+ 3.

If n ≥ m + 4 then any two deletions in (vm+1, . . . , vn−1) imply un−1 = vn
and the deletion of um and un. By Proposition 1 we obtain that q =
vm+1 = · · · = vn−1 = um+2 = · · · = un−1, thus v = pmqn−m−1vn and
u = pm−1qn−m−1vnun.

Both choices of un 6= vn give 2-dominant pair. �
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