
���������������	�
� � �����������������
�
����� �����
�����������	�	����� �!�!"
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2001

Proceedings of Thirtieth Spring Conference of

the Union of Bulgarian Mathematicians

Borovets, April 8–11, 2001

LINEAR PROGRAMMING BOUNDS FOR SPHERICAL

CODES AND DESIGNS
*

Peter Boyvalenkov, Danyo Danev

We describe linear programming (LP) techniques used for obtaining upper/lower
bounds on the size of spherical codes/spherical designs. A survey of universal bounds
is presented together with description of necessary and sufficient conditions for their
optimality. If improvements are possible, we describe methods for finding new bounds.
In both cases we are able to find new bounds in great ranges of parameters. Inves-
tigations on the possibilities for attaining the universal bounds are described. Some
investigations which lead beyond the pure LP are also presented.

1. Introduction. A spherical (n, M, s)-code is a finite subset C of the n-dimensional
Euclidean sphere Sn−1 with cardinality |C| = M and a maximal inner product s =
max{〈x, y〉 : x, y ∈ C, x 6= y}. The concept of spherical designs was introduced in 1977
by Delsarte, Goethals and Seidel [18].

Definition 1.A code C ⊂ Sn−1 is called a spherical τ−design if and only if the

equality

(1)

∫

Sn−1

f(x) dµ(x) =
1

|C|
∑

x∈C

f(x)

((µ(·) is the usual Lebesgue measure on Sn−1, normalized for µ(Sn−1) = 1) holds for all

polynomials f(x) = f(x1, x2, . . . , xn) of degree at most τ .

LP techniques for estimating the size of codes and designs on Sn−1 were introduced
after 1975. The result was immediate and new bounds appeared to be, in a sense, univer-
sal, and relatively easy for calculation. Apart from the theoretical point of view, spherical
codes and designs were proved to be important at least in two practical areas: codes are
used in communications (modems, mobile devices, etc.) and designs in approximations.

The background for the LP approach was developed by Delsarte, Goethals and Seidel
[18] and Kabatiansky and Levenshtein [23]. They proved that real polynomials having
certain properties can be used for obtaining upper bounds on the size of codes (for fixed
dimension and maximal inner product) and lower bounds on designs (for fixed dimension
and strength). Moreover, suitable polynomials were proposed and universal bounds have
been obtained.

*This research was partially suppoqerted by UNESCO under contract UVO-ROSTE 875.695.0 and
by Bulgarian NSF under contract MM-901/99.
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The aim of this survey is to describe the present situation along with the universal
bounds and their possible LP improvements and to propose some directions for future
investigations. The paper is organized as follows.

In section 2 we discuss the logic of the LP bounds and the logic of the universal
bounds, i.e. the Levenshtein bound for codes [24, 26] and the Delsarte-Goethals-Seidel
bound for designs [18]. The distance distributions of codes and designs attaining the
universal bounds can be computed. This can be used for proving nonexistence results
[5, 6, 8, 16, 13]. In section 3 we describe necessary and sufficient conditions for existence
of better than the universal bounds. Despite extremal in some sense and best possible
in (infinitely) many cases, these bounds appear not to give the full strength of the LP
[30, 7, 12, 17]. Properties of test functions introduced in [12] need to be studied. Section
4 describes the search of new LP bounds for codes and designs. When improvements
are possible, we apply certain methods for calculating new bounds. In section 5 we go
beyond the pure LP. Indeed, LP techniques can be combined with other (geometric, for
example) ideas for investigations on the structure of putative good codes and designs.
The problem for designs is easier and we describe improvements (either asymptotic and
in concrete cases, such as the first open ones) of the Delsarte-Goethals-Seidel bound [14].
In other application, LP techniques are used to estimate other parameters of codes such
as their distance distribution. This results [3] in obtaining a new bound on the exponent
of error probability of decoding for the best possible codes in the Gaussian channel.

