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Abstract. Let f(z) =

∞∑
k=0

dkz
k, dk ∈ C\{0}, d0 = 1, be a power series

with a non-zero radius of convergence ρ: 0 < ρ ≤ +∞. Denote by fn(z)

the n-th partial sum of f , and R2n(z) =
f2n(z)

zn
, R2n+1(z) =

f2n+1(z)

zn+1
, n =

0, 1, 2, . . . . By the general result of Hendriksen and Van Rossum there exists
a unique linear functional L on Laurent polynomials, such that L(RnRm) =
0, when n 6= m, while L(R2

n) 6= 0, and L(1) = 1. We present an explicit
integral representation for L in the above case of the partial sums. We use
methods from the theory of generating functions. The case of finite systems
of such Laurent polynomials is studied as well.
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1. Introduction. The theories of orthogonal polynomials on the real
line (OPRL) and on the unit circle (OPUC) have a lot of various contributions
and applications [12, 5, 10, 11]. One of their possible generalizations is a relatively
new theory of biorthogonal rational functions, see [7, 4, 6, 17, 2, 1] and references
therein.

Denote by A a set of all (formal) Laurent polynomials of the following
form:

(1) λpx
p + λp+1x

p+1 + · · ·+ λp+qx
p+q, p ∈ Z; q ∈ Z+,

where λj are complex coefficients and x is an indeterminate. Let {Qk}∞k=0 be a
sequence of Laurent polynomials of the following form:

(2) Q2n(x) =
n∑

j=−n
α
(2n)
j xj , α(2n)

n 6= 0,

(3) Q2n+1(x) =
n∑

j=−n−1
α
(2n+1)
j xj , α

(2n+1)
−n−1 6= 0, n ∈ Z+.

By Proposition 1 in [4], if the sequence {Qk}∞k=0 satisfies

(4) Q2n+1(x) = (x−1 + g2n+1)Q2n(x) + f2n+1Q2n−1(x),

(5) Q2n+2(x) = (1 + g2n+2x)Q2n+1(x) + f2n+2Q2n(x),

with f2n+1 6= 0, f2n+2 6= 0, (n ∈ Z+), and

(6) Q−1(x) = 0, Q0(x) = α
(0)
0 ,

then there exists a unique linear functional L: A 7→ C, with L(1) = 1, such that

(7) L(Qk(x)Qn(x))

{
= 0, k 6= n
6= 0, k = n,

k, n ∈ Z+.

Recall that a RI -type continuos fraction is associated with a system of
monic polynomials {Pn(z)}∞n=0, generated by ([6, p. 5])

(8) Pn(z) = (z − cn)Pn−1(z)− λn(z − an)Pn−2(z), n = 1, 2, . . . ,

where P−1(z) := 0, P0(z) := 1, and

(9) λn+1 6= 0, Pn(an+1) 6= 0.

Polynomials {Pn(z)}∞n=0 are related to biorthogonal rational functions [6, Theo-
rem 2.1]. The case an = 0, n ≥ 2, is related to general T -fractions and to the
above orthogonal Laurent polynomials Rn [4]. In fact, given a system of monic
polynomials {Pn(z)}∞n=0, generated by (8),(9) with an ≡ 0, and cn ∈ C\{0},
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n ∈ N, one can define

(10) Q̃2n(x) =
1

ξ2n

P2n(x)

xn
, Q̃2n+1(x) =

1

ξ2n+1

P2n+1(x)

xn+1
, n ∈ Z+,

where

(11) ξk = (−1)k
k∏
j=0

cj , c0 := 1, k ∈ Z+.

Using recurrence relation (8), written in terms of Q̃n, one obtains that {Q̃k}∞k=0

satisfy recurrence relations (4),(5) with

(12) gk = − 1

ck
, fk = −λkξk−2

ξk
, k ∈ N.

Let

(13) f(z) =

∞∑
k=0

dkz
k, dk ∈ C\{0}, d0 = 1,

be a power series with a non-zero radius of convergence ρ: 0 < ρ ≤ +∞. Denote
by fn(z) the n-th partial sum of f , and

(14) Fn(z) =
1

dn
fn(z), n ∈ Z+.

