


Serdica Math. J. 45 (2019), 143–166 Serdica
Mathematical Journal

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

COMPARISON PRINCIPLE FOR WEAKLY-COUPLED

NON-COOPERATIVE ELLIPTIC AND PARABOLIC

SYSTEMS

Georgi Boyadzhiev, Nikolay Kutev

Communicated by I. D. Iliev

Abstract. In this review article is considered the comparison principle for
linear and quasi-linear weakly coupled systems of elliptic and of parabolic
PDE. It is demonstrated that a cooperativeness is a kind of a watershed
quality for the comparison principle. Roughly speaking comparison prin-
ciple holds for cooperative systems, while it does not hold for every non-
cooperative one.

Considering a cooperative system one can apply the theory of a positive
operator in a positive cone and prove the validity of the comparison principle.
One particularly important result for cooperative systems is the existence of
positive first eigenvalue and positive first eigenvector.

Investigation of the validity of the comparison principle for non-cooperative
system is more complicated. In this paper is mentioned the idea of division
of the non-cooperative system in a cooperative and competitive part. Then
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the spectral properties of the cooperative part are employed in order to de-
rive conditions for validity of comparison principle for the non-cooperative
system.

Some applications of comparison principle are given as well
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1. Introduction. The aim of this paper is to summarize the results ob-
tained by the authors about the validity of comparison principle (CP) for elliptic
and parabolic systems of PDEs. For the sake of completeness the definition of
CP follows:

Definition. Let Õ be a differential operator in some domain D and let
u and u satisfy the inequality Õu ≤ Õu in D. Comparison principle holds for Õ
if u ≤ u on ∂D yields u ≤ u in D.

Considering CP, a key feature of the system is cooperativeness. It is a kind
of watershed for the validity of CP - generally speaking, CP holds for cooperative
systems, whereas it does not for any the non-cooperative ones. We show that CP
holds for some non-cooperative systems but far not for all of them.

Historically, maximum principle (MP) in its contemporary form was stated
(formulated) in 1927 by E.Hopf in his paper [22], where the strong MP was proved
for elliptic equations of the type

Lu = −
n∑

i,j=1

aij(x)Diju+

n∑

i=1

bi(x)Diu+ c(x)u.
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Hopfs maximum principle states that if L is strictly elliptic operator, c = 0 and
Lu ≥ 0 (Lu ≤ 0) in some domain Ω ⊆ R

n, and if u reach its maximum (minimum)
at some internal for Ω point, then u is a constant. Moreover, if c ≥ 0 and c/λ(x)
is bounded, where λ(x) is the function from the strong elliptic inequality

0 < λ(x)|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ(x)|ξ|2, x ∈ Ω, ξ 6= 0,

then u cannot reach non-negative maximum (non-positive minimum) in internal
for Ω point, unless u is a constant. Earlier results on Hopf maximum principle
under much more restrictive hypothesis are discussed in [37, p. 156].

Classical maximum principle for linear elliptic operators is completely
studied by now. H. Berestycki, L. Nirenberg, S. R. S. Varadhan gave in [5]
necessary and sufficient condition for validity of MP that is positiveness of the first
eigenvalue of the operator with null Dirichlet boundary data. Natural extension
of the classical Hopf CP for degenerated equations is derived by Denson Hill
[21] for propagation of the maximum for quasi-linear strictly elliptic equations.
Similar result for strictly parabolic equations is given by Nirenberg in [35].

Classical maximum principle is well described in the remarkable work of
M. Protter and H. Weinberger [37], in the book of D.Gilbarg and N.Trudinger
[19], as well in the survey paper of P. Pucci and J. P. Serrin [36], in which is given
analysis of the classical Hopf.

CP is essential in the theory of viscosity solutions, introduced by M.
Crandall and P. L. Lions in[8] and [9], for further references [23] and [25], where
it is fundamental for a modified Peron method for existence of continuous viscosity
solutions. CP for viscosity solutions is studied as well by B. Kawohl and N. Kutev
in [26], and for anisotropic diffusion in [27].

Note that in the linear case maximum principle and CP are equivalent
concepts. It is completely different story in the non-linear case. For non-linear
operators positiveness of the solutions is weaker statement than CP with non-
negative boundary data. In the non-linear case there could be positiveness of the
solutions and no CP, even no uniqueness of the solutions.

Results for validity of CP for quasi-linear elliptic equations are far not as
complete, as the ones for linear equations. The main reason is that in quasi-linear
case one cannot apply directly the relation between CP and the first eigenvalue of
the elliptic operator. That is why quasi-linear equations are linearized and suffi-
cient conditions are obtained for the first eigenfunction of the linearized equation.
As a result some structural conditions arise for the coefficients of non-linear equa-
tions (Theorem 9.5 in [19]). These conditions guarantee estimates for the first
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eigenfunction of the linearized equation, though the results are not sharp.

