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Abstract. A resultant-based method to calculate the overdetermined
strata for degree 6 hyperbolic polynomials in one variable is revealed. This
method is a new method to calculate overdetermined strata. The overdeter-
mined strata in degree 6 have not been calculated before as the geometric
method used until now can not be generalized to degree n ≥ 6.

1. Introduction. We consider the polynomial P (x, a) = xn+a1x
n−1+

· · ·+an, x, ai ∈ R. This polynomial is called (strictly) hyperbolic if all its roots are
real (real and distinct). If P is (strictly) hyperbolic, then such are P (1),. . ., P (n−1)

as well. Examples of hyperbolic polynomials are the ones of all known orthogonal
families (e.g. the Legendre, Laguerre, Hermite, Tchebychev polynomials).
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tants.
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Some properties of hyperbolic polynomials and criteria of hyperbolicity
have been studied at the beginning of the twentieth century, see [18]. The inter-
est of hyperbolic polynomials appear in the theory of linear partial differential
equations, see [17], and in the potential theory, see [1], [2], [8], [9] and [10].

If the coefficients of a polynomial depend on parameters, we say that the
set of values taken by these parameters for which the polynomial is hyperbolic,
is the hyperbolicity domain denoted by Π∗. The change x 7→ x−a1/n reduces the
study of Π∗ to the case a1 = 0.

Lemma 1. In the case a1 = 0 the polynomial P is hyperbolic only if
a2 ≤ 0. If a1 = a2 = 0, then P is hyperbolic only for a2 = · · · = an = 0.

P r o o f. All derivatives of P must be hyperbolic, in particular P (n−2)(x) =
(n!/2)x2 + (n− 2)!a2, therefore a2 ≤ 0.

Let a1 = a2 = 0. As P (n−3) = (n!/6)x3 + (n − 3)!a3 must be hyperbolic,
one has a3 = 0 etc. ✷

A second change x =
√

|a2|x can reduce the study of Π∗ to the case
a1 = 0 and a2 = −1. Denote by Π = Π∗∩{a1 = 0, a2 = −1}. Hence, we consider
from now on the family of polynomials of the form

P (x, a) = xn − xn−2 + a3x
n−3 + · · ·+ an, x, ai ∈ R

Notation 2. We denote by x1 ≤ · · · ≤ xn the roots of P and by x
(k)
1 ≤

· · · ≤ x
(k)
n−k

the ones of P (k). We set x
(0)
j = xj.

Definition 3. We call arrangement of the roots of P,P ′, . . . , P (n−1) the
complete system of strict inequalities and equalities that hold for these roots. We
assume that the roots are arranged in a string in which any two roots occupying
consecutive positions are connected with a sign < or =. An arrangement is called
non-degenerate if there are no equalities between any two of the roots, i.e., no

equalities of the form x
(j)
i = x(r)q for any indices (i, j) 6= (q, r).

The configurations of the roots of P,P ′, . . . , P (n−1) are indicated on a fig-
ure by configuration vectors on which coinciding roots are put in square brack-
ets. E.g. the configuration vector (CV) corresponding to the point A([x1x2x

1
1],

x21, [x
1
2x

3
1], x

2
2, [x3x4x

1
3]), in Fig. 1, means that x1 = x2 = x11 < x21 < x12 = x31 <

x22 < x3 = x4 = x13.

Recall that, by applying the Rolle’s theorem several times one gets for
any i < j < n the standard Rolle’s restrictions

x
(i)
l ≤ x

(j)
l ≤ x

(i)
l+j−i.
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And, from the properties of multiple roots, we have the obvious condition
((

x
(i)
k = x

(i+1)
k

)

or
(

x
(i)
k+1 = x

(i+1)
k

))

⇒
(

x
(i)
k = x

(i+1)
k = x

(i)
k+1

)

.

The absence of some of the arrangements is closely connected with the
presence of overdetermined strata in any generic family of hyperbolic polynomials.
See [13] and [15].

In [6] we presented a resultant-based method to calculate the overde-
termined strata for degree 5 hyperbolic polynomials. This new method can be
generalized to calculate the overdetermined strata in degree greater than 5. In
this paper we will use it to calculate the overdetermined strata for degree 6 hy-
perbolic polynomials. These overdetermined strata in degree 6 were not known
before, because the geometric method, used until now, can not be generalized for
degree greater than 5.