In [13] it was shown that polynomials {Fn(z)}∞n=0 satisfy relations (8),(9) with
an ≡ 0, and

(15) cn = −dn−1
dn

, n ∈ N; λn =
dn−2
dn−1

, n ≥ 2.

They also satisfy some special Hahn-type property, see [16]. The associated
orthogonal Laurent polynomials are given as follows:

(16) R2n(z) =
f2n(z)

zn
, R2n+1(z) =

f2n+1(z)

zn+1
, n ∈ Z+.

By the above mentioned result of Hendriksen and Van Rossum there exists a
unique linear functional L on Laurent polynomials, such that L(RnRm) = 0,
when n 6= m, while L(R2

n) 6= 0, and L(1) = 1. Our main purpose here is to obtain
an explicit integral representation for L. We shall derive a generating function for
{Rk}∞k=0, and use some methods from the theory of generating functions. The case
of finite systems of Laurent polynomials {Qk}2nk=0 (n ∈ N), satisfying relations (4),
(5), is treated in another way. We use results on moment problems to obtain an
explicit integral representation for the corresponding linear functional L. The
latter is done not only for the case of the partial sums, but for arbitrary such
finite systems satisfying an additional condition (see (31)).
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Notations. Besides the given above notations, we shall use the following
definitions. As usual, we denote by R, C, N, Z, Z+, the sets of real numbers, com-
plex numbers, positive integers, integers and non-negative integers, respectively.
For k, l ∈ Z, we set Zk,l := {j ∈ Z : k ≤ j ≤ l}. Set T := {z ∈ C : |z| = 1},
D := {z ∈ C : |z| < 1}. By B(C) we mean the set of all Borel subsets of C. By
P we denote the set of all polynomials with complex coefficients.

2. The partial sums of a power series and orthogonal Laurent
polynomials. Consider a power series f(z), as in (13), its partial sums fn(z),
and the associated Laurent polynomials {Rk}∞k=0 from (16). There are various
methods for deriving candidates for generating functions, as described in details
in a book of McBride [8], see also a book of Rainville [9]. A powerful tool is a
formal series manipulation, see [8, p. 11] for examples. Interchanging the order
of summation and using Lemma 10 on pages 56, 57 in [9], we can formally write:

∞∑
n=0

fn(x)tn =

∞∑
n=0

n∑
k=0

dkx
ktn =

∞∑
n,k=0

dkx
ktn+k

=
∞∑
n=0

tn
∞∑
k=0

dk(xt)
k =

1

(1− t)
f(xt), |t| < 1.

It remains to verify that the obtained candidate is valid. In the case of a gen-
erating function for Rn we need some additional work, since the correspondence
between Rn and fn depends on the parity of n.

Theorem 1. Let f(z) be a power series from (13) with a non-zero radius
of convergence ρ (≤ +∞), and fn(z) be its n-th partial sum. Let {Rk(z)}∞k=0 be
defined by (16). Then the following relations hold:

(17)
1

(1− t)
f(xt) =

∞∑
n=0

fn(x)tn, t, x ∈ C : |t| < 1, |x| < ρ.

(18)

(√
x+ 1√
x− z

)
f(
√
xz) +

(√
x− 1√
x+ z

)
f(−
√
xz) = 2

∞∑
n=0

Rn(x)zn,

x, z ∈ C : 0 < |x| < ρ, |z| < |
√
x|.

Here by
√
x we mean an arbitrarily chosen and fixed value of the square root for

each x (and the corresponding values need not to form an analytic branch).

P r o o f. Choose an arbitrary x: |x| < ρ. The left-hand side of (17) is
an analytic function of t in D. Calculating its Taylor coefficient and using the
Leibniz rule for the derivatives we derive relation (17).
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Let us check relation (18). Choose an arbitrary x: 0 < |x| < ρ, t ∈ D,
and fix an arbitrary value of

√
x. Denote z = t

√
x. By the already established

relation (17) we may write:( √
x√

x− z

)
f(
√
xz) =

∞∑
n=0

fn(x)(z/
√
x)n(19)

=
∞∑
k=0

R2k(x)z2k +
√
x
∞∑
k=0

R2k+1(x)z2k+1.

