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CONFORMAL MANIFOLDS WITH PARALLEL SPINORS

B. Alexandrov∗

We prove that on a conformal spin manifold any Weyl structure admitting a parallel
spinor of weight k 6= 0 must be closed. The same is true when k = 0 and the dimension
is at least 3, with the additional assumption that in dimension 4 the manifold is
compact.

1. Introduction. The Riemannian spin manifolds admitting parallel spinors have
been studied by Hitchin [5] and Wang [7]. Using the Berger-Simons theorem (see for ex-
ample [1]) they have proved that a complete simply connected irreducible non-symmetric
spin manifold admits a parallel spinor iff its holonomy is SU(n), Sp(n), G2 or Spin(7).

Now, on conformal spin manifolds there exists a natural 1-parameter family of spinor
bundles – the bundles of spinors of weight k, k ∈ R (cf. [4]). Recall that a Weyl
connection (or Weyl structure) on a conformal manifold is a torsion-free connection which
preserves the conformal structure. A particular example is the Levi-Civita connection of
any metric in the conformal class. Thus on conformal manifolds the Weyl connections
naturally generalize the Levi-Civita connection.

The purpose of this paper is to study the Weyl structures admitting parallel spinors
of weight k. In Theorem 4.1 we prove that when k 6= 0 any such structure must be
closed. In particular, in the simply connected case we essentially obtain a Riemannian
manifold admitting a parallel spinor (with respect to the Levi-Civita connection). For
k = 0 and dimension greater than 2 the same result has been proved by Moroianu [6]
under the additional assumption that in the 4-dimensional case the manifold is compact.
In fact, in dimension 4 he proved more precise results. Namely, a compact 4-dimensional
conformal spin manifold with a parallel spinor of weight 0 is hyper-Hermitian and hence
(using the classification of Boyer [2]) it is conformally equivalent to a flat torus or a K3-
surface or a coordinate quaternionic Hopf-surface with its standard locally conformally
flat metric. As shown in [6], there are examples of non-closed Weyl structures on non-
compact 4-dimensional conformal spin manifolds which admit parallel spinors of weight
0. We show that when the dimension is 2 even the assumption that the manifold is
compact does not ensure the closeness of a Weyl structure admitting a parallel spinor of
weight 0.

2. Algebraic preliminaries.
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Let CO+(n) = R+ × SO(n) be the conformal orthogonal group. This group is em-
bedded in GL(n,R) by mapping (a1, a2) ∈ CO+(n) to a1a2 ∈ GL(n,R). Thus we obtain
a representation ρ of CO+(n) in R

n, ρ(a1, a2)x = a1a2x, (a1, a2) ∈ CO+(n), x ∈ R
n.

The Lie algebra of CO+(n) is co(n) = R ⊕ so(n) and the corresponding Lie algebra
representation is given by

ρ(A1, A2)x = A1x+A2x, (A1, A2) ∈ co(n), x ∈ R
n.(2.1)

The representation ρ gives rise to a representation of CO+(n) in (Rn)∗, which we shall
denote by ρ∗. Identifying (Rn)∗ with R

n by the standard inner product, we obtain that
ρ∗(a1, a2)α = a−1

1 a2α, (a1, a2) ∈ CO+(n), α ∈ R
n.

Let CSpin(n) = R+ × Spin(n) be the conformal spin group. Then CSpin(n) double
covers CO+(n) (for n ≥ 2) and the projection is id × π, where π is the projection of
Spin(n) on SO(n). Denote by ρk the representation of CSpin(n) in the space of spinors
Σ given by ρk(a1, ã2)ψ = ak1 ã2ψ, (a1, ã2) ∈ CSpin(n), ψ ∈ Σ. When considered as
a CSpin(n)-module with respect to this representation, we shall denote the space of
spinors by Σ(k) and call it the space of spinors of weight k (cf. [4]). The corresponding
representation of the Lie algebra cspin(n) = R⊕ spin(n) of CSpin(n) on Σ(k) is