The idea of our method is to use the fact that a common root between
two polynomials is a root of the resultant of these polynomials. We can then
transform the principal problem to a system of four-variables polynomials which
we resolve using the Gröbner basis techniques.

In the next section we will give the definition and examples of overdeter-
mined strata then we will explain the geometric method used in [5, 13, 14, 10, 11,
15, 16] to calculate them for degree 4 and 5 polynomials. In Section 3 we recall
the definitions of resultants and subresultants and we recall their properties. Our
main result is presented in the Section 5.

2. Geometric methods.

2.1. Definitions and properties.

Notation 4. We denote by PolRn the space of all monic degree n poly-
nomials in one variable with real coefficients. Denote by PPR

n the product
space PolRn × PolRn−1 · · · × PolR1 . A point of PPn is an n-tuple of polynomials
(Pn, Pn−1, · · · , P1) of respective degrees.

One can decompose the space PPn according to the multiplicities of the
roots of the different polynomials and the presence and multiplicities of their
common roots. The combinatorial objects enumerating the strata should be
called coloured partitions since they are partitions of C2

n+1 not necessarily distinct
points on R divided into groups of cardinalities n, n−1, · · · , 1 which we can think
of as having different colours (it is easy to check that this decomposition is actually
a Whitney stratification).

There is a natural embedding map π : PolRn →֒ PPn sending each monic
polynomial P of degree n to (P,P ′/n, P ′′/n(n− 1), · · · , P (n−1)/n!).
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Let λ be a coloured partition of C2
n+1 coloured points, Stλ ⊂ PPn be

the corresponding stratum and π(Stλ) = Stλ ∩ π(PolRn ) be its (probably empty)
intersection with the embedded space of polynomials π(PolRn ). We call this in-
tersection a stratum. Note that dimStλ equals the number of parts in λ.

Definition 5. The stratum Stλ is called overdetermined if the codimen-
sion of Stλ in PPn is greater than the codimension of π(Stλ) in π(Poln) (here
we assume that π(Stλ) 6= ∅). We denote by ̺ the difference between these codi-
mensions.

Remark 1. A polynomial P such that there are> n−2 equalities between
roots of P,P ′, · · · , P (n−1) belongs to an overdetermined stratum. Indeed, the
latter depends on n− 2 parameters (after the normalization a1 = 0, a2 = −1).

Definition 6. An overdetermined stratum is called non-trivial if ̺ is due
not only to the presence of the multiple roots in P and in its derivatives.

Example 7. The polynomial (x − 1)3(x + 1)3 has multiple roots, but
it defines a non-trivial stratum because 0 is a common root of all odd-degree
derivatives.

Definition 8. An overdetermined stratum is called old if the embedding
π : Poln−1 →֒ PPn−1 defines an overdetermined stratum in PPn−1. (“Old” is
used in the sense of “previously known”, i.e., known already for n − 1). When
n is odd (resp. even), an overdetermined stratum is called odd (resp. even) if
it is defined by an odd (resp. even) polynomial. Such are the strata defined by
Gegenbauer polynomials, see Definition 10.

Example 9. The stratum x5 −x3 +
1

4
x is old and odd. It is obtained by

integrating the degree 4 and even stratum x4 − x2 +
5

36
followed by a rescaling

and multiplication by a non-zero constant.

Definition 10. The Gegenbauer polynomial Gn is defined as the unique
polynomial of the kind

xn − xn−2 + an−3x
n−3 + · · ·+ a0

which is divisible by its second derivative. One can prove that it is strictly hy-
perbolic, and that it is odd or even together with n. The Gegenbauer polynomial

G4 := x4 − x2 +
5

36
has by definition two roots in common with G

(2)
4 (they are

equal to ± 1√
6
), and G

(1)
4 has 0 as a common root with G

(3)
4 . This makes three
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equalities between roots from the set of 10 roots of G4, G
(1)
4 , G

(2)
4 and G

(3)
4 .