2. Linear and quasi-linear cooperative elliptic systems. Com-

parison principle ans existence. In this section is considered the diffraction
problem for weakly coupled elliptic systems of the type

(1) − div al(x, ul,Dul) + F l(x, u1, . . . , uN ,Dul) = f l(x) in Ω

(2) ul(x) = gl(x) on ∂Ω for every l = 1, . . . , N,

where Ω ⊂ R
n is a bounded domain with at least C2 smooth boundary ∂Ω

and D = (D1, . . . ,Dn), Di =
∂

∂xi
. For convenience we assume al(x, ul, 0) = 0,

F l(x, 0, 0) = 0, l = 1, . . . , N for every x ∈ Ω, ul ∈ R.
Suppose Ωγ ⊂ Ω, γ = 1, . . . ,m − 1, are finite number of strictly interior

sub-domains of Ω with smooth boundaries ∂Ωγ with no intersection points, i.e.
Ωγ∩Ωδ = ∅ for γ 6= δ. Assume Ωγ do not intercept ∂Ω as well, i.e. ∂Ωγ ∩∂Ω = ∅.
For simplicity we denote Ωm = Ω\{∪Ωγ}. A positive direction is fixed on ∂Ωγ

by means of the unit external to Ωγ normal vector ν(x) of ∂Ωγ .
The following diffraction conditions are prescribed on ∂Ωγ

(3) [ul]
∣∣∣
∂Ωγ

= 0,

[
n∑

i=1

ali(x, ul,Dul)νi(x)

]∣∣∣∣∣
∂Ωγ

= 0,

where [ul]|∂Ωγ is the jump of the function ul(x) through ∂Ωγ in direction of the
normal vector ν(x).

The coefficients of system (1), (2) are smooth enough in Ωγ , i.e. there

are
∂ali

∂pj
,
∂ali

∂ul
,
∂F l

∂ui
,
∂F l

∂pi
∈ L1(Ωγ), i, j = 1, . . . , n, l = 1, . . . , N , γ = 1, . . . ,m.

Furthermore al and F l are possibly jump discontinuous on ∪∂Ωγ .
As for the right hand side of (1) – the function f l(x), we suppose f l(x) ∈

L2(Ω).
Comparison principle for cooperative systems is studied in many works,

for instance in [1], [3], [11], [15], [16], [24] (for fully non-linear systems), [34], [39],
[40], [42]. Comparison principle for diffraction problem is studied in [7]. In [32]
CP is applied in the investigation of the classical solvability for the diffraction
problem for elliptic end parabolic equations.

CP for viscosity semi-continuous upper and lower solutions of fully non-
linear elliptic system Gl(x, u1, . . . , uN ,Dul,D2ul) = 0, l = 1, . . . , N is proved
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in [24]. Systems, considered in [24] are degenerated elliptic ones and satisfy the
same structural conditions for smoothness as the scalar equations. The first main
assumption in [24] guarantees quasi-monotony of the system. Quasi-monotony
condition in the non-linear case is equivalent to cooperativeness in the linear
case. The second main assumption in [24] comes from the method of doubling
the number of variables, which is crucial for the proof of CP for viscosity solutions
of fully non-linear elliptic equations. This condition appears to be technical one.

One of the most important applications of the comparison principle is the
method of sub- and super solutions. It maintains, roughly speaking, that validity
of the comparison principle for some operator and existence of it’s sub-solution
and super-solution yield existence of solution of this operator in the corresponding
functional class.

This approach is widely used for scalar differential equations and it trans-
fer to systems of differential equations is natural. In particular we consider weakly
coupled cooperative systems of elliptic equations in a bounded domain. Existence
of a piece-wise solution of operator with linear principal and first order symbol
is proved for the diffraction problem in [5]. In the same paper the existence of
classical C2 solution is derived as well for the problem with smooth coefficients
and linear principal symbol.

Another application of the comparison principle is the derivation of a
priori estimate of |u(x)|, where u(x) is the solution of (1), (2), (3). Meanwhile in
the proof of this a priori estimate we obtain the super-solution of (1), (2), (3),
that is necessary for the method of sub- and super-solutions.

2.1. Comparison principle for cooperative system of quasi-linear

elliptic equations. Suppose (1) is strictly elliptic system, i.e. there are mono-
tone decreasing and continuous function λ(|u|) > 0 and monotone increasing con-

tinuous function Λ(|u|) > 0, depending only on |u| =
((

u1
)2

+ · · · +
(
uN
)2)1/2

,

such that

(4) λ(|u|)
∣∣∣ξl
∣∣∣
2
≤

n∑

i,j=1

∂ali

∂plj
(x, u1, . . . , uN , pl)ξliξ

l
j ≤ Λ(|u|)

∣∣∣ξl
∣∣∣
2

for every ul and ξl = (ξl1, . . . , ξ
l
n) ∈ R

n, l = 1, 2, . . . , N .

Suppose the coefficients al(x, u, p), F l(x, u, p), f l(x), gl(x) of the system
(1) are measurable functions on variables x in Ω and are Lipschitz continuous on
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variables ul, u and p, i.e.

(5)

∣∣∣F l(x, u, p) − F l(x, v, q)
∣∣∣ ≤ C(K) (|u− v|+ |p− q|) ,

∣∣∣al(x, ul, p)− al(x, vl, q)
∣∣∣ ≤ C(K)

(∣∣∣ul − vl
∣∣∣+ |p− q|

)

for every x ∈ Ω, |u|+ |v|+ |p|+ |q| ≤ K, l = 1, . . . , N.
In this section we consider cooperative systems, i.e.

(6)
F l(x, u1, . . . , uN , p) are non-increasing functions on uk for
l 6= k, l, k = 1, . . . , N where x ∈ Ωγ , u ∈ R

N , p ∈ R
n.