Denote

(20) ϕ(z;x) :=

( √
x√

x− z

)
f(
√
xz).

Then

ϕ(z;x) + ϕ(−z;x) + (ϕ(z;x)− ϕ(−z;x))/
√
x = 2

∞∑
n=0

Rn(x)zn.

Collecting terms with f(
√
xz) and f(−

√
xz) we obtain relation (18). 2

The obtained generating functions can find various applications. For ex-
ample, by the integral formula for the Taylor coefficients one can write:

(21) Rn(x)

=
1

4πi

∮
|z|=|

√
x|/2

((√
x+ 1√
x− z

)
f(
√
xz) +

(√
x− 1√
x+ z

)
f(−
√
xz)

)
z−n−1dz,

x ∈ C : 0 < |x| < ρ.

Our next purpose is to obtain an explicit integral representation for the
functional L which was discussed in the Introduction. In order to find a suitable
candidate for a measure of integration we shall use generating functions. It is
well known that they help to establish orthogonality relations, see Section 19.3
in [3].

Observe that that the linear functional L is uniquely determined by the
following relations:

(22) L(Rn) = δn,0, n ∈ Z+,

where δn,m denotes Kronecker’s delta. In fact, the span of functions {Rn}∞n=0

coincides with A. If we formally apply L to the both sides of relation (18), then
we obtain

(23) Lx(I4(x; z)) = 2,



6 S. M. Zagorodnyuk

where the superscript x means that L acts in variable x, and

(24) I4(x; z) :=

(√
x+ 1√
x− z

)
f(
√
xz) +

(√
x− 1√
x+ z

)
f(−
√
xz).

It is convenient to introduce a new variable y =
√
x, and write

(25) I4(y
2; z) :=

(
y + 1

y − z

)
f(yz) +

(
y − 1

y + z

)
f(−yz).

We can multiply the right-hand side of (25) by an arbitrarily chosen func-

tion a(y), and then calculate some contour integrals

∮
I4(y

2; z)a(y)dy, trying to

obtain the value 2. In this manner we obtain a candidate which is described in
the next theorem.

Theorem 2. Let f(z) be a power series as in (13) with a non-zero ra-
dius of convergence ρ, and fn(z) be its n-th partial sum. Define {Rk(z)}∞k=0 by
relations (16). Let L be a linear functional on A, such that L(RnRm) = 0, when
n 6= m, while L(R2

n) 6= 0, n,m ∈ Z+, and L(1) = 1. Then the following integral
representation holds:

(26) L(R) =
1

2πi

∮
|y|=c

R(y2)
dy

yf(y2)
, R ∈ A.

Here c is an arbitrary positive number which is less than
√
ρ, and less than ρ̂,

where ρ̂ is the radius of convergence for the Maclaurin series of 1/f(y2)1.

P r o o f. Denote the right-hand side of (26) by L(R). Let us check that
L has property (22). Choose an arbitrary n ∈ Z+. By (16) we may write:

L(R2n) =
1

2πi

∮
|y|=c

f2n(y2)
dy

y2n+1f(y2)

=
1

2πi

∮
|y|=c

f(y2)−
∞∑

j=2n+1

djy
2j

 dy

y2n+1f(y2)

=
1

2πi

∮
|y|=c

1−

 ∞∑
j=2n+1

djy
2j

 (f(y2))−1

 dy

y2n+1

=
1

(2n)!

1−

 ∞∑
j=2n+1

djy
2j

 (f(y2))−1

(2n)

(0) =

{
1, n = 0
0, n > 0

.

1Since f(0) = 1, it follows by continuity that ρ̂ > 0.
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The last equality can be justified, for example, using the Leibniz rule for deriva-
tives. In a similar way, we may write

L(R2n+1) =
1

2πi

∮
|y|=c

f2n+1(y
2)

dy

y2n+3f(y2)

=
1

2πi

∮
|y|=c

f(y2)−
∞∑

j=2n+2

djy
2j

 dy

y2n+3f(y2)

=
1

(2n+ 2)!