2. Universal LP bounds.

2.1. Gegenbauer polynomials. The theory of spherical codes and designs is

naturally connected with the family of Gegenbauer polynomials {P (n)
i (t)}∞i=0 [1, Chapter

22] (n is nothing but the relevant dimension). They can be defined by

(i + n − 2)P
(n)
i+1(t) = (2i + n − 2)tP

(n)
i (t) − iP

(n)
i−1(t), i ≥ 1,

where P
(n)
0 (t) = 1 and P

(n)
1 (t) = t. It is well known that any real polynomial f(t),

deg(f) = m, can be uniquely expanded in terms of Gegenbauer polynomials as

f(t) =

m
∑

i=0

fiP
(n)
i (t).

The following definition joins two properties of very different nature. It is convenient
for explanation of the LP approach for bounding sizes of codes and designs.

Definition 2.Denote

An,s = {f(t) : f(t) ≤ 0 for t ∈ [−1, s], fi ≥ 0 for i = 1, ..., m = deg f(t), f0 > 0},
Bn,τ = {f(t) : f(t) ≥ 0 for t ∈ [−1, 1], fi ≤ 0 for i = τ + 1, ..., m = deg f(t)}.

In applications, one needs polynomials in the good sets An,s or Bn,τ for specified
values of n and s, or n and τ , respectively.

2.2. The LP approach. The LP approach works well for a class of metric spaces
called polynomial metric space [24, 26]. The Euclidean spheres appear to be among the
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most interesting examples. We describe in brief the idea behind these bounds as it is
exposed in [24, 26]. Another description can be found in [18].

The spaces Sn−1 are under consideration with the usual Euclidean metric. It is well
known that the Hilbert space L2(S

n−1, µ) of complex-valued functions defined on Sn−1

with inner product

〈u, v〉 =

∫

Sn−1

u(x)v(x) dµ(x)

can be decomposed into a countable direct sum of mutually orthogonal subspaces Vi,
i = 0, 1, . . ., where dim(Vi) = ri. The subspace Vi is in fact the space of all functions,
which are represented on Sn−1 by harmonic homogeneous polynomials on n variables of
total degree i. If {vij(x) : j = 1, 2, . . . , ri} is an orthonormal basis of Vi, one considers
the so-called zonal spherical functions

(2) P
(n)
i (〈x, y〉) =

1

ri

ri
∑

j=1

vij(x)vij (y).

In this way one obtains nothing but the Gegenbauer polynomials exactly as defined in
2.1.

The next statement [18, 25, 26] gives an equivalent definition of spherical designs.

Lemma 1.A spherical code C is a τ -design iff
∑

x∈C v(x) = 0 for every function

v(x) ∈ ∪τ
i=1Vi.

It is easy to see that, for any finite set C ⊂ Sn−1 and any polynomial f(t) of degree
m, the following identity holds [24, 26] (see also [18, Corollary 3.8])

(3) |C|f(1) +
∑

x,y∈C,x6=y

f(〈x, y〉) = |C|2f0 +

m
∑

i=1

fi

ri

ri
∑

j=1

∣

∣

∣

∣

∣

∑

x∈C

vij(x)

∣

∣

∣

∣

∣

2

.

Using (3) and Lemma 1 one obtains the LP bounds for codes and designs [18, 23, 24,
25, 26].

Theorem 1. (i) For any polynomial f(t) ∈ An,s and any (n, M, s) code we have

M ≤ f(1)/f0.

(ii) For any polynomial f(t) ∈ Bn,τ and any τ -design C ⊂ Sn−1 we have |C| ≥ f(1)/f0.

2.3. Levenshtein bound for codes and Delsarte-Goethals-Seidel bound for

designs. A general choice for good polynomials was proposed by Levenshtein [24, 25,
26] for Theorem 1(i) and by Delsarte, Goethals and Seidel [18] for Theorem 2(ii). Both
bounds are extremal in some sense: they can not be improved by using polynomials of
the same or lower degree. The bounds themselves can be described in terms of adjacent
orthogonal polynomials and their zeroes as follows.