Then the following theorem (Theorem 2 in [7]) holds:

Theorem 1. Assume u, v ∈ W 1,∞(Ω) ∩ C(Ω) are weak sub- and super-
solution of (1), (2), (3) and (4)–(6) hold. Suppose that is fulfilled at least one of
the conditions (7)–(9) for l = 1, 2, . . . , N :

(7)

F l(x, u, p) are independent on p and
N∑

j=1

∂F j

∂ul
(x, u1, . . . , uN ) ≥ 0 for x ∈ Ωγ , u ∈ R

N ;

(8)

al(x, ul, p) are independent on ul and
N∑

k=1

∂F l

∂uk
(x, u1, . . . , uN , p) ≥ 0 for x ∈ Ωγ , u ∈ R

N , p ∈ R
n;

(9)

symmetrized (n+ 1)N × (n+ 1)N matrix A defines
non-negative quadratic form, where A = A+A

∗ and

A =




∂ali

∂psj

∂F l

∂psj

∂ali

∂us
∂F l

∂us


 for i, j = 1, . . . , n, l, s = 1, . . . , N

If u ≤ v on ∂Ω, then u ≤ v in Ω.

For sake of completeness we recall the definition of super- (sub-) solution:

Definition. Weak solution of (1), (2), (3) (sub-solution, super-solution)

is a vector-function u(x, t) ∈
(
V2(Q) ∩ C(Q)

)N
such that for every non-negative



Comparison principle for weakly-coupled non-cooperative systems 149

vector test function η ∈
(
W 1,1

c (Q) ∩ C(Q))
)N

equality is (inequalities are) is ful-
filled
∫

Ω
ul(x, t).ηl(x, t)dx +

∫

Qt

(
−ulηlt + aliηlxi

+ F lηl − f lηl
)
dxdt = 0 (≤ 0,≥ 0)

[
n∑

i=1

ali(x, t, ul,Dul).νi

]∣∣∣∣∣
St

= 0 (≥ 0,≤ 0)

for every l = 1, . . . , N , and every 0 ≤ t ≤ T , Qt = Ω×(0, t), St = ∪m−1
i=1 ∂Ωi×(0, t).

2.2. Existence of classical and piece-wise classical solution for

cooperative system of quasi-linear elliptic equations. In this sub-section
is briefly given one of the most useful applications of CP – the method of sub-
and super-solutions. All proofs are given in details in [5].

Employing the method of sub- and super-solutions requires some addi-
tional conditions on the coefficients of the system (1), (2), (3), namely:

(10) |f l(x)| ≤ C in Ω for every l = 1, . . . , N ; C > 0 is a constant.

(11) F l(x, u1, . . . , uN , pl)ul ≥ c1|u|2 − c2, c1 = const > 0, c2 ≥ 0

for every x ∈ Ω, l = 1, . . . , N and arbitrary vectors u and p,

(12) |F l(x, u1, . . . , uN , pl)| ≤ [ε(M) + P (p,M)(1 + |p|2)],
The parameter ε(M) in (12) is small enough and depends only on n, N , M ,
λ(M), Λ(M), where λ(M) and Λ(M) are the functions from the definition of
strongly elliptic operator (4), and P (p,M) → 0 when |p| → ∞.

The following estimation of |u(x)| holds.
Theorem 2. Assume the coefficients of system (1) satisfy (4)–(6), and

one of (7)–(9). Suppose u(x) ∈ W 1
2 (Ω) is a weak solution of the diffraction

problem (1), (2), (3). Then

(13) ess sup
Ω

|u(x)| ≤ √
nM

where

(13′). M = max

{
max
∂Ω

|g(x)|, 2max |f(x)|
c1n

,

√
2c2
c1n

}

Inequality (13) is true if u(x) ∈ W 1
2 (Ω) is a piecewise classical solution of (1),

(2), (3) as well.
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Note that existence of piecewise classical sub- and super-solution of system
(1), (2), (3) is a corollary of Theorem 2. The function m = (M,M, . . . ,M), where
the constant M is defined in (13′), is one super-solution of (1). A sub-solution of
(1), (2), (3) is for instance m = (m0,m0, . . . ,m0), where m0 = min{−M,m∂Ω},
M is the constant from the proof of Theorem 2, and m∂Ω = min

∂Ω
|g(x)|.

If we consider the diffraction problem we need linearity of the first-order
symbol in (1), in particular

div al(x, ul,Dul) =

N∑

i,j=1

Di(a
l
ij(x)Dju

l),

F l(x, u1, . . . , uN , pl) =

N∑

i=1

ali(x)p
l
i + F l

1(x, u
1, . . . , uN )

for every l = 1, . . . , N , i.e. we investigate the solvability of the system

(14) −
N∑

i,j=1

Di(a
l
ij(x)Dju

l) +

N∑

i=1

ali(x)Diu
l + F l

1(x, u
1, . . . , uN ) = f l(x)

for l = 1, . . . , N , with null boundary data (2) and diffraction conditions (3).
Assume the following smoothness of the coefficients of (14) in every set

Ωγ , γ = 1, . . . ,m: alij(x) ∈ C1+α(Ωγ); a
l
i, F

l
1 and f l are Holder continuous with

Holder constant α′ ∈ (0, 1) and ‖(ali)2‖Lq/2(Ω) < ∞ for q > n. Moreover we

suppose a finite jump of the coefficients of (14) on the diffraction surfaces ∂Ωγ ,
i.e. in every neighbourhood Ω0 of ∂Ωγ

(15)

∥∥∥∥∥
∂alij
∂xm

, ali, (f
l(x)− F l

1(x,M, . . . ,M) + σM)

∥∥∥∥∥
Lq(Ω0∩Ωγ)

≤ µ < ∞

holds for q > n, γ = 1, . . . ,m− 1 and m, i, j = 1, . . . , n, where M is the constant
from (13′).