1−

 ∞∑
j=2n+2

djy
2j

 (f(y2))−1

(2n+2)

(0) = 0.

This completes the proof. 2
For example, consider the following function:

(27) f(z) = ebz
m∏
j=0

(1− ajz)−λj , b ≥ 0, 0 < aj < 1, λj > 0; m ∈ N.

The corresponding Maclaurin series converges in

K := {z ∈ C : |z| < min(1/a0, . . . , 1/am)},
which contains D. Observe that this series has positive coefficients and the con-
stant term f(0) = 1. Denote ρ := min(1/a0, ..., 1/am). The function

1/f(y2) = e−by
2
m∏
j=0

(1− ajy2)λj ,

is analytic in K1 := {z ∈ C : |z| < √ρ}. Therefore, in this case we may apply
Theorem 2 and write

(28) L(R) =
1

2πi

∮
T
R(y2)e−by

2
m∏
j=0

(1− ajy2)λj
dy

y
, R ∈ A.

Notice that one may also use various cases of the generalized hyperge-
ometric function as f(z), and investigate the corresponding partial sums and
orthogonal Laurent polynomials.

Finite systems of Laurent polynomials. Fix an arbitrary n ∈ N.
Denote by An a set of all (formal) Laurent polynomials of the following form:

(29)

n∑
j=−n

λjx
j , λj ∈ C,

where x is an indeterminate. Let {Qk}2nk=0 be a set of Laurent polynomials which
have forms as in (2),(3). Of course, these polynomials belong to An and span it.
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Suppose that {Qk}2nk=0 satisfy relations (4),(5) with some f2n+1 6= 0,
f2n+2 6= 0, (n ∈ Z0,n−1), and Q−1(x) := 0. We can expand the sequences of
complex coefficients {fk}2nk=0, {gk}2nk=0, to infinite complex sequences {fk}∞k=0,
{gk}∞k=0, fk 6= 0, in an arbitrary way. Then we extend the sequence of Qk by
relations (4),(5) to a sequence {Qk}∞k=0. By the result of Hendriksen and Van
Rossum there exists a linear functional L on Laurent polynomials, such that
L(QnQm) = 0, when n 6= m, while Q(L2

n) 6= 0.
Denote by Ln the restriction of L to the set An. We have

(30) Ln(QkQn)

{
= 0, k 6= n
6= 0, k = n,

k, n ∈ Z0,2n.

Theorem 3. Let {Qk}2nk=0 be a finite set of Laurent polynomials, having
forms as in (2), (3); n ∈ N. Suppose that {Qk}2nk=0 satisfy relations (4), (5) with
some f2n+1 6= 0, f2n+2 6= 0, (n ∈ Z0,n−1), and Q−1(x) := 0. Suppose that the
corresponding linear functional Ln, having property (30), satisfies the following
condition:

(31) a := Ln(x−n) 6= 0,

Then Ln admits the following integral representation:

(32) Ln(Q) =

∫
Q(z)azndµ, Q ∈ An,

where µ is a finitely atomic positive measure on B(C).

P r o o f. Denote

sk =
1

a
Ln(xk−n), k = 0, 1, . . . , 2n.

Consider the following moment problem (see [15, 14]): find a (non-negative)
measure µ on B(C) such that

(33)

∫
C
zkdµ(z) = sk, k ∈ Z0,2n.

Since s0 = 1, it is solvable and according to Algorithm 1 in [14] it has a finitely
atomic solution. For an arbitrary Q ∈ An we may write:

Q(z) =

2n∑
k=0

akz
k−n, ak ∈ C.

Substituting this expression into both sides of relation (32), we shall obtain the
same value. The proof is complete. 2

We remark that Algorithm 1 in [14] provides an explicit procedure for the
construction of the corresponding atomic solution (see Example 1 in [14]).
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Thus, for large classes of orthogonal Laurent polynomials it was here pos-
sible to construct explicit measures and integral representations. The theories of
generating functions and moment problems have shown their power and useful-
ness as the corresponding tools of the investigation.
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