The adjacent polynomials are simply Jacobi polynomials P
a+ n−3

2
,b+ n−3

2

i (t) [1, Chap-

ter 22], where a, b ∈ {0, 1}. We shall write them shortly as P a,b
i (t). Set T 1,ε

k (t, s) =
k
∑

i=0

r1,ε
i P 1,ε

i (t)P 1,ε
i (s), where r1,ε

i =

(

n + 2i − 1 + ε

n + ε − 1

)2−ε (

n + i − 2 + ε

i

)

and ε ∈ {0, 1}

(i.e. a = 1 and b = ε). Let t1,ε
k be the greatest zero of the polynomial P 1,ε

k (t).
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Then the polynomials f
(s)
m (t) = (t + 1)ε(t − s)[T 1,ε

k−1(t, s)]
2, where m = 2k − 1 + ε and

t1,1−ε
k−1+ε ≤ s < t1,ε

k , were used by Levenshtein [24, 25, 26].

Theorem 2 ([24, 25, 26]). If C is an (n, M, s) code, then

(4) M ≤































































L2k−1(n, s) =

(

k + n − 3

k − 1

)

[

2k + n − 3

n − 1
−

P
(n)
k−1(s) − P

(n)
k (s)

(1 − s)P
(n)
k (s)

]

for t1,1
k−1 ≤ s < t1,0

k ,

L2k(n, s) =

(

k + n − 2

k

)

[

2k + n − 1

n − 1
−

(1 + s)(P
(n)
k (s) − P

(n)
k+1(s))

(1 − s)(P
(n)
k (s) + P

(n)
k+1(s))

]

for t1,0
k ≤ s < t1,1

k .

Moreover, if M = Lm(n, s), then C is a spherical m-design and all inner products 〈x, y〉,
x, y ∈ C, x 6= y, are zeros of fm(t).

The Delsarte-Goethals-Seidel bound was obtained in [18, Theorems 5.11, 5.12]. It
can be obtained by using the polynomial f (τ)(t) = (t + 1)ε(P 1,ε

e (t))2, where ε ∈ {0, 1},
τ = 2e + ε.

Theorem 3 [18]. If C ⊂ Sn−1 is a τ -design, τ = 2e + ε, ε ∈ {0, 1}, then

(5) |C| ≥ R(n, τ) =

(

n + e − 1

n − 1

)

+

(

n + e − 2 + ε

n − 1

)

.

Moreover, if |C| = R(n, τ), then C is an (n, Lτ (n, s), s) code and all inner products 〈x, y〉,
x, y ∈ C, x 6= y, are zeros of f (τ)(t).

2.4. On maximal codes and minimal designs. A spherical design is called tight
if it attains the bound (5). There exist tight τ -designs for τ = 1, 2, 3 in all dimensions.
Bannai and Damerell [5, 6] proved that for n ≥ 3 tight spherical τ -designs on Sn−1 do
not exist if τ = 2e and e ≥ 3 or τ = 2e + 1 and e ≥ 4 except for τ = 11, n = 24. Exactly
eight tight τ -designs with τ ≥ 4 are known (see [5, 6, 8]).

All spherical codes which meet even Levenshtein bounds L2k(n, s) were characterized
in [13].

Theorem 4.Let C be an (n, L2k(n, s), s) code (k ≥ 2, n ≥ 3). Then one of the

following holds:

a) k = 2, n = m2 − 3, m ≥ 3 is odd, s = 1/(m + 1), and W is a tight spherical

4-design;

b) k = 2, n = 3, s = 1/
√

5, and W is the icosahedron (which is a tight spherical

5-design);
c) k = 2, n = m2 − 2, m ≥ 3 is odd, s = 1/m, and W is a tight spherical 5-design;

d) k = 3, n = 3m2 − 4, m ≥ 2 is integer, s = 1/m, and W is a tight spherical

7-design;

e) k = 5, n = 24, s = 1/2, and W is the unique tight spherical 11-design formed by

the vectors of minimal norm in the Leech lattice.
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This classification and other results (on the odd Levenshtein bounds) from [13, 16] are
based on the simple idea to find the distance distribution of maximal codes and to check
whether it is integral. This approach was used for designs in [8] to establish nonexistence
results for tight 4- and 5-designs which are used in Theorem 4 a)–c).