Since we can build barrier functions for (14), (2), (3) and (CP) holds for
system (14), we apply the method of sub-solutions and super-solutions and derive
the following

Theorem 3. Suppose (CP) holds for system (14) as well as (15). Assume
v(x) is a piecewise super-solution and w(x) is a piecewise sub-solution of (14)
with null boundary conditions. Then exists a piecewise classical solution u(x) of
the diffraction problem (14), (3) with null boundary data.
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The method of sub- and super-solutions is applicable as well ff we consider
the problem (1), (2) with smooth coefficients, i.e. al(x, ul, p) ∈ C1,α(Ω×R

N×R
n)

and F l(x, u1, . . . , uN , pl) = F l
0(x, u

l, pl) + F l
1(x, u

1, . . . , uN ) is locally Lipschitz
continuous on x, u and pl for every l = 1, . . . , N . In other words we consider the
system

(16) − div al(x, ul,Dul) + F l
0(x, u

l,Dul) + F l
1(x, u

1, . . . , uN ) = f l(x)

for l = 1, . . . , N , with null boundary data (2).
Let

(17) λ(1 + |p|2)µ−2

2 |ξ|2 ≤
n∑

i,j=1

∂ai

∂pj
(x, u, p)ξiξj ≤ Λ(1 + |p|2)µ−2

2 |ξ|2 ,

where λ and Λ are constants, and µ > 1.
Suppose there are constants b1 > 0, b2 ≥ 0 such that

(18)
[
F l
0(x, u, p) + σu− f̃(x)

]
u ≥ b1u− b2

and

(19)

n∑

i=1

(
|ali|+

∣∣∣∣
∂ali
∂u

∣∣∣∣
)
(1 + |p|) 1

2 +

n∑

i,j=1

∣∣∣∣
∂ali
∂xj

∣∣∣∣+ |F l
0(x, u, p) + σu− f̃(x)| ≤

≤ Λ(1 + |p|2)µ
2

for f̃ = f l(x)− F l
1(x,M, . . . ,M) + σM .

Then the following Theorem holds:

Theorem 4. Suppose CP holds for the system (16) and (17)–(19) are
fulfilled. Assume v(x) is weak super-solution and w(x) is weak sub-solution of
(16) with null boundary data. Then there is a classical C2 solution u(x) of (16)
with null boundary data (2).

3. Comparison principle for linear and quasi-linear non-

cooperative elliptic systems. The theory of the positive operators in posi-
tive cone, which proved to be so useful in the cooperative case, is not applicable
for non-cooperative elliptic system. So far there are no general criteria for va-
lidity of CP for non-cooperative elliptic operators. Some results are obtained
by G. Sweers [41] and G. Caristi, E. Mitidieri [10] for non-cooperative elliptic
systems, obtained by small perturbations of cooperative ones. In this case is
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used the theory of the positive operators in positive cone and the fact that small
perturbations preserve some key features of the operator.

In this section is presented a different, “spectral” approach. Analogously
to the scalar case, we are interested in the relation between the sign of the first
eigenfunction and validity of the CP. Unfortunately, not any non-cooperative
system has first eigenfunction, an example is given by Hess in [20]). Furthermore,
the spectrum of non-cooperative systems is still not investigated. On the other
hand, the spectral properties of cooperative systems are well studied (see [40].
Theorem 1.1). In this section we divide the non-cooperative system into two parts
– “cooperative” and “competitive” one. By means of the well known spectral
properties of the “cooperative” part we obtain conditions for validity of CP for
the original non-cooperative system. The result is formulated in Theorem 5
below.

One particularly important model example for non-cooperative systems
are “predator – prey” systems that often are described by parabolic systems,
which stabilize in time to elliptic ones (see the introduction of [30]). In this
paper is introduced a generalization of the concept “CP”, considering the cone
CU = PU × (−PU ), where PU is the cone of the positive functions in W 1,∞(Ω).
CP applies for the order in CU , i.e. (u1, u2) ≺ (v1, v2) if and only if u1 ≤ v1
and u2 ≥ v2. This approach is sensible since in the ”predator prey” system is
observed delay in time of the recovery of the system balance after decrease of
the number of one or another species in the model. Applying this non-standard
approach it is obtained an interesting result in [30] for two-dimensional system
(20) with m11 = m22 = 0 and mij = pi(x) > 0 for i 6= j, i = 1, 2. This
system is competitive one and one cannot expect for it results similar to the
ones for cooperative system. Nevertheless, in Theorem 6.5 in [30] is proved the
existence of the first eigenfunction with positive corresponding eigenvector in the
cone CU = PU × (−PU ). The proof follows the technique used for cooperative
systems for a good reason – after multiplication by −1 of the second equation the
system transfers to cooperative one and the cone CU transfers to the standard
one PU × PU .

In [29] are considered existence and local stability of the positive solutions
of systems with Lk = −dk∆, linear cooperative and non-linear competitive part,
and Neumann boundary conditions. Theorem 2.4 in [29] is similar to Theorem 5
for Lk = −dk∆.

Since “predator – prey” systems are basic model example for non-coopera-
tive systems, in Theorem 7 is adapted the main idea of Theorem 6 to systems with
triangle cooperative part that could become diagonal one in a certain point. If all
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of the species dwell in whole of the habitat, the cooperative part is not a diagonal
one in all points and Theorem 5 is applicable. If some species could extinct in
some sub-domain of the habitat, then one sufficient condition for validity of CP
is given in Theorem 7.

3.1. Comparison principle for linear non-cooperative elliptic sys-

tems. Suppose elliptic system (1) is a linear one with smooth coefficients, i.e.