Remark 2. For all n ≥ 4, the Gegenbauer polynomial P defines an
overdetermined stratum since it is completely defined by the condition of being
divisible by its second derivative, so we get the second supplementary condition
that P (n−1) = n!x divides all its derivatives that are odd-degree polynomials. So
the quantity ̺ is equal to (n− 2)/2.

2.2. Overdetermined strata for n = 4.

Theorem 11. There are no non-trivial overdetermined strata for n < 4.
For n = 4 the points A and B (see Fig. 1) define the only non-trivial overde-
termined strata, and all points (except A) on the boundary of the hyperbolicity
domain belong to trivial overdetermined strata.

P r o o f. For n = 2, there is only one arrangement with at least one equal-

ity between roots; it is [x1x
(1)
1 x2] that defines a trivial overdetermined stratum.

For n = 3, there are 4 arrangements with at least one equality be-

a

b

A

B

C

D E

KF G H

L M

D(0, 1)

D(0, 1)D(0, 1)

D(1, 2)D(1, 2)

D(0, 2)D(0, 2)

D(0, 3)

D(1, 3)

Fig. 1. The hyperbolicity domain for n = 4 . We denote by
D(i, j) = {(a, b) ∈ Π; Res(P (i), P (j)) = 0}
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tween roots, they are (x1, x
(1)
1 , [x2x

(2)
1 ], x

(1)
2 , x3), ([x1x

(1)
1 x2], x

(2)
1 , x

(1)
2 , x3]), (x1,

x
(1)
1 , x

(2)
1 , [x2x

(1)
2 x3]) and [x1x

(1)
1 x2x

(2)
1 x

(1)
2 x3]. The first one doesn’t define an

overdetermined stratum since codimPP3 Stλ = codimπ(Pol3) π(Stλ). The others
define trivial overdetermined strata.

For n = 4, at the point B we have

codimPP4 Stλ = 3 > codimπ(Pol4) π(Stλ) = 2,

so there is an overdetermined stratum.

At the point A we have codimPP4 Stλ = 5 > codimπ(Pol4) π(Stλ) = 2, so
there is an overdetermined stratum.

The stratum A is non-trivial because x
(1)
2 = x

(3)
1 isn’t an algebraic result

of the two equalities x1 = x2 and x3 = x4, in fact, for an hyperbolic polynomial,

if we have x1 = x2 and x3 = x4, then we should have also x
(1)
2 = x

(3)
1 .

At the point M we have a trivial overdetermined stratum since we can

have x3 6= x4 and x2 = x
(2)
1 using the change P 7−→ P + ε(x − x2), ε . 0. By

symmetry we prove that the point L defines a trivial overdetermined stratum.

At the point K there is a trivial overdetermined stratum because we can

have x2 = x
(3)
1 and x3 = x4 using the change P 7−→ P + ε(x − x2), ε . 0. By

symmetry we prove that the point F defines a trivial overdetermined stratum.

The point C defines a trivial overdetermined stratum because we can have

x2 6= x3 and x
(1)
2 = x

(3)
1 using the change P 7−→ P + ε, ε & 0.

Each of the open arcs AM,MK,KE,EC,CD,DF,FL,LA and the points
E and D defines a trivial overdetermined stratum because the value of ̺ de-
pends only on the presence of multiple roots of P and its derivatives. There
is only one case to be treated, the case where the arrangement is of the form

([x1x
(1)
1 x2x

(2)
1 x

(1)
2 x3x

(3)
1 x

(2)
2 x

(1)
3 x4]) which defines a trivial overdetermined stra-

tum. ✷

Corollary 12. The overdetermined strata and their corresponding con-
figuration vectors for n = 4 are

x4 − x2 +
5

36
, CV: (x1, x

(1)
1 , [x

(2)
1 x2], [x

(3)
1 x

(1)
2 ], [x

(2)
2 x3], x

(1)
3 , x4),

x4 − x2 +
1

4
, CV: ([x1x

(1)
1 x2], x

(2)
1 , [x

(1)
2 x

(3)
1 ], x

(1)
2 , [x3x

(1)
3 x4]).

Remark 3. We remark that

• All of the overdetermined strata for n = 4 are even.
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• The polynomial x4 − x2 +
5

36
x is a Gegenbauer polynomial.