3. Necessary and sufficient conditions for improving universal bounds by

LP. In [12], test functions Qj(n, s) have been defined to check the global optimality of the
Levenshtein bound. Let the numbers α0 < α1 < · · · < αk−1+ε = s (−1 ≤ α0, ε ∈ {0, 1})
be all different zeros of the Levenshtein polynomial f

(s)
2k−1+ε(t). In [26, Theorems 4.1 and

4.3], positive weights ρi, i = 0, 1, . . . , k + ε, have been defined with the property that, for
any real polynomial f(t) of degree at most 2k − 1 + ε the equality

(6) f0 = ρk+εf(1) +

k−1+ε
∑

i=0

ρif(αi)

holds. Obviously, we have L2k−1+ε(n, s) = 1/ρk+ε. The test functions are defined by

Qj(n, s) = ρk+ε +

k−1+ε
∑

i=0

ρiP
(n)
j (αi)

for t1,1−ε
k−1+ε ≤ s < t1,ε

k .
The main result in [12] (obtained by an attempt to adopt (6) for higher degrees; see

also [26, Theorem 5.47]) is the following.

Theorem 5 [12, Theorem 3.1].The bound Lm(n, s) can be improved by a polynomial

from An,s of degree at least m + 1 if and only if Qj(n, s) < 0 for some j ≥ m + 1.
Moreover, if Qj(n, s) < 0 for some j ≥ m + 1, then Lm(n, s) can be improved by a

polynomial from An,s of degree j.

The test functions can be effectively calculated both by computer and by analytical
methods [12]. The sign of Q2k+3(n, s) was investigated in [12] implying many results.
We formulate only the most general statement.

Theorem 6 [12].For any fixed n ≥ 3 there exists m0 ≥ 4 such that every Levenshtein

bound Lm(n, s), m ≥ m0, can be improved by LP for all s in its range.

This theorem shows that the Levenshtein bounds can be improved by LP in wide
ranges of parameters. However, in another sense, the Levenshtein bounds are strong.
The following conjectures were suggested by great amount of numerical data.

Conjecture 1.For any fixed s ∈ (0, 1) there exists n0 ≥ 3 such that no Levenshtein

bound Lm(n, s), n ≥ n0, can be improved by LP.

Conjecture 2. If Qm+3(n, s) ≥ 0 and Qm+4(n, s) ≥ 0, then Qj(n, s) ≥ 0 for every

j ≥ m + 1.

4. Obtaining new bounds. Investigations in [12] show that one always has
Qm+1(n, s) ≥ 0 and Qm+2(n, s) ≥ 0. Hence, the first degree which could work is m + 3.
It turns out that results by degrees m + 3 and m + 4 are already strong enough (see
Conjecture 2 above). This fits very well with a computer method which was proposed
earlier [7]. We have developed program SCOD which can be used in a wide range (for

15



degrees between 6 and 19). In particular, SCOD was used for calculation of a column
(of upper bounds on the minimum distance of codes of prescribed size) in all tables of
best known spherical codes in a forthcoming book on spherical codes by Ericson and
Zinoviev [19].

Test functions for designs were defined in [27] (see also [28]). They appear to be just
special values of the test functions for codes. Earlier, LP improvements of the bound
(5) for some τ ≥ 6 were obtained in [17, 34]. Analytic forms of the new bounds were
proposed in [27, 28, 29].

5. Beyond the pure LP.

5.1. Investigating the structure of small designs. In [14], it was shown that
the LP approach can be modified for obtaining new nonexistence and characterization
results as follows. Another characterization of spherical τ -designs (see, for example, [20,
Equation 1.10]) says that for any τ -design C ⊂ Sn−1 and for any point y ∈ C the equality

(7)
∑

x∈C\{y}

f(〈x, y〉) = |C|f0 − f(1)

holds for every real polynomial f(t) of degree at most τ .
This definition suggests the following idea [14, 9]. Using suitable polynomials in (7)

we derive restrictions on the distributions of the inner products of a τ -design C ⊂ Sn−1.
This implies conditions of the existence of designs in terms of τ , n, and the cardinality
|C| = R(n, τ) + k. These conditions imply nonexistence results for designs with odd
strengths and odd cardinalities (i.e. for odd k) in many cases. Set