(20) LMu = f(x) in Ω

where LM = L + M , L is a matrix operator with null off-diagonal elements
L = diag (L1, L2, . . . , LN ), and matrix M = {mki(x)}Nk,i=1. Scalar operators

Lku
k = −

n∑

i,j=1

Dj

(
akij(x)Diu

k
)
+

n∑

i=1

bki (x)Diu
k + ckuk in Ω

are supposed uniformly elliptic ones for k = 1, 2, . . . , N . Coefficients ck and mik

in (20) are supposed continuous in Ω, akij(x) ∈ C1(Ω)∩C(Ω) and
∂akij
∂xj

, bki (x) are

Holder continuous with Holder constant α ∈ (0.1).
In formulation of Theorem 5 below we need a definition for “irreducible”

matrix.

Definition. Irreducible matrix is one that can not be decomposed to
matrices of lower rank, and respectively, the reducible matrix can be decomposed.

Let us recall the following Theorem (Theorem 3 in [4]):

Theorem 5. Let (20) be a weakly coupled elliptic system with irreducible
cooperative part of L∗

M−
. Then the comparison principle holds for the classical

solutions of system (20) if there is x0 ∈ Ω such that

(21) λ+
N∑

k=1

m+
kj(x0) > 0 for j = 1, . . . , N

and

(22) λ+m+
jj(x) ≥ 0 for every x ∈ Ω and j = 1, . . . , N,

where λ is the principal eigenvalue of the operator LM− in Ω.

The same result holds if the cooperative part of L∗
M−

has structure with
Jordan cells on the main diagonal and zeroes otherwise (Theorem 4 in [4]).
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Theorem 6. Assume m−
ij ≡ 0 for i 6= j and (2) is satisfied. Then the

comparison principle holds for the classical C2(Ω)
⋂

C(Ω) solutions of system

(1) if there is x0 ∈ Ω such that

(23) λj +
N∑

k=1

m+
kj(x0) > 0 for every j = 1, . . . , N,

and

(24) λj +m+
jj(x) ≥ 0 for every x ∈ Ω and j = 1, . . . , N,

where λj is the principal eigenvalue of L̃j = Lj +m−
jj in Ω.

Theorem 6 is formulated for diagonal matrix M−, but the statement is
valid with obvious modification if M− has Jordan cells on the main diagonal.

Finally (Theorem 5 in [4]), in case that the cooperative part M− is tri-
angular, we have

Theorem 7. Assume the cooperative part M− of system (20) is triangu-
lar, i.e. m−

ij = 0 for i = 1, . . . , N , j > i. Then the comparison principle holds for

the classical C2(Ω)
⋂

C(Ω) solutions of system (1), if there is ε > 0 such that

(25) λj − (1− δ1j)ε+

N∑

k=1

m+
kj(x0) > 0

for j = 1, . . . , N and some x0 ∈ Ω and

(26) λj − (1− δ1j)ε+m+
jj(x) ≥ 0 for every x ∈ Ω and j = 1, . . . , N,

where λj is the principal eigenvalue of the operator Lj+m−
jj and δ1j is Kronecker

delta.

These results can be transferred to the quasi-linear case.
3.2. Comparison principle for quasi-linear non-cooperative el-

liptic systems. Let u(x) ∈
(
C2(Ω) ∩ C(Ω)

)N
be weak sub-solution of (1), (2),

i.e.
∫

Ω

(
ali(x, ul,Dul)ηlxi

+ F l(x, u1, . . . , uN ,Dul)ηl − f l(x)ηl
)
dx ≤ 0

for l = 1, . . . , N and for every non-negative vector-function η ∈
(
W 1

c (Ω) ∩C(Ω)
)N

(i.e. η = (η1, . . . , ηN ), ηl ≥ 0, ηl ∈ W 1,∞(Ω) ∩ C(Ω) and ηl = 0 on ∂Ω).
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Analogously, let u(x) ∈
(
C2(Ω) ∩ C(Ω)

)N
be a weak super-solution of

(1), (2), i.e.
∫

Ω

(
ali(x, ul,Dul)ηlxi

+ F l(x, u1, . . . , uN ,Dul)ηl − f l(x)ηl
)
dx ≥ 0

for l = 1, . . . , N and every non-negative vector-function η ∈
(
W 1

c (Ω) ∩ C(Ω)
)N

.
Recall that the comparison principle holds for (1), (2), if Q(u) ≤ Q(u) in

Ω and u ≤ u on ∂Ω yields u ≤ u in Ω.
Since u(x) and u(x) are sub- and super-solutions, then w̃(x) = u(x)−u(x)

is weak sub-solution of the following problem

−
n∑

i,j=1

Di

(
Bli

j Djw̃
l +Bli

0 w̃
l
)
+

N∑

k=1

El
kw̃

k +
n∑

i=1

H l
iDiw̃

l = 0 in Ω

with non-positive boundary data on ∂Ω, i.e.

∫

Ω




n∑

i,j=1

(
Bli

j Djw̃
l +Bli

0 w̃
l
)
ηlxi

+
N∑

k=1

El
kw̃

kηl +
n∑

i=1

H l
iDiw̃

lηl


 dx ≤ 0 in Ω

Here

Bli
j =

∫ 1

0

∂ali

∂pj
(x, P l)ds, Bli

0 =

∫ 1

0

∂ali

∂ul
(x, P l)ds,

P l =
(
vl + s(ul − vl),Dvl + sD(ul − vl)

)

El
k =

∫ 1

0

∂F l

∂uk
(x, Sl)ds, H l

i =

∫ 1

0

∂F l

∂pi
(x, Sl)ds,

Sl =
(
v + s(u− v),Dvl + sD(ul − vl)

)
.