2.3. Overdetermined strata for n = 5.

Theorem 13. The overdetermined strata and their corresponding config-
uration vectors for n = 5 are

x
5
− x

3 +
9

100
x, CV: (x1, x

(1)
1 , x

(2)
1 , [x2x

(3)
1 ], x

(1)
2 , [x3x

(2)
2 x

(4)], x
(1)
3 , [x

(3)
2 x4], x

(2)
3 , x

(1)
4 , x5),

x
5
− x

3 +
21

100
x, CV: (x1, x

(1)
1 , [x2x

(2)
1 ], x

(3)
1 , x

(1)
2 , [x3x

(2)
2 x

(4)], x
(1)
3 , x

(3)
2 , [x

(2)
3 x4], x

(1)
4 , x5),

x
5
− x

3 +
1

4
x, CV: ([x1x

(1)
1 x2], x

(2)
1 , [x

(3)
1 , x

(1)
2 ], [x3x

(2)
2 x

(4)], [x
(1)
3 x

(3)
2 ], x

(2)
3 , [x4x

(1)
4 x5]).

P r o o f. See [5] and [13] ✷

Remark 4. We remark that

• All of the overdetermined strata for n = 5 are odd.

• The polynomial x5 − x3 +
21

100
x is a Gegenbauer polynomial.

• The stratum x5 − x3 +
1

4
x is old.

3. Resultant-based method to calculate overdetermined

Strata for n = 6.

3.1. Resultants and subresultants. Let P =

p
∑

i=0

aix
i andQ =

q
∑

i=0

bix
i

be two non-zero polynomials in one variable and of degree p and q respectively.

Definition 14. The Sylvester matrix of P and Q, denoted by S1(P,Q),
is the matrix

S1(P,Q) =







































ap · · · · · · · · · · · · a0 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 ap · · · · · · · · · · · · a0
bq · · · · · · · · · b0 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 bq · · · · · · · · · b0
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It is a matrix of size (p+ q)× (p + q). Note that its rows are

xq−1P, · · · , P, xp−1Q, · · · , Q

considered as vectors in the basis (xp+q−1, · · · , 1).
The resultant of P and Q is the determinant of S1(P,Q), it is denoted by

Res(P,Q).

Definition 15. For k = 2, . . . ,min(p, q) we define the k-th Sylvester
matrix Sk(P,Q) of P and Q by deleting the q − k + 2-nd row, the last row and
the last two columns of Sk−1(P,Q). Hence Sk(P,Q) is of size (p+ q + 2− 2k)×
(p + q + 2− 2k).

We denote by ∆k(P,Q) the determinant of Sk(P,Q). ∆k(P,Q) is the k-th
subresultant of P and Q. ∆1(P,Q) = Res(P,Q) is the resultant of P and Q.

For example if p = 4, q = 3 we have

S1(P,Q) =





















a4 a3 a2 a1 a0 0 0
0 a4 a3 a2 a1 a0 0
0 0 a4 a3 a2 a1 a0
b3 b2 b1 b0 0 0 0
0 b3 b2 b1 b0 0 0
0 0 b3 b2 b1 b0 0
0 0 0 b3 b2 b1 b0





















,

S2(P,Q) =













a4 a3 a2 a1 a0
0 a4 a3 a2 a1
b3 b2 b1 b0 0
0 b3 b2 b1 b0
0 0 b3 b2 b1













, S3(P,Q) =





a4 a3 a2
b3 b2 b1
0 b3 b2



 .

Theorem 16. The polynomials P and Q have exactly m common roots,
counted with their multiplicities, if and only if ∆1(P,Q) = · · · = ∆m(P,Q) = 0 6=
∆m+1(P,Q).

P r o o f. See Proposition 4.25 in [3]. ✷

3.2. Algorithm. We search a, b, c and d such that the polynomial x6 −
x4 + ax3 + bx2 + cx + d defines an overdetermined stratum. We will use the
resultants to reduce this problem to a problem of resolution of a polynomial
system of 5 polynomial equations in 4 variables. Our algorithm is summarized in
the following steps:
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1. There are 357 cases (see [5]), where we have at least 5 equalities between
roots (and so an eventual overdetermined strata), to study . The arrange-
ments of the Figs 2 and 3 give the example of 2 such cases.