ρk(A1, Ã2)ψ = kA1ψ + Ã2ψ, (A1, Ã2) ∈ cspin(n), ψ ∈ Σ.(2.2)

Recall that if Ã2 ∈ spin(n) and πÃ2 = A2 ∈ so(n) then

Ã2ψ =
1

4

∑

i,j

(A2ei, ej)e
iejψ, ψ ∈ Σ,(2.3)

where {ei} is an orthonormal frame of Rn, {ei} is its dual and αψ denotes the Clifford
product of α ∈ (Rn)∗ and ψ ∈ Σ. The Clifford action of Rn on Σ is obtained by the
identification of Rn and (Rn)∗ mentioned above.

The Clifford action of (Rn)∗ is still defined in the conformal framework, but it sends
Σ(k) to Σ(k−1), i.e.

(ρ∗(πã)α).(ρk(ã)ψ) = ρk−1(ã)(αψ), α ∈ (Rn)∗, ψ ∈ Σ, ã ∈ CSpin(n).

3. Weyl connections.

Let (M, c) be an oriented conformal manifold of dimension n and let CO+(M) be the
bundle of oriented conformally orthogonal frames with respect to the conformal class c.
A connection ∇W is called Weyl connection (or Weyl structure) with respect to c if it
satisfies the following conditions:

(i) ∇W preserves c;
(ii) ∇W is torsion-free.

The condition (i) means that ∇W is a connection on the principal bundle CO+(M), or
equivalently, for any metric g ∈ c ∇W g = θg ⊗ g for some 1-form θg.

Denote by∇g the Levi-Civita connection of g (which is an example of Weyl connection
with respect to c). Then we have

∇W
X Y = ∇g

XY −
1

2
θg(X)Y −

1

2
θg(Y )X +

1

2
g(X,Y )(θg)#,

where (θg)# is the dual vector field of θg with respect to g. Equivalently,

∇W
X = ∇g

X −
1

2
θg(X)Id−

1

2
θg ∧X,(3.4)

where θg ∧ X is the skew-symmetric (with respect to g) endomorphism of TM defined
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by (θg ∧X)(Y ) = θg(Y )X − g(X,Y )(θg)#.
If g̃ = efg, then θg̃ = θg + df . Hence, a Weyl connection coincides with the Levi-

Civita connection of some metric from c iff θg is exact. Such Weyl structures are called
exact. If θg is closed, then the Weyl structure is called closed. Any exact Weyl structure
is closed and the converse is true if M is simply connected.

A CSpin-structure on (M, c) is a CSpin(n)-principal bundle CSpin(M) which double
covers CO+(M). Given a CSpin-structure on (M, c) we can define the spinor bundles of
weight k: these are the associated fibre bundles Σ(k)M = CSpin(M)×ρk

Σ(k).
Since ∇W and ∇g are connections on CO+(M), they can be lifted to connections on

CSpin(M). By (2.1), (2.2), (2.3) and (3.4) we obtain

∇W
X ψ = ∇g

Xψ −
2k − 1

2
θg(X)ψ +

1

4
Xθgψ, ψ ∈ Γ(Σ(k)M).(3.5)

This equality has to be understood as follows: the bundle Σ(k)M is identified with the
bundle of spinors ΣM of g and the Clifford product in the right-hand side is with respect
to this identification.

Finally, recall that the conformal scalar curvature kg with respect to g ∈ c of a Weyl
structure ∇W is defined to be the scalar curvature of the curvature tensor of ∇W (the
trace is taken with respect to g). It is well-known (cf. [3]) that

kg = sg − (n− 1)δθg −
(n− 1)(n− 2)

4
|θg|2,(3.6)

where sg is the scalar curvature of g and the co-differential operator and the norm are
taken with respect to g.

4. Weyl structures with parallel spinors.

Theorem 4.1Let ∇W be a Weyl connection on a conformal spin manifold (M, c)
of dimension n. Suppose there exists a parallel spinor of weight k 6= 0 with respect to
∇W . Then ∇W is closed. In particular, if M is simply connected then there exists a
metric g ∈ c such that (M, g) admits a parallel spinor (with respect to the Levi-Civita
connection). The same is true when k = 0, n ≥ 3, n 6= 4 and when k = 0, n = 4 and M
is compact.