Therefore w̃+(x) = max (w̃(x), 0) is weak sub-solution of

(27) −
n∑

i,j=1

Di

(
Bli

j Djw̃
l
+ +Bli

0 w̃
l
+

)
+

N∑

k=1

El
kw̃

k
+ +

n∑

i=1

H l
iDiw̃

l
+ = 0 in Ω

with null boundary data on ∂Ω.
Equation (27) is equivalent to

(28) BEw̃+ = (B +E)w̃+ = 0 in Ω,
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where B = diag(B1, B2, . . . , BN ), Bl = −
n∑

i,j=1

Di

(
Bli

j Djw̃
l
+ +Bli

0 w̃
l
+

)
+

n∑

i=1

H l
iDiw̃

l
+ and E = {El

k}Nl,k+1.

Then the following theorem (Theorem (8) in [4]) holds:

Theorem 8. Let (1), (2) be quasi-linear uniformly elliptic system. Then
comparison principle holds for system (1), (2) if

either BE−is irreducible one and for every j = 1, . . . , n hold

(i) λ+

(
N∑

k=1

∂F k

∂pj
(x, p, ql) +

N∑

i=1

Di
∂aji

∂pj
(x, pj , qj)

)+

> 0 for some x0 ∈ Ω,

(ii) λ+

(
n∑

i=1

Di
∂aji

∂pj
(x, pj , qj) +

∂F j

∂pj
(x, p, qj)

)+

≥ 0 for every x ∈ Ω,

where p, q ∈ R
n and λ is the first eigenvalue of operator BE− in Ω;

or if BE− is reducible one and for every j = 1, . . . , n hold

(i′) λj +

(
N∑

k=1

∂F k

∂pj
(x, p, qj) +

N∑

i=1

Di
∂aji

∂pj
(x, pj , qj)

)+

> 0 for some x0 ∈ Ω,

(ii′) λj +

(
n∑

i=1

Di
∂aji

∂pj
(x, pj, qj) +

∂F j

∂pj
(x, p, qj)

)+

≥ 0 for every x ∈ Ω,

where p, q ∈ R
n and λl is the first eigenvalue of operator Bl in Ω.

4. Linear and quasi-linear parabolic systems. Most results for
positiveness of the classical solutions, or validity of the comparison principle on
classical sense, are obtained for cooperative systems (see [1], [2], [13], [17], [18],
[33], [38] and [45] for optimal control problems, [12] for diffraction-diffusion sys-
tems arising in medicine, [28] for stabilized non-linear system type “heat trans-
fer”, in [7] for general quasi-linear cooperative reaction-diffusion systems and
many others). One can summarize all these results as “cooperativeness is suffi-
cient condition for the validity of the comparison principle for parabolic systems”
(see for instance [7]). On the other hand, the following simple example shows
that comparison principle is not a feature of every parabolic system.
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Example 1. Let Q = (0, π) × (0, T ). Consider the problem
∣∣∣∣
u1t − u1xx − u1 + u2 = 0

u2t − u2xx − u2 = 0
in Q

with initial and boundary conditions u1(x, 0) = u2(x, 0) = 0 for x ∈ [0, π],
u1(0, t) = u2(0, t) = u1(π, t) = u2(π, t) = 0 for t ∈ [0, T ].

This system is non-cooperative, since m12(x, t) = 1 > 0. One solution of
this system is the trivial one v1 = v2 = 0, which is a sub-solution as well. One
super-solution is w1 = −t. sinx, w2 = sinx. Since the inequality −t. sinx = w1 >
v1 = 0 is not satisfied in Q there is no comparison principle for the above system.

So the very reasonable question arises: is there comparison principle for
some non-cooperative system of parabolic equations? In fact Theorem 10 below
shows the strong correlation between the global on time comparison principle for
linear non-cooperative parabolic systems and the existence of positive solution
of the L2-adjoint operator. Furthermore, comparison principle holds as well if
the first eigenvalue and the corresponding first eigenfunction are positive. Note
that unlike the cooperative elliptic systems, which first eigenfunction is positive
one, in the parabolic case this is not always true. For instance, Theorem 12 gives
some conditions such that comparison principle does not hold for system (34),
and therefore its first eigen-function is not positive one.

In the last section of this section another approach is applied to the prob-
lem of validity of the comparison principle. In Theorem 11 are given some con-
ditions on the coefficients of the system such that in a small neighbourhood of
some point t0 comparison principle holds. The result is useful to investigate the
maximal interval (0, tm) in which the comparison principle holds for system (34).
The result is based on the validity of the comparison principle for the elliptic
system Pu(t0, x) = f .

One application of CP for existence theorems is given in [43] for Lotka-
Volterra cooperation model, applying the method of sub- and super-solutions.
Similar technique is used in [44], studying n-dimensional diffraction problem for
weakly coupled quasilinear parabolic system on a bounded domain Ω, where
the inner diffraction interfaces may intersect the outer boundary ∂Ω and the
coefficients of the equations may to be discontinuous on these interfaces.