+ + + + + +

∗ ∗ ∗ ∗ ∗

The roots of P (x)

The roots of P
(1)

(x)

The roots of P
(2)

(x)

The roots of P
(3)

(x)

The roots of P
(4)

(x)

The roots of P
(5)

(x)

• • • •

× × ×

⋆ ⋆

◦

Fig. 2. Example of an eventual stratum

+ + + + + +

∗ ∗ ∗ ∗ ∗

The roots of P (x)

The roots of P
(1)

(x)

The roots of P
(2)

(x)

The roots of P
(3)

(x)

The roots of P
(4)

(x)

The roots of P
(5)

(x)

• • • •

× × ×

⋆ ⋆

◦

Fig. 3. Example of an eventual stratum

2. Each arrangement that can define an overdetermined stratum gives a system
of 5 equations of the form ∆k(P

(i), P (j)) with k ∈ [[1, 4]] and i, j ∈ [[0, 5]]
(for a, b ∈ N we denote by [[a, b]] the set [[a, b]] = {n ∈ N; a ≤ n ≤ b}). For
instance, the case of the Fig. 3 gives the following system:

∆1(P,P
(2)) = ∆2(P,P

(2)) = ∆1(P
(2), P (4)) = ∆2(P

(2), P (4))
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= ∆1(P
(1), P (3)) = 0.

In fact, there are 2 common roots between P and P (2), 2 common roots
between P (2) and P (4), and a common root between P (1) and P (3).

3. Among the 357 final systems, we obtain some impossible systems (for exam-
ple the above system given by the arrangement of the Fig. 3 is an impossible
system), this means that there are no hyperbolic polynomials which realize
this arrangement, and we obtain some systems that are repeated. See [6]
for examples of such systems.

Finally, it still, among these 357 cases only 19 present overdetermined
strata.

Theorem 17. There are exactly 19 non-trivial overdetermined strata for
degree 6 hyperbolic polynomials. All of these strata are even. The polynomials
that realize them are

x6 − x4 +
1

4
x2(1)

x6 − x4 +
1

3
x2 − 1

27
(2)

x6 − x4 +
3

25
x2(3)

x6 − x4 +
3

25
x2 − 13

3375
(4)

x6 − x4 +
3

25
x2 +

13

625
− 32

3125

√
5(5)

x6 − x4 +
4

25
x2(6)

x6 − x4 +
9

35
x2 − 9

875
(7)

x6 − x4 +
7

25
x2 − 29

1875
− 16

28125

√
30(8)

x6 − x4 +
7

25
x2 − 3

125
(9)

x6 − x4 +
7

25
x2 − 49

3375
(10)

x6 − x4 +
8

25
x2 − 4

125
(11)

x6 − x4 +
45

196
x2(12)
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x6 − x4 +
47

225
x2 − 11

1125
(13)

x6 − x4 +
14

225
x2(14)

x6 − x4 +
99

361
x2 − 81

6859
(15)

x6 − x4 +
123 − 3

√
113

490
x2 − 223

12250
+

3
√
113

2450
(16)

x6 − x4 +
123 + 3

√
113

490
x2 − 223

12250
− 3

√
113

2450
(17)

x6 − x4 +

(

25

147
− 8

√
78

735

)

x2 − 1189

165375
+

8
√
78

11025
(18)

x6 − x4 +

(

25

147
+

8
√
78

735

)

x2 − 1189

165375
− 8

√
78

11025
(19)

Remarks.

1. We implemented this algorithm in Maple to make exact calculation.

2. The polynomial (p(x) = x6−x4+
9

35
x2− 9

875
) that realizes the arrangement

in Fig. 1 is a Gegenbauer polynomial. Since the Gegenbauer polynomial is
unique, so we can remove 15 systems among the 357 systems. For example,
we cannot find any hyperbolic polynomial that realizes the arrangement of
Fig. 4.