Bodd(n, τ) = min{|C| : C ⊂ Sn−1 is a τ -design, |C| is odd.}

For τ = 3, we prove the nonexistence of spherical 3-designs on Sn−1 with R(n, 3)+k =
2n + k points for all odd k < (21/3 − 1)n + p, where p = 2(14 − 5.21/3 − 4.22/3)/9 ≈
0.30018. For τ = 5, we prove the nonexistence of spherical 5-designs on Sn−1 with
R(n, 5) + k = n2 + n + k points for all odd k < n2(21/5 − 1)/2 + p1n + p2, where
p1 = (7.21/5 − 2.23/5 − 5)/10 ≈ 0.00095 and p2 ≈ 0.0428.

In general, [14, Theorem 2.8] shows that for τ = 2e + 1 and for every positive p <
(21/τ − 1)/e! there exists a constant n0 = n0(p) such that for n ≥ n0 there do not exist
τ -designs on Sn−1 with cardinality R(n, τ) + k for all odd positive k ≤ pne. Therefore,

Bodd(n, 2e + 1) ≥ 1 + 21/τ

e!
ne as n → ∞,

while (5) gives Bodd(n, 2e + 1) ≥ 2ne/e! as n → ∞.
In three dimensions, the above rules out the first open cases by showing the nonexis-

tence of 3-designs with 7 points and 5-designs with 13 points. On the other hand, Bajnok
[4] has constructed 3-designs on S2 with m points for m = 8 and all m ≥ 10. Hardin-
Sloane [22] and [31] have constructed 5-designs on S2 with m points for m = 12, 16, 18,
20, and all m ≥ 22 and conjectured that the remaining cardinalities are impossible.

When the nonexistence argument does not work, we obtain bounds on the maximal
inner product s(C) = max{〈x, y〉 : x, y ∈ C, x 6= y} of (2e + 1)-designs on Sn−1 of
odd sizes in terms of e, n, and |C|. Fazekas-Levenshtein [20, Theorem 4] note that a
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combination of (4) and (5) implies a lower bound on s(C). The asymptotic form of this
bound is

(8) s(C) ≥
√

2

n
he + O(n−3/2) as n → ∞,

where τ = 2e + 1 and he is the greatest zero of the Hermite polynomial He(t). For odd
k = γne, we show that

s(C) ≥ 1 − 2γe!− γ2(e!)2

(1 + γe!)2
as n → ∞,

which is positive for (21/τ − 1)/e! < γ < (
√

2 − 1)/e!, and therefore is better for large
enough n than (8). Interestingly, our bounds are better in many small cases as well.

By the argument from the last paragraph, further improvements of the bounds for
Bodd(n, 2e + 1) both in small cases and asymptotically were obtained recently [10].

5.2. Some other applications. It was known from the early years of the informa-
tion theory [32, 33] that spherical codes play important role in the theory of transmission
of information over noisy channels. Computing the so-called reliability function (the best
attainable error exponent) of the so-called the Gaussian channel (which is one of the most
important ones in the practice) was dominating through the end of 1960s [21].

Let C be an (n, M, s) code. For s1, s2 ∈ [−1, s], denote a(s1, s2) = |{(x, y) ∈ C × C :
s1 ≤ 〈x, y〉 ≤ s2}|/|C|. For suitable s1 and s2, the numbers a(s1, s2) are important for
estimations on error probabilities in the Gaussian channel. Ashikhmin, Barg and Litsyn
[3] observed that LP method can be used in the following form.

Theorem 7 [3].Let C be an (n, M, s) code and m be an integer. Let −1 ≤ u0 < s
and suppose that u0 < u1 < · · · < um−1 < um = s define a partition of the interval

[u0, s] into m equal segments Ui = [ui, ui+1]. Suppose that f(t) ∈ An,u0
and f(t) ≥ 0 for

t ∈ [u0, 1]. Then there exists a number i, 0 ≤ i ≤ m − 1, and a point s ∈ Ui such that

a(ui, ui+1) ≥ [f0|C| − f(1)]/mf(s).