4.1. Diffraction problem for cooperative quasi-linear parabolic

systems. Let Ω ⊂ R
n be a bounded domain with at least C2 smooth bound-

ary ∂Ω. In this section we consider the diffraction problem in Q = Ω × (0, T )
with parabolic boundary Γ = (∂Ω× [0, T ]) ∪ {Ω× {t = 0}}. Let Ωγ ⊂ Ω,
γ = 1, . . . ,m − 1, be finite number of sets with smooth boundaries such that
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∂Ωγ ∩ ∂Ω = ∅ and Ωγ ∩ Ωδ = ∅ for γ 6= δ. For sake of simplicity we denote by
Ωm = Ω\{∪Ωγ}. For the diffraction problem we define the diffraction surface
S = ∪Sγ , Sγ = ∂Ωγ × [0, T ], γ = 1, . . . ,m− 1, where Qγ = Ωγ × (0, T ).

In this section we consider the following system of uniformly parabolic
equations in Q:

(29) ult − div al(x, t, ul,Dul) + F l(x, t, u1, . . . , uN ,Dul) = f l(x, t)

with boundary conditions on Γ

(30) ul(x, t) = gl(x, t).

We suppose al(x, t, ul, 0) = 0, F l(x, t, 0, 0) = 0, i = 1, . . . , n, l = 1, . . . , N
for every (x, t) ∈ Q, ul ∈ R.

The diffraction conditions on S are

(31) [ul]|S = 0,

[
n∑

i=1

ali(x, t, ul,Dul)νi(x)

]∣∣∣∣∣
S

= 0,

where [ul]|S is the jump of function ul(x, t) on S toward the positive (outward-
pointing with respect to Ωγ) normal vector ν(x).

The definition of uniformly parabolic equation is similar to the one for
elliptic equations, given by (4).

We suppose that the coefficients al(x, t, u, p), F l(x, t, u, p), f l(x, t), gl(x, t)
of (29) are measurable functions w.r.t. variables x, t and are locally Lipschitz
continuous w.r.t. ul, u and p, i.e.

(32)

∣∣∣F l(x, t, u, p) − F l(x, t, v, q)
∣∣∣ ≤ C(K) (|u− v|+ |p− q|) ,

∣∣∣al(x, t, ul, p)− al(x, t, vl, q)
∣∣∣ ≤ C(K)

(∣∣∣ul − vl
∣∣∣+ |p− q|

)

for every (x, t) ∈ Q, |u|+ |v|+ |p|+ |q| ≤ K, l = 1, . . . , N .
Let system (29) be cooperative, i.e.

(33)
F l(x, t, u1, ...uN , p) are non-increasing functions w.r.t. uk for
l 6= k, l, k = 1, . . . , N and (x, t) ∈ Qγ , u ∈ R

N , p ∈ R
n.

Then the following theorem holds:

Theorem 9. Let u, v ∈ W 1,1
∞ (Q) ∩ C(Q) be sub- and super-solutions of

(29), (30), (31). If (32)–(33) hold and u ≤ v on Γ, then u ≤ v in Q.
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4.2. Non-cooperative linear parabolic systems. In this section is
studied the validity of the comparison principle for non-cooperative weakly-
coupled linear systems of uniformly parabolic PDE in Q, i.e. (29) has the form

(34) Pu = f,

or component-wise

ukt −
n∑

i,j=1

Dj

(
aijk (x, t)Diu

k
)
+

n∑

i=1

bik(x, t)Diu
k + ck(x, t)u

k +

N∑

k 6=l=1

mlk(x, t)u
l =

= fk(x, t)

k = 1, . . . , N , with boundary conditions (30) on Γ. Note that for the sake of
simplicity in notations we suppose mkk = 0 for all k = 1, . . . , N .

The right-hand side of (34) is supposed bounded function, i.e. |f l(x, t)| ≤
C in Q for every l = 1, . . . , N , where C > 0 is a constant. Coefficients ck
and mlk in (34) are supposed continuous in Q, aijk (x, t) ∈ C1+α(Q) ∩ C(Q) and
bik(x, t) ∈ C1(Q) ∩C(Q). We assume in addition that for every k = 1, . . . , N

(35)





n∑

i=1




n∑

j=1

Dja
ij
k + bik(x)




2

, |ck|



 ≤ b

holds, where b > 0 is a constant.
One approach to CP problem is the so called “spectral” one. The strong

connection between the validity of the comparison principle and the first eigen-
value of the operator is well-known feature of elliptic equations and systems.
Similarly, the following result gives the validity of global on t comparison princi-
ple for parabolic systems.

Theorem 10. Let P ∗ be L2-adjoint operator of P . Comparison principle
holds for system (34), (30) if

(i) there is a positive solution of P ∗v = F (x, t) for some F (x, t) > 0
or

(ii) there is a positive eigenfunction λ of P ∗ and the corresponding eigen-
function u∗ is positive one as well.

Note that for parabolic systems the first eigenfunction may not be positive
one, unlike the case of elliptic operators.

S k e t c h o f t h e p r o o f. Let u and u be sub- and super-solutions of
(34). Denote w = u− u.
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1. Let F (x, t) > 0 and there is a positive solution of P ∗v = F (x, t). If we
suppose that there is no comparison principle for P , then w− = min(w, 0) 6= 0.
Let Q− = supp{w− ≤ 0}. Then 0 ≤ (Pw−, v) = (w−, P ∗v) = (w−, F ) ≤ 0. The
first inequality above follows since w− is a super-solution. Therefore w− ≡ 0 and
w = u− u > 0.