Proof: If (M, c) admits a parallel section of Σ(k)M with respect to ∇W then there

exists ψ ∈ Σ(k) on which the holonomy group of ∇W acts trivially. Let (A1, Ã2) ∈

cspin(n) be such that ρk(A1, Ã2)ψ = 0. Then

kA1ψ + Ã2ψ = 0(4.7)

and hence kA1 < ψ,ψ > + < Ã2ψ, ψ >= 0. But kA1 < ψ,ψ > is real and < Ã2ψ, ψ >

is purely imaginary. Thus kA1 = 0 and if k 6= 0 it follows that A1 = 0, i.e. (A1, Ã2) ∈
spin(n). This shows that the restricted holonomy group of ∇W as a connection on
CSpin(M) is contained in Spin(n) and therefore the restricted holonomy group of ∇W

as a connection on CO+(M) is contained in SO(n). Hence, if M is simply connected the
holonomy group is subgroup of SO(n) and thus ∇W is a torsion-free connection on a sub-
bundle of CO+(M) with structure group SO(n), i.e. ∇W is the Levi-Civita connection
of a metric g ∈ c. In particular, θ is exact and (M, g) admits a parallel spinor (with
respect to the Levi-Civita connection). When M is not simply connected the above is
true for its universal covering space and hence θ is closed.

The case k = 0 follows from [6], since (3.5) shows that the connection on the spinor
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bundle of a Riemannian spin manifold, which is called there ”the Weyl connection”,
actually coincides with the Weyl connection ∇W acting on sections of Σ(0)M . �

Remark: When the dimension is 2 even the assumption that M is compact does
not ensure the closeness of a Weyl structure admitting a parallel spinor of weight 0. To
see this, notice that when k = 0 and n = 2 (4.7) yields that A2 = 0, i.e. the restricted
holonomy group of ∇W is contained in R+ and thus the conformal scalar curvature is
zero. So, from (3.6) we obtain that the scalar curvature of a metric g ∈ c is sg = δθg.
Hence, M is homeomorphic to the torus T 2 = S1 × S1. Now, take on T 2 the conformal
class of the standard flat metric g. Then it follows easily from (3.5) that there exists a

parallel spinor with respect to ∇W iff
∂θ

g
1

∂x1
+
∂θ

g
2

∂x2
= 0, where θg = θ

g
1dx

1 + θ
g
2dx

2 and

x1 and x2 are the coordinates on the first and the second factor of T 2 respectively. The
above equation obviously has solutions θg, which are not closed.

REFERENCES

[1] A. Besse. Einstein manifolds. Springer-Verlag, New York, 1987.
[2] C. Boyer. A note on hyper-Hermitian four manifolds. Proc. Amer. Math. Soc. 102, No 1
(1988), 157-164.
[3] P. Gauduchon. Structures de Weyl-Einstein , espaces de twisteurs et variétés de type
S

1 × S
3. J. reine angew. Math. 469 (1995), 1-50.

[4] P. Gauduchon. Hermitian connections and Dirac operators. Bol. U. M. I. ser. VII, XI-B,

supl. 2 (1997), 257-289.
[5] N. Hitchin. Harmonic spinors.Adv. Math. 14 (1974), 1-55.
[6] A. Moroianu. Structures de Weyl admettant des spineurs parallèles. Bull. Soc. Math. Fr.
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КОНФОРМНИ МНОГООБРАЗИЯ С ПАРАЛЕЛНИ СПИНОРИ

Богдан Александров

Доказваме, че върху конформно спин многообразие всяка Вайлова структура

допускаща паралелен спинор с тегло k 6= 0 е затворена. Същото е вярно, ко-

гато k = 0 и размерността е поне 3, при допълнителното предположение, че в

размерност 4 многообразието е компактно.
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