Using suitable polynomials in Theorem 7, Ashikhmin, Barg and Litsyn [3] obtain
new bounds on the reliability function of the Gaussian channel thus advancing in a
longstanding problem.

6. Some new results and open problems. Apart from nonexistence results,
investigations of concrete objects can rely on LP. LP methods for finding indexes (degrees
i, for which Lemma 1 holds, i.e. for all v(x) ∈ Vi) were explored in [15]. For example, it
is proved in [15] that the 600-cell, which is only minimal 11-design [2], has (non-trivial)
indexes 14, 16, 18, 22, 26, 28, 34, 38, 46 and 58. This fact inspired us to prove that there
exist a unique 120-point 11-design in four dimensions and a unique (4, 120, cos(π/5))
code and both these are nothing but the 600-cell [11].

It is still an open problem to find closed analytic form of the improvements of the
Levenshtein bounds (4) (i.e. for bounds which can be obtained by higher degree polyno-
mials). In particular, it would be interesting to know formulae for the bounds which can
be obtained by degrees m + 3 and m + 4 improving Lm(n, s). The analogous problem
for designs was solved by Nikov and Nikova [28, 29].

Another situation in which the authors would like to see advances is the application
of LP methods for investigation of the structure of putative optimal spherical codes and,
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in particular, for the so-called kissing numbers problem. Section 5.1 shows the power of
this approach for designs.
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4�EGF HJI�KALGMONQPSR EST UQLVNXW @�PVTOYQL�@�PVT EGN
ZX[]\_^]`ba_cV[]dfe�gh[�iba_jfdfeGkle�dG[=`feGdfanmGdfopibo
qSrSo]^]rG[]steGrG[]dfavutkpoheVibo=gwa�eG\xqfov`S\_yl[vi�\n[=qfo]z
`f{f|G[}yl[]dfa~dG[
^wo}rSdfe��hcbov`Sdfe<^]rG[]dfeG�fe�\n[
ov�pawsX[�dG[�gw�XawrfeG|Sdfe=kpowcbohypa}�hcSeG\n[}mGdfeQ�G��rSa_cSz
ghiS[}ypawd�a
ov�v\xo}r�dG[�{fdfeSypawrSgh[]`SdfeViba�^]rG[]dfeG�fe�\n[]a_cGdfo-g
o}qfeGgh[]dfeGa
dG[�dfawov�}jlowcSeGste�e
cbovghiS[vif�V|Sdfe�{fgw`bohyveG�A\n[Aif�]jfdG[viS[�o}qGibeGsX[]`Sdfovghi����%o]^v[vibo<gh[�yp�V\xsto]��dfe-qfowcbov�]rSawdfeG�fu
gh[�o}qfeGgh[]dfe�stahibowcSe�\n[�dG[]steGrG[]dfa�dG[%dfohyve�^]rG[]dfeG�feQ�p��y�cSyl[viS[%gw`f{f|G[h��gwa�o}kf[]\_yl[%yp�V\_z
sto]��dfo<qfov`f{f|G[}yl[]dfahiboAdG[Adfohyve�^]rG[]dfeG�fe�\n[�^wov`S�vs��]rSohm�qG[]rG[]stahifrfeQ�QZX[]\_^]`ba_cV[]dfe-gh[
e-yp�V\xsto]��dfovghibeViba
\n[AcbovghibeS^v[]dfa
dG[�{fdfeSypawrSgh[]`SdfeViba0^]rG[]dfeG�feQ�!��qfeGgh[]dfe�gh[�e�dS�vkpohe
eG\xgw`ba_cSyl[]dfeG�fuS|feSeVibo�jS[]rG[]kfibawrAa�ypaw|Sa�\n[]c
|feGghibopibo0`feGdfanmGdfo0qSrSo]^]rG[]steGrG[]dfav�
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