3. Each ideal I 6= 0 has (for a given total order of monomials) a unique reduced
Gröbner basis. (See [4]).

4. Let (S) be the following polynomial equations system:

S :















p1(x1, . . . , xn) = 0
...

pq(x1, . . . , xn) = 0

and let I be the ideal generated by p1, . . . , pq, and G be a Gröbner basis of
I.
The system (S) has a solution if and only if 1 /∈ G. In this case, to solve
(S) we solve the system given by the Gröbner basis of p1, . . . , pq. (See [4]).
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+ + + + + +

∗ ∗ ∗ ∗ ∗

The roots of P (x)

The roots of P
(1)

(x)

The roots of P
(2)

(x)

The roots of P
(3)

(x)

The roots of P
(4)

(x)

The roots of P
(5)

(x)

• • • •

× × ×

⋆ ⋆

◦

Fig. 4. An example of impossible arrangement due to the uniqueness of Gegenbauer
polynomial

5. There are 7 old strata from the strata of degree 6:

• the stratum (2) is obtained by integrating the stratum x5 − x3 +
1

4
x

(which is himself old, it is obtained by integrating the stratum x4 −
x2 +

5

36
),

• the strata (3), (4) and (6) are obtained by integrating the stratum

x5 − x3 +
9

100
x,

• the strata (8), (9) and (10) are obtained by integrating the stratum

x5 − x3 +
21

100
x.

6. We can use our algorithm to obtain the configuration vectors of the overde-
termined strata. For example the configuration vectors of the vectors (16),
(17) and (18), (19) are respectively

(x1, x
(1)
1 , x

(2)
1 , x2, x

(3)
1 , x

(1)
2 , x

(4)
1 , [x3x

(2)
2 ], [x

(1)
3 x

(3)
2 x(5)], [x

(2)
3 x4], x

(4)
2 , x

(1)
4 , x

(3)
3 , x5, x

(2)
4 , x

(1)
5 , x6)

(x1, x
(1)
1 , [x

(2)
1 x2], x

(1)
2 , [x3x

(3)
1 ], x

(4)
1 , x

(2)
2 , [x

(1)
3 x

(3)
2 x(5)], x

(2)
3 , x

(4)
2 , [x

(3)
3 x4], x

(1)
4 , [x5x

(2)
4 ], x

(1)
5 , x6)

and

(x1, x
(1)
1 , x

(2)
1 , x

(3)
1 , [x

(4)
1 x2], x

(1)
2 , [x3x

(2)
2 ], [x

(1)
3 x

(3)
2 x(5)], [x

(2)
3 x4], x

(1)
4 , [x5x

(4)
2 ], x

(3)
3 , x

(2)
4 , x

(1)
5 , x6)

(x1, x
(1)
1 , [x

(2)
1 x2], x

(3)
1 , x

(1)
2 , x

(4)
1 , x3, x

(2)
2 , [x

(1)
3 x

(3)
2 x(5)], x

(2)
3 , x4, x

(4)
2 , x

(1)
4 x

(3)
3 , [x5x

(2)
4 ], x

(1)
5 , x6)
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7. We can remark that the overdetermined strata are all even (the overdeter-
mined strata in the case n = 5 are all odd and in the case n = 4 are all
even).

4. Conclusion. We calculated in this paper the overdetermined strata
for degree 6 by transforming the geometric problem to an algebraic one. This
method can be used for any degree n.

Will try to see, in future work, if the following property remains true: the
overdetermined strata are odd when n is odd and they are even when n is even.
By proving this conjecture, we reduce the number of parameters from n − 2 to
n− 2

2
if n is even and

n− 3

2
if n is odd.

REFERENCES

[1] V. I. Arnold. Hyperbolic polynomials and Vandermonde mappings. Funct.
Anal. Appl. 20, 2 (1986), 52–53.

[2] V. I. Arnold. On the Newton potential of hyperbolic layers. Tr. Tbilis.
Univ. 232/233, Ser. Mat. Mekh. Astron. 13/14 (1982), 23–29 (in Russian);
English translation in: Sel. Math. Sov. 4 (1985), 103–106.

[3] S. Basu, R. Pollack, M.-F. Roy. Algorithms in Real Algebraic Geome-
try, 2nd ed. Algorithms and Computation in Mathematics, vol. 10, Berlin,
Springer, 2006.

[4] D. Cox, J. Little, D. OShea. Ideals, varieties, and Algorithms. An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra,
2nd ed. Undergraduate Texts in Mathematics, New York, Springer, 1996.
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