2. Let the first eigenvalue λ of P ∗ is positive one and the corresponding
eigenfunction u∗ is positive one as well. Suppose w− ≤ 0. Then u∗ is suitable
test-function and 0 ≤ (Pw−, u∗) = (w−, P ∗u∗) = (w−, λu∗) ≤ 0. Therefore
w− ≡ 0 and w = u− u > 0. ✷

Another approach to the comparison principle for non-cooperative sys-
tems employs the conditions for validity of the comparison principle for non-
cooperative elliptic systems, obtained in [4]. The idea of transferring that results
to the case of parabolic equations is very simple - if we fix t variable we reduce
the parabolic system to the elliptic one and we can apply the conditions for the
validity of comparison principle for elliptic systems.

Let denote by LMu the operator

(36) LMu = −
n∑

i,j=1

Dj

(
aijk (x, t)Diu

k
)

+
n∑

i=1

bik(x, t)Diu
k + ck(x, t)u

k +
N∑

k 6=l=1

mlk(x, t)u
l

where k = 1, . . . , N . Let denote by LM−u the cooperative part of (36), i.e. the
operator

−
n∑

i,j=1

Dj

(
aijk (x, t)Diu

k
)
+

n∑

i=1

bik(x, t)Diu
k + ck(x, t)u

k +

N∑

l=1

m−
lk(x, t)u

l,

where k = 1, . . . , N and m−
lk(x, t) = min{mlk(x, t), 0}. Let L∗

M−
be the L2-adjoint

operator of LM− .

Theorem 11. Let (34) be a weakly coupled, uniformly parabolic system
and the cooperative part of L∗

M−
is irreducible. Then the comparison principle

holds for system (34) if for every t ∈ [0, T ] there is x0(t) ∈ Ω such that

(37)

(
λ(t) +

N∑

k=1

m+
kj(x0, t)

)
> 0 for j = 1, . . . , N,

where λ(t) is the principal eigenvalue of the operator LM−(t) in Ω.
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Theorem 11 is formulated for irreducible cooperative part of the system
(34) and the result is based on Theorem 3 in [4]. If the cooperative part is
reducible then in Theorem 11 above λ(t) can be substituted by λk(t) (see Theorem
(5) in [4]). Here λk(t) is the the principal eigenvalue of the operator

−
n∑

i,j=1

Dj

(
aijk (x, t)Diu

k
)
+

n∑

i=1

bik(x, t)Diu
k + ck(x, t)u

k.

S k e t c h o f t h e p r o o f. Let u and u be sub- and super-solutions of
(34). Then w = u− u is a super-solution of (34) and Pw ≥ 0. In other words in
Q we have

(38) LMw ≥ −wt

Suppose there is no comparison principle for P , i.e. min{w(x, t)} =
w(x0, t0) < 0. If the point (x0, t0) ∈ Q, i.e. (x0, t0) is internal point for the
domain, then wt(x0, t0) = 0. If (x0, t0) ∈ Ω× |T |, i.e. (x0, t0) belongs to the up-
per base of the parabolic cylinder, then wt(x0, t0) ≤ 0. Therefore wt(x0, t0) ≤ 0.

On the other hand, following the proof of Theorem 3 in [6], one can prove
that 0 > LMw(x0, t0). Actually, in the proof of Theorem 3 in [6], which concerns
elliptic systems, we need one additional condition

(39) λ(t) + c+k (x, t) ≥ 0

for every x ∈ Ω and k = 1, . . . , N . But in the case of parabolic systems, one can
substitute in system (34)

uk = vk.e(λ0+b)t,

where λ0 = sup |λ(t)| and b is defined in (35) and we obtain that (39) is fulfilled.

Substitution of wt(x0, t0) ≤ 0 and 0 > LMw(x0, t0) in (38) yields the
contradiction

0 > LMw(x0, t0) ≥ −wt(x0, t0) ≥ 0

and therefore comparison principle holds for system (34). ✷

Example 2. Let the coefficients of system (34) depend only on x, i.e.
consider systems of the type

ukt −
n∑

i,j=1

Dj

(
aijk (x)Diu

k
)
+

n∑

i=1

bik(x)Diu
k + ck(x)u

k +

N∑

l=1

mlk(x)u
k = f l(x)
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l = 1, . . . , N , with boundary conditions on Γ

uk(x, t) = gk(x).

Let (
λ+

N∑

k=1

m+
kj(x0)

)
> 0 for j = 1, . . . , N

and
λ+m+

jj(x) ≥ 0 for every x ∈ Ω and j = 1, . . . , N,

where λ is the principal eigenvalue of the operator LM− in Ω. Then comparison
principle holds for system (34), (30).

If f l(x) = gk(x) ≡ 0 we can write explicitly the solution in the form

u(x, t) = exp−λt v(x),

where v is the principal eigenfunction of

−
n∑

i,j=1

Dj

(
aijk (x)Div

k
)
+

n∑

i=1

bik(x)Div
k + ck(x)v

k +
N∑

l=1

mlk(x)v
k = λv(x).

If the system is cooperative, then v(x) > 0.

The following theorem gives some sufficient conditions when comparison
principle fails. It is based on Theorem 38 in [4]. The idea is that if we fix t0 and
there is no comparison principle for the elliptic system Pu(t0, x) = f then there
is no comparison principle for system (34), (30).

Theorem 12. Let (34) be a weakly coupled, uniformly parabolic system
with fully coupled cooperative part of L∗

M−
. Suppose there is t0 and index j ∈

{1, . . . , N} such that
(
λ+m+

jj(x, t0)
)
< 0 for some point x ∈ Ω, where λ is the

principal eigenvalue of LM−, and m+
jl(x, t0) = 0 for l 6= j, l = 1, . . . , N . Then

the comparison principle does not hold for system (34).
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