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A recursive construction of q-ary codes with parameters (n,M, d) for M = q + 2,
n = ⌊M(M − 1)/4⌋ and d = n− 1 is presented.

Introduction. Let H(n, q), q ≥ 2 be the set of all ordered q-ary n-tuples, where
the distance between two n-tuples is the number of positions in which they differ.

We call every subset of H(n, q) a q-ary code of length n. The elements of a code are
called codewords. If the code contains M words and the minimum distance between two
distinct codewords is d, we call C a q-ary (n,M, d)-code or an (n,M, d)q-code.

The next theorem states a necessary condition for the code existence.

Theorem 1 (The Plotkin bound) [1], [2]. If C is an (n,M, d)q-code, then

(M − 1)qd ≤ M(q − 1)n.(1)

In the present paper the following theorem is proved:

Theorem 2 (The Sharpened Plotkin bound). If C is an (n,M, d)q-code and M =
pq + r, 0 ≤ r ≤ q − 1, then

M(M − 1)d ≤ (M2 − σ)n.(2)

where σ = (q − r)p2 + r(p+ 1)2.

The inequality (1) is weaker than (2). If M is multiple of q then (1) follows from (2).
The largest value of n for which an (n, q + 1, n − 1)q code exists was determined in

[3].
In this paper the largest value of n for which an (n, q + 2, n − 1)q code exists is

determined. It is constructively proved that this value is n = ⌊(q + 2)(q + 1)/4⌋.

New results.

Proof of Theorem 2. The result follows directly by the next two lemmas.

Lemma 3 [2].Let C be an (n,M, d)q-code, and let σ = min
∑q−1

j=0
m2

j , where mj,

j = 0, 1, . . . , q − 1 are nonnegative integers with the sum
∑q−1

j=0
mj = M . Then

M(M − 1)d ≤ (M2 − σ)n.
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Lemma 4.Let mj, j = 0, 1, . . . , q−1 be nonnegative integers with a sum M = pq+r,
0 ≤ r ≤ q − 1. Then

q−1
∑

j=0

m2
j ≥ (q − r)p2 + r(p + 1)2.

Proof. If r = 0 it follows from the Cauchy-Buniakovski inequality, that the sum of
the squares is the smallest for mj = p, j = 0, 1, . . . , q − 1 and is equal to qp2.

Consider the case r > 0. Let σ be the smallest possible sum of the squares and let mj ,
j = 0, 1, . . . , q − 1 be numbers, for which σ is attained. Let α = max(m0,m1, . . . ,mq−1)
and β = min(m0,m1, . . . ,mq−1). If α− β > 1, then replacing α by α− 1 and β by β+1
we obtain a new set of numbers with a sum M and a sum of the squares

σ′ = σ − α2 − β2 + (α− 1)2 + (β − 1)2 = σ − 2(α+ β − 1) < σ.

Therefore α− β ≤ 1.
If α ≥ p+ 2, then β ≥ p+ 1 and therefore mj ≥ p+ 1. Then

∑q−1

j=0
≥ (p+ 1)q > M ,

which is a contradiction. If β ≤ p − 1, then α ≥ p, and hence mj ≤ p. Then
∑q−1

j=0
≤

pq < M — a contradiction.
Hence p ≤ mj ≤ p+ 1, j = 0, 1, . . . , q − 1. Let x be the count of mj ’s equal to p, and

y — the count of mj ’s equal to p+ 1. Then

∣

∣

∣

∣

x + y = q
px + (p+ 1)y = pq + r

.

In this way we obtain x = q − r, y = r. Hence σ = (q − r)p2 + r(p+ 1)2.

Example 5. At the International Mathematical Olympiad in 1998, the following
problem was proposed:

In a contest, there are a candidates and b judges, where b ≥ 3 is an odd number.
Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair
of judges agrees on at most k candidates. Prove that

k

a
≥

b− 1

2b
.

Solution. In fact the problem is about a binary (a, b, a−k)-code. We apply Theorem
2. Since b = 2p+1, then σ = p2 +(p+1)2. Then b(b− 1)(a− k) ≤ (b2 − p2 − (p+1)2)a,
which is equivalent to the desired result.

Let q ≥ 2. Suppose there exists a q-ary code C of length n, size M = q + 2 and
minimum distance d = n− 1. By Theorem 2 we obtain σ = q + 6, hence

M(M − 1)(n− 1) ≤ (M2 − q − 6)n.

Therefore

n ≤ M(M − 1)/4 = (q + 2)(q + 1)/4.
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Thus the largest value of n for which an (n, q + 2, n− 1)q may exist is

n = ⌊(q + 2)(q + 1)/4⌋.

Denote by Aq(n, d) the largest value of M for which an (n,M, d)q-code exists.
In [3] the function Aq(n, n−1) is investigated and there is proved that if n ≤ (q+1)q/2

then Aq(n, n− 1) ≥ q + 1. In the present paper the result is specified.

Corollary 6. If ⌊(q + 2)(q + 1)/4⌋ < n ≤ (q + 1)q/2 then Aq(n, n− 1) = q + 1.

Theorem 7.For any integer q ≥ 2 there exists an (n,M, d)q-code, where M = q+2,
n = ⌊(q + 2)(q + 1)/4⌋ and d = n− 1.

Proof. For small values of q the parameters of these codes are:

q M n d
2 4 3 2
3 5 5 4
4 6 7 6
5 7 10 9

The following codes are solutions of the problem for q = 2 and q = 3:

q = 2 q = 3
000 20011
011 02101
101 01210
110 10120

11002

From the solutions for q = 2 and q = 3 we obtain solutions for q = 4 and q = 5
respectively:

q = 4 q = 5
000 0123 20011 01234
011 3012 02101 40123
101 2301 01210 34012
110 1230 10120 23401

11002 12340
222 0000
333 1111 33333 00000

44444 11111

Let Cq be the matrix consisting of the q + 2 codewords of a solution for given value
of q. Combining Cq and C2 we obtain Cq+4 in the following way:

Cq A A

000 00...0
011 11...1
101 00...0
110 11...1
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where
1) every column of the matrix Cq+4 consists of the numbers

0, 0, 1, 1, 2, 3, . . . , q, q + 1, q + 2, q + 3;

2) the positions of the two zeros and the two ones is important, the positions of the
other numbers in the column is of no importance;

3) A is a square matrix and Ai,i = 0, i = 1, 2, . . . , q+2, Ai,i+1 = 1, i = 1, 2, . . . , q+1,
Aq+2,1 = 1.

We obtain a matrix of the codewords of a code with parameters (n′,M ′, d′)q′ , where
n′ = n + 3 + 2(q + 2), M ′ = M + 4, q′ = q + 4. It is easily checked that d′ = n′ − 1.
Using that n = ⌊(q + 2)(q + 1)/4⌋ we obtain n′ = ⌊(q′ + 2)(q′ + 1)/4⌋.
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РЕКУРСИВНА КОНСТРУКЦИЯ НА ФАМИЛИЯ НЕЛИНЕЙНИ КОДОВЕ

Галина Богданова, Стоян Капралов

Представена е рекурсивна конструкция на q-ични кодове с параметри (n,M, d)
за M = q + 2, n = ⌊M(M − 1)/4⌋ и d = n− 